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Abstract. We analyze conditional optimization problems arising in discrete time Principal-Agent prob-
lems of delegated portfolio optimization with linear contracts. Applying tools from Conditional Analysis
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1. Introduction

In this article we analyze conditional optimization problems arising in the dynamic Principal-Agent (PA)
Problem of delegated portfolio management. In these models, which belong to the class of contracting
problems under moral hazard, an investor (the Principal) outsources her portfolio selection to a manager
(the Agent) whose investment decisions the investor cannot or does not want to monitor.

Moral hazard problems have been first studied in [17, 18] in static environments and in [24, 23] in dy-
namic ones. In recent years, such problems have received renewed attention in the economics and financial
mathematics literature. The seminal contribution [22] analyzed dynamic moral hazard problems in con-
tinuous time in which the output is a diffusion process with drift determined by the Agent’s effort. The
optimal contract, based on the Agent’s continuation value as a state variable, was computed using so-
phisticated stochastic control and PDE methods. Using similar tools, [3] studied a PA model in which a
risk-neutral Agent with limited liability must exert unobservable effort to reduce the likelihood of large
but infrequent losses. In [25] a Stochastic Maximum Principle was applied to dynamic PA models to find
first order conditions for optimality. In the most general case the Stochastic Maximum Principle leads to
the characterization of optimal contracts through a system of fully coupled Forward-Backward Stochastic
Differential Equations for which no general existence theory exists. These equations can typically only be
solved explicitly when the analysis is confined to models driven by Brownian motion, specific preferences -
typically linear, expected exponential or power utility functions - and information is symmetric, i.e. both
parties observe the driving Brownian motion. We refer to the monograph [11] for a systematic survey of
the mathematical literature on dynamic PA models and to [10] for a recent model of portfolio delegation
under incomplete information which leads to even more complex dynamics.

Our work is motivated by that of Ou-Yang in [20] - which was in a sense generalized in [6] - where
a delegated portfolio management problem in continuous time was analyzed. In his model, the Agent
observes prices (a geometric brownian motion) while the Principal observes prices and the fluctuations
in wealth resulting from the Agent’s investment strategy; investment decisions are unobservable to the
Principal and known only to the Agent. Under the assumption of exponential utilities the contracting
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problem was solved by means of a HJB approach, finding that the optimal contract is of the form “cash
plus a convex combination of the generated wealth and a benchmark portfolio”; derivatives are not part
of the optimal contract.

Our goal is to clarify the mathematical structure of the optimal contracting problem and to analyze under
which conditions on the Principal’s and Agent’s preferences the main structure-of-equilibrium-contract
results in [20] carry over to more general probabilistic settings. To this end, we consider a portfolio
delegation model in discrete time, retain the assumptions on the contract space and information structure
but allow for rather general utility functions and price dynamics. Our main assumptions on preferences
are time-consistency and translation invariance; such preferences have been extensively studied in the
mathematical finance literature; see [1, 2, 7, 9, 15]. With our choice of preferences we prove that the
problem of dynamic contract design can be reduced to a series of one-period conditional optimization
problems of risk-sharing type under constraints and optimal contracts can be computed by backwards
induction. To do so, we employ the usual approach of viewing the Agent’s continuation utility at any
point in time as the Principal’s decision variable, with the Principal’s decisions being restricted by an
incentive compatibility constraint. To the best of our knowledge this argument was first put forward in
[24] and later in [23].

Our approach of reducing the dynamic contracting problem to a series of conditional one-period problems
is similar to the one employed in [7] where a model of equilibrium pricing in incomplete markets was
analyzed. The optimization therein is simpler, though, as the exchange of risk takes place through linear
subspaces spanned by the tradable assets which is not the case in our model. Our optimization problems
can be viewed as conditional extensions of the ones analyzed in e.g. [1, 5, 7] where the exchange of risk takes
place through (conditional) Lp spaces. Conditional analysis - see e.g. [15, 14, 8] - provides a framework
to tackle conditional optimization problems, at the same time avoiding technical measurable selection
arguments.

Our conditional one-period optimization problems are not convex a-priori, due to incentive compatibility
constraints. However, with our choice of contracts the Principal’s and Agent’s problems can be merged
into unconstrained ones, which if solvable yield an optimal contract. In economic terms, the reduction
to unconstrained problems means that the first-best solution is implementable under moral hazard if it
exists: the contract that one obtains is the same that one would obtain if the Principal and Agent had
the same information and had to share the gains and losses from trading between themselves so as to
maximize aggregate utility.

The intuition is that in computing an optimal contract the Principal computes the Agent’s optimal actions
as function of stock prices. This resolves the asymmetry of information and leads eventually to our main
result that the optimal contract - if it exists - is of the form “cash plus a convex combination of the
generated wealth and a benchmark portfolio plus a path-dependent derivative on the stock price process”.
In particular, under an optimal contract the Principal fully surrenders to the Agent the wealth generated
by trading in exchange for a benchmark portfolio plus a (generally non-replicable) derivative.

As in [20] the benchmark portfolio is related to the optimal (at-equilibrium) effort of the Agent. Unlike
in [20] derivatives are generally part of optimal compensation schemes. Derivatives are not needed in
Markovian models under a predictable representation property (PRP)1. The latter includes a discrete-time
version of the model in [20] as well as many of the standard dynamic risk sharing problems under symmetric
information as special cases. It is only in this (restricted) setting that we can prove in Proposition 4.8 that
the structure-of-contracts results in [20] carry over to more general preferences as long as the Agent’s and
the Principal’s preferences originate from a common base preference functional (e.g. exponential utilities).

1Loosely speaking the predictable representation property states that uncertainty is spanned by finitely many random
factors.
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The main challenge is then to solve the unconstrained optimization problems. The approach we follow
is to prove that the set of potential optimizers is bounded in a suitable sense. In the greatest generality
we work in the conditional version of L1 spaces and with conditional utility functions enjoying a certain
sequential upper-semicontinuity on balls, which in particular yields a variational representation of the
preference functionals in the spirit of [13, 16, 19]. The transit from boundedness to optimality uses a form
of the usual Komlos argument. With this we fully solve in Theorem 2.21 the PA problem for a class of
Optimized Certainty Equivalent (OCE) utilities including Average Value at Risk, and bounded prices.

In a Markovian framework under PRP our static conditional problems reduce to deterministic ones in
Euclidean spaces. For such setting we find for general OCEs the optimal contract by the Lagrange
multiplier method. Under PRP the solution to our contracting problem can also be obtained in terms of
the solution to a coupled system of backward stochastic difference equations. As in [7] the benefit of having
a discrete model is that such systems can be solved by backwards induction, whereas the continuous-
time equivalent is usually intractable. This, and the fact that continuous-time models are unlikely to
yield additional insights into the structure of optimal contracts over discrete-time models, motivates our
discrete-time framework.

The remainder of this paper is structured as follows. In Section 2 we introduce the modeling framework
including the preferences and the contract space. We show how the dynamic problem reduces to a sequence
of static ones and present our main results along with examples (OCEs) for which these results can be
applied. In Section 3 we prove general attainability results for the Agent’s and Principal’s problem. In
Section 4 we specialize our analysis assuming Markovianity and PRP, which allows us to obtain the optimal
contracts explicitly. In Appendix A we survey existing and prove new conditional analysis results which
we need throughout this work. Appendices B and C prove results on OCEs and one of the main results
of this paper, respectively.

Notation. We take the convention that vectors are regarded as column ones. The transpose of a vector x
is denoted x′ and unless necessary to do otherwise the inner product of two vectors x, y is denoted xy. As
usual, (·)+ and (·)− denotes taking positive and negative parts.

2. The model and main results

We consider a discrete time model with time grid {0, 1, ..., T} for some deterministic terminal time T <∞.
Uncertainty is modelled by a probability space (Ω,F ,P). The probability space carries an N -dimensional,
strictly positive, discounted stock price process P = {Pt} whose filtration we denote by F = {Ft}. We
assume throughout that E[Pt+1|Ft] is finite2. We put ∆Pt+1 := Pt+1−Pt and ∆P̃t+1 := diag(Pt)

−1∆Pt+1,
where diag(·) denotes the diagonal matrix associated with the vector in its argument. The same notation
applies for other processes different than P . We write P0:t to denote the path of the price process from
time 0 to t. For a σ-algebra G we denote by L0(G) the set of real-valued G-measurable functions. L0(G)

and L0(G) denote the set of G-measurable functions taking values in R ∪ {−∞}, respectively R ∪ {+∞}.

2.1. Effort levels and wealth dynamics.

At each time t ∈ T := {0, 1, ..., T − 1} the Agent (he) chooses an N-dimensional Ft-measurable random
variable At that we call effort level, in line with the Principal-Agent literature. For the delegated portfolio
optimization application we have in mind the vector At stands for the dollar amount invested in each asset.
The cost associated with choosing At is given by ct(At). We make the following standing assumption:

Assumption 2.1. The cost functions ct(·) : RN → R are strictly convex for each t ∈ T.

2All equalities and inequalities are to be understood in the P-a.s. sense.
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Effort levels are known only to the Agent. The wealth at time t ∈ T associated with a sequence of effort
levels A = {At} is given by3:

(1) WA
t = W0 + ∆WA

1 + · · ·+ ∆WA
t = W0 +

∑
s<t

As∆P̃s+1.

The Principal (she) observes progressively stock prices and wealth levels and offers the Agent a contract
based on her available information. Following [20] a contract will consist of a linear combination of a
payment contingent on the evolution of the price process and a reward depending linearly on the wealth
increments. This includes replicable derivatives on the terminal wealth.

2.2. Preferences.

Payments are evaluated according to a family of time-consistent and translation invariant utility func-
tions. To connect with the existing literature we first define our preference functionals on spaces of almost
surely finite random variables (“general framework”). Subsequently, we introduce an additional conditional
integrability and continuity condition (“conditional L1 framework”) from which we infer a variational rep-
resentation of our preference functionals. While time-consistency and translation invariance allows us to
reduce the dynamic contracting problem to a series of conditional one-step ones, the variational repre-
sentation allows us to state sufficient conditions under which the Principal’s and the Agent’s conditional
optimal one-step payments and actions exist at any time.

2.2.1. General framework. To introduce our preference functionals we denote by FA, for a given choice
of effort level A, the filtration generated by the pair of processes (P,WA). For the Agent the filtrations
F and FA coincide; for the Principal they differ unless she knows the Agent’s actions4. The respective
preferences are then encoded by a family of utility functionals:

(2) Uat : L0(FT )→ L0(Ft) and Upt : L0(FAT )→ L0(FAt ) (t ∈ T).

We use the notation Ua and Up when referring to the Agent’s and Principal’s preferences. For a filtration
{Gt} and a family U := {Ut} of utility functionals Ut : L0(GT ) 7→ L0(Gt) we say that U is:

• normalized if Ut(0) = 0,
• proper if there exists X ′ ∈ L0(GT ) s.t. Ut(X ′) > −∞ and Ut(X) <∞ for all X ∈ L0(GT )

• monotone if Ut(X) ≥ Ut(Y ) whenever X,Y ∈ L0(GT ) and X ≥ Y
• Ft-conditionally concave if Ut(λX+(1−λ)Y ) ≥ λUt(X)+(1−λ)Ut(Y ) whenever λ ∈ L0(Gt)∩[0, 1]

and X,Y ∈ L0(GT ),
• Ft-translation invariant if Ut(X + Y ) = Ut(X) + Y whenever X ∈ L0(GT ) and Y ∈ L0(Gt),
• time consistent if Ut+1(X) ≥ Ut+1(Y ) implies Ut(X) ≥ Ut(Y ),

for all t ∈ T. We shall refer to these axioms as the usual conditions/assumptions and denote by

dom(Ut) := {X ∈ L0(GT ) : Ut(X) ∈ L0(Gt)},

the domain of Ut. For a detailed discussion of the usual conditions along with their implications for utility
optimization and equilibrium pricing we refer to [7] and references therein. For instance, it is well-known
that they imply the tower property, stating that Ut(X) = Ut(Ut+1(X)) whenever X ∈ dom(Ut+1), as well
as the local property, stating that 1AUt(X) = 1AUt(Y ) whenever X,Y ∈ L0(GT ), A ∈ Gt and 1AX = 1AY .

3For simplicity we assume zero interest rate
4The fact that the Principal observes price and wealth dynamics does not necessarily mean that she can observe directly

Agent’s decisions. For optimal contracts the Principal will indeed know Agent’s decisions as function of prices. This is not
true “off equilibrium”, though. Hence we need to distinguish Agent’s and Principal’s information at this point.



CONDITIONAL ANALYSIS AND A PRINCIPAL-AGENT PROBLEM 5

We assume throughout that Uat and Upt satisfy the usual conditions w.r.t. the respective filtrations. They
are satisfied for a wide class of preferences as illustrated by the following examples.

Example 2.2 (Entropic utilites). Given a constant γ > 0 the entropic family given by

Ut(X) = −1

γ
logE [exp (−γX) |Gt] ,

evidently satisfies the usual conditions.

Example 2.3 (Pasting). Starting from one-step utilities defined for bounded random variables, a family
satisfying the usual conditions can be built over L0 as follows [7, Example 2]. For each t, let Ũt :

L∞(Gt+1)→ L∞(Gt) be a normalized and Gt−translation invariant functional, for which the extensions

(3) X 7→ lim
n→+∞

lim
m→−∞

Ũt([X ∧ n] ∨m),

again denoted Ũt, are well defined between L(Gt+1) and L(Gt). It is not difficult to see that the pasting
Ut(X) := Ũt ◦ Ũt+1 ◦ · · · ◦ ŨT (X) forms a time consistent and translation invariant family.

Example 2.4 (Optimized Certainty Equivalents). Consider Ht(·) a convex, closed and increasing
function satisfying H∗t (1) := sups[s−Ht(s)] = 0, and define the one-step functionals

Ũt : X ∈ L∞(Gt+1) 7→ ess sup
s∈R

{s− E[Ht(s−X)|Gt]},

which are then normalized, translation-invariant and monotone. Such a family is called Optimized Cer-
tainty Equivalent (OCE) in the literature; see [2]. The entropic utility of Example 2.2 corresponds to
H(l) = γ−1 exp(γl − 1). Lemma B.1 shows that if 1 ∈ int(dom(H∗t )) and Ht is bounded from below, the
extensions (3) are well-defined. Hence we obtain a family satisfying the usual conditions by pasting; see
Remark B.2 as well. This fills a minor gap in [7].

Example 2.5 (Tail-value-at-risk utility). By Lemma B.1, a family satisfying all the requirements of
Example 2.4 is given by the so-called Tail-value-at-risk (TVAR) utilities, defined for each λ ∈ (0, 1) by

(4) Ũt(X) = ess sup
s

{
s− λ−1E([s−X]+|Gt)

}
.

TVAR (or Average-Value-at-Risk) was characterized in [21] and later extensively analyzed in the mathe-
matical finance literature. The representation (4) is more convenient for us than the equivalent:

Ũt(X) = − 1

λ

∫ 1

1−λ
V@Rα(−X|Gt)dα.

2.2.2. Conditional L1 framework. We are now going to introduce additional conditional integrability and
continuity conditions on our preference functionals (we refer to Appendix A for more details). We define
for two sigma-algebras G ⊂ G̃ the conditional L1 space

L1
G(G̃) :=

{
Z ∈ L0(G̃) : E[|Z||G] ∈ L0(G)

}
.

For p <∞ the Lp variant thereof is evident and we remark that L1
G(G̃) = L0(G)L1(G̃) as sets. Call also

L∞G (G̃) := {Z ∈ L0(G̃) : |Z| ≤ Y, for some Y ∈ L0(G)}.

The following continuity property can be viewed as a Fatou property in our conditional framework.

Definition 2.6. For p ∈ [1,∞) a functional U : LpG(G̃)→ L0(G) is called L0−Lp upper semicontinuous if
for each sequence {Xn}n bounded in LpG(G̃) (i.e. supn E[|Xn|p|G] ∈ L0(G)) such that Xn → X a.s. it holds
that lim supU(Xn) ≤ U(X). We use this terminology even if U is defined in a larger set than LpG(G̃).
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We state now a standing assumption on the preferences.

Assumption 2.7. Let U stand for Ua or Up and G for F or FA, respectively. Then U satisfies the usual
conditions with respect to G. Moreover, Ut is L0 − L1 upper semicontinuous for each t and

{X− : X ∈ dom(Ut)} ⊂ L1
Gt(GT ).

The following representation result is an immediate consequence of Proposition A.9. It will be used below
to prove that the Agent’s one-step optimization problems have a solution.

Proposition 2.8. Under Assumption 2.7 the following variational representations hold:

Upt (X) = ess inf
Z∈WA

t

{
E[ZX|FAt ] + αpt (Z)

}
for X ∈ L1

FAt
(FAt+1),(5)

Uat (X) = ess inf
Z∈Wt

{E[ZX|Ft] + αat (Z)} for X ∈ L1
Ft(Ft+1),(6)

where
αpt : L∞FAt

(FAt+1)→ L
0
(FAt ) αat : L∞Ft(Ft+1)→ L

0
(Ft),

are the respective conjugates of the utility functionals Upt and Uat , and

WA
t :=

{
Z ∈ L∞FAt (FAt+1) : Z ≥ 0,E[Z|FAt ] = 1

}
Wt :=

{
Z ∈ L∞Ft(Ft+1) : Z ≥ 0,E[Z|Ft] = 1

}
.

The next example shows that entropic families and pastings of many OCE, such as the TVAR families,
fulfilll Assumption 2.7 along with the usual conditions. These are hence the canonical utilities to which
our main results in Section 2.4 apply.

Example 2.9. The entropic families of Example 2.2 clearly fulfilll Assumptions 2.7. In Lemma B.1 we
prove that the TVAR families of Example 2.5, and more generally the OCE families of Example 2.4
for which 1 ∈ int(dom(H∗t )) and Ht is bounded from below, fulfilll Assumptions 2.7 after pasting. In
Remark 4.5 we will justify that if the Predictable Representation Property holds, then any OCE satisfies
Assumption 2.7.

The variational representation of preferences yields a convenient way to define preference functionals that
satisfy Assumption 2.7 by specifying families of “conditionally acceptable models” for both parties.

Example 2.10. For a filtration {Gt} let At ⊂ L∞Gt(Gt+1) be a convex set (of conditionally acceptable
models) and let χAt be the associated convex indicator function. Then, the preference functional defined
by

Ut(X) := ess inf
Z∈Wt

{E[ZX|Gt]− χAt(X)}

satisfies Assumption 2.7 after pasting where Wt :=
{
Z ∈ L∞Gt(Gt+1) : Z ≥ 0,E[Z|Gt] = 1

}
2.3. Contracts and optimal actions.

The simplest contracts the Principal may offer the Agent consist of a fixed FT -measurable (lump-sum)
payment Θ, which we may interpret as a financial derivative contingent only on the path of the price
process, plus a constant β times WA

T . Such contracts (or more exactly, menus of payments) take the form:

S̄ =
{
A 7→ S̄(A) := Θ(P0:T ) + βWA

T

}
.

Because the Principal observes the wealth and price processes progressively, we shall actually consider a
wider family of contracts of the form:

S =

{
A 7→ S(A) := Θ(P0:T ) +

∑
t<T

βt∆W
A
t+1

}
,
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where βt ∈ L0(FAt ) and Θ is as before, which make better use of her available information. This contract
space is rather large and contains replicable path-dependent derivatives on the wealth process. However,
as in [20], we shall find that an optimal incentive-compatible contract is indeed of the form S̄. This is a
consequence of our implicit modeling assumption that the Principal does not seek to infer anything about
A from observing P and WA, which we may justify as it being too expensive or time-consuming for the
Principal.

We will conveniently refer to a contract as S, (Θ, β) or (Θ, {βt}) depending on the context and denote
by R ∈ R the Agent’s reservation utility, i.e. the least utility the Agent demands in order to commit to a
contract

Definition 2.11. A contract (Θ, {βt}) is individually rational if the optimal utility the Agent can obtain
at time 0 from it is at least R.

In the sequel we show how to obtain recursive representations of the Agent’s and the Principal’s utilities
and how to reduce the problem of optimal dynamic contract design to a sequence of static problems.

2.3.1. Agent’s problem. Let us assume that the Agent chooses an effort level A when presented with a
contract S(·). His total cost of effort is then C(A) :=

∑T−1
t=0 ct(At) and his utility seen from time t is

Uat (S(A)− C(A)). Using translation invariance we compute:

Uat

(
S(A)−

∑
t

ct(At)

)
= Uat

Θ(P0:T ) +
∑
s≥t

{
βs∆W

A
s+1 − cs+1(As+1)

}
− ct(At) +

∑
s<t

{
βs∆W

A
s+1 − cs(As)

}
.(7)

This shows that the Agent’s optimization problem of finding the best effort level A given a contract S(·)
reduces to the following recursion (we omit for simplicity the dependence of H in S):

HT = Θ(P0:T )

Ht = ess sup
A∈L0(Ft)N

{
Uat

(
Ht+1 + βtA∆P̃t+1

)
− ct(A)

}
.

(8)

Remark 2.12. The preceding analysis shows that Ht has the interpretation of being the maximal utility
the Agent can get, from time t onwards. Since adding an Ft−measurable term to Θ translates additively
into Ht and preserves optimality of effort levels, we see that the individual rationality condition binds
(H0 = R) for any contract that is optimal for the Principal.

Definition 2.13. A contract (Θ, {βt}) is called incentive-compatible if the essential suprema in (8) are
attained for each t ∈ T.

2.3.2. Principal’s problem. The Principal’s problem is to design an optimal incentive compatible and
individually rational contract. To that end, suppose again that the Agent has chosen A when presented
with a contract S(·), and that the Principal knows this. Her utility seen from time t is then:

Upt

(
WA
T −Θ−

∑
s<T

βs∆W
A
s+1

)

= WA
0 −Ht +

∑
s<t

(1− βs)As∆P̃s+1 + Upt

∑
s≥t

[
(1− βs)As∆P̃s+1 −∆Hs+1

] ,
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where the identity Θ = Ht +
∑

s≥t ∆Hs+1 and translation invariance was used. If we denote by ht(A, β)

her utility from future income, then time consistency along with translation invariance yields:

ht(A, β) := Upt

∑
s≥t

[
(1− βs)As∆P̃s+1 −∆Hs+1

]
= Uat

(
Ht+1 + βtAt∆P̃t+1

)
− ct(At) + Upt

(
ht+1(A, β) + (1− βt)At∆P̃t+1 −Ht+1

)
.

(9)

Performing the change of variables

(10) Γt+1 := βtAt∆P̃t+1 +Ht+1 ∈ L0(Ft+1),

and writing ht(A,Γ) instead of ht(A, β) we arrive at:

(11) ht(A,Γ) = Uat (Γt+1)− ct(At) + Upt

(
ht+1(A,Γ) +At∆P̃t+1 − Γt+1

)
.

If (Θ, {βt}) is incentive compatible, then unique optimal effort levels for the Agent exist, due to our
concavity assumptions on his utility and cost function. For every time t ∈ T we may thus construct the
random variable Γt+1, and At will attain the essential supremum:

ess sup
a

[
Uat

(
Γt+1 + βt[a−At]∆P̃t+1

)
− ct(a)

]
.

We say that ({A}, {Γ}) is incentive-compatible whenever for every t this At attains this supremum. In
terms of the set

Ct(β) :=

{
(A,Γ) ∈ [L0(Ft)]N × L0(Ft+1) s.t. for every Ā ∈ [L0(Ft)]N :

Uat (Γ)− ct(A) ≥ Uat
(

Γ + β[Ā−A]∆P̃t+1

)
− ct(Ā)

}
,

incentive compatibility amounts to (At,Γt+1) ∈ Ct(βt) for every t ∈ T. In particular, we can introduce
the following recursion for the Principal’s future optimal wealth:

hT = 0,

ht = ess sup
(β,A,Γ)

(A,Γ)∈Ct(β)

Uat (Γ)− ct(A) + Upt

(
ht+1 +A∆P̃t+1 − Γ

)
.(12)

Remark 2.14. We arrived at the well-known result that in constructing an optimal contract the Principal
should consider the Agent’s continuation utility as a decision variable of hers. This also resolves the issue
of information asymmetry: assuming that the Principal knows the mappings At as functions of {Ps}s≤t
for each t implies that all the random variables in (9) and (11) become price-adapted.5 If optimal efforts
are not unique, then one has to specify which effort levels {At} (the Principal recommends) the Agent
implements in order to carry out the above recursion. This is why in the PA literature one often calls such
effort levels recommended effort levels and the triple (Θ, {βt}, {At}) incentive compatible.

2.4. Main results.

In this section we summarize the main results of our paper. We start with the following theorem that
makes our formal derivations of the Agent’s and Principal’s optimal wealth precise. It states that if the
Principal’s and the Agent’s conditional one-step optimization problems have solutions, then the dynamic
contracting problem has a solution that can be obtained out of these. The proof is given in Appendix C.

5We emphasize, again, that this is a consequence of the assumption that the Principal is not trying to learn/infer something
from the Agent’s actions.
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Theorem 2.15. Assume that the recursions (8) and (12) admit a solution with the essential suprema
attained at each time t. Then the Principal’s optimal utility at time t = 0 equals W0 − R + h0. Further,
calling (βt, At,Γt+1)t∈T the maximizers attaining h in (12), and defining

Θ = Θ(P0:T ) :=
∑

0≤t<T
[Γt+1 − Uat (Γt+1) + ct(At)] ,

the contract

S =
{
Ā 7→ R+ Θ(P0:T ) +

∑
βt

[
∆W Ā

t+1−At∆P̃t+1

]}
,

is optimal for the Principal, among those satisfying incentive compatibility and individual rationality
constraints. The associated optimal effort for the Agent is A and his optimal wealth will be R.

We now define an auxiliary unconstrained version of the optimization problem in (12), and prove that if
such a problem is well-posed, it yields a at time t a solution to the original one-step problem, and the
corresponding βt = 1 is optimal. This opens the way to our main result, Theorem 2.21. The technical
importance of this is that we may dispense with the non-convex sets Ct, making the incentive-compatibility
constraint much more tractable. Economically, this indicates that the first-best solution is optimal if it
exists: at any point in time t ∈ T both parties share the “aggregate endowment” given by the Principal’s
utility from future income ht+1 plus gains from trading A∆P̃t+1 so as to maximize aggregate utility.

Proposition 2.16. Assume that the following problem is finite and attainable:

(13) Σ := ess sup
(A,Γ)∈[L0(Ft)]N×L0(Ft+1)

Uat (Γ)− ct(A) + Upt

(
ht+1 +A∆P̃t+1 − Γ

)
.

Then any maximizer
(
Â, Γ̂

)
belongs to the set Ct(1) and therefore

Σ = ess sup
(β,A,Γ)

(A,Γ)∈Ct(β)

Uat (Γ)− ct(A) + Upt

(
ht+1 +A∆P̃t+1 − Γ

)
.

Proof. Let (Â, Γ̂) be a maximizer for (13). For arbitrary A, define Γ = Γ̂ + (A− Â)∆P̃ . Plugging in that
(Â, Γ̂) is better than (A,Γ) for (13), we see that the terms involving Up cancel out and so:

(14) Uat (Γ̂)− ct(Â) ≥ Uat (Γ̂ + (A− Â)∆P̃ )− ct(A).

This means that
(
Â, Γ̂

)
∈ Ct(1) so the values of the constrained and unconstrained problems coincide. �

Remark 2.17. The previous proof crucially relies on the fact that contracts are linear in wealth increments.
Indeed by varying Γ̂ in directions of the form (A − Â)∆P̃ and by linearity of contracts the term in the
objective function involving Principal’s utility cancel out, making it possible to compare the values of
Agent’s utilities.

In Section 3 we shall, therefore, turn our attention to the question of attainability of the unconstrained
problem. For the reader’s convenience we state in this section our main results therein and show how
they apply to specific classes of examples. The proof of the following result is given in Section 3.2. The
technical conditions will be easily satisfied by the utility functionals listed in Example 2.9.

Theorem 2.18. Suppose at time t ∈ T that

Kp
t := ess sup

Z∈Wt∩[1−ε,1+ε]
αpt (Z) ∈ L0(Ft) and Ka

t := ess sup
Z∈Wt∩[1−ε,1+ε]

αat (Z) ∈ L0(Ft),
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for some ε ∈ L0(Ft) ∩ (0, 1]. Then, if ht+1 ∈ dom(Upt ) and lim
|a|→∞

ct(a)
|a| = +∞, the random variable Σ

defined in (13) belongs to L0(Ft), satisfies

Σ = ess sup
(A,Γ)∈[L0(Ft)]N×L1

Ft
(Ft+1)

Uat (Γ)− ct(A) + Upt

(
ht+1 +A∆P̃t+1 − Γ

)
,

and the essential supremum is attained. In particular βt = 1 is optimal at time t ∈ T.

It is well-known that if the utility functionals originate from a common base functional, more explicit
treatments of equilibrium/risk-sharing problems become available (as in [1, 5, 7]). In the same spirit
we have the following result, stating that in that case the Principal and the Agent share the “aggregate
endowment” according to their risk attitudes. The proof is given in Section 3.2.

Theorem 2.19 (Base Preferences). Suppose that there exists non-negative numbers γa, γp and base
preference functionals {Ut} such that

U lt(·) :=
1

γl
Ut

(
γl·
)

(l = a, p).

Further assume that
γaγp

γa + γp
ht+1 ∈ dom(Ut) and lim

|a|→∞

ct(a)

|a|
= +∞.

Then Principal’s one-step problem (at time t) has as solution:

β = 1 and Γ∗ =
γp

γa + γp
(ht+1 +A∗∆P̃t+1),

for the optimal action A∗ of the Agent, which attains:

ess sup
A

{
−ct(A) +

γa + γp

γaγp
Ut

(
{γaγp}[ht+1 +A∆P̃t+1]

γa + γp

)}
.

In light of Theorem 2.15, the two previous results yield a solution to the dynamic problem, as explained
in the following proposition.

Proposition 2.20. If the assumptions of Theorem 2.18 or Theorem 2.19 hold for every t ∈ T, then the
respective one-step problems have a solution and glueing them together yields a solution for the respective
dynamic problems, whereby βt = 1 for every t ∈ T is optimal.

The proof of the preceding proposition is obvious. In applying this result, several technical conditions
need be checked a-posteriori. As shown by the following theorem, these conditions are satisfied a-priori
for entropic and TVAR families and for OCE utilities (Example 2.9) under mild conditions. The proof is
given in Appendix B.

Theorem 2.21. Suppose that prices are bounded (0 < p− ≤ P it ≤ p+ a.s.) and that both Ua and Up are
constructed by pasting of optimized certainty equivalent functionals:

X ∈ L1
Ft(Ft+1) 7→ Uat (X) = ess sup

s∈R
{s− E[Ha

t (s−X)|Ft]}

X ∈ L1
FAt

(FAt+1) 7→ Upt (X) = ess sup
s∈R

{s− E[Hp
t (s−X)|FAt ]},

for which the following conditions hold for each t:

• 1 ∈ int(dom(Ha
t )) ∩ int(dom(Hp

t )),
• Ha

t and Hp
t are lower-bounded.
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Finally assume that lim|a|→∞
ct(a)
|a| = ∞ for every t. Then our dynamic Principal-Agent problem has a

solution whereby the Agent keeps the output wealth and the Principal is given a possibly path-dependent
derivative.

Remark 2.22. In conjunction with Theorem 2.15, the previous result yields the economic interpretation we
referred to in the introduction: the optimal contract is of the form “cash plus a path-dependent derivative
on the stock price process plus performance w.r.t. a benchmark portfolio”. As the derivative may not be
replicable, this shows that the structure in [20, Theorem 1] need not hold.

A family of examples where we can provide explicitly the form of an optimal contract, recovering the
results of [20] in the continuous case is given in Section 4.1 below. It requires additional notation, though,
so we postpone the statement of the result to Section 4.

Remark 2.23. For simplicity and ease of exposition we took zero interest rates and ct = ct(At). The case
with non-null interest rates and/or c(A,W ) =

∑
t[ct(At) + γtWt−1] can be solved exactly in the same

way, the only difference being that βt will not be constant (but remains deterministic) anymore. The
qualitative structure of contracts and their interpretation remain the same however.

3. General attainability results

We prove in this section the attainability of the Agent’s and Principal’s one-step problems, and conse-
quently, for the dynamic problem.

3.1. Agent’s Problem.

We start with an abstract conditional optimization problem of which the Agent’s one-step optimization
problems are special cases. For a given pair of random variables (X,β) ∈ L0(Ft+1)× L0(Ft), let

G(t,X, β) := ess sup
A∈L0(Ft)N

{
−ct(A) + Uat

(
X + βA∆P̃t+1

)}
=: ess sup

A∈L0(Ft)N
gt(A).

(15)

Under the usual conditions gt is Ft−concave, and hence stable (see Definition A.4). The key to the above
optimization problem is to reduce it to an L0(Ft)−bounded set.

Lemma 3.1. Under the following condition, the essential supremum in (15) is attained:

X ∈ dom(Uat ) and lim
|a|→∞

ct(a)

|a|
= +∞.

Proof. We intend to apply Theorem A.6. Evidently

ess sup
A∈[L0(F)]N

gt(A) = ess sup
A∈Λ

gt(A),

where Λ = {A : gt(A) ≥ gt(0)}. The set Λ is L0−convex, contains the origin and is σ−stable. That Λ is
sequentially closed is an application of Proposition A.9.

For A ∈ [L0(Ft)]N not identically null we use the variational representation of Ua established in Proposition
2.8 to bound:

gt(nA) = Uat (X + nβA∆P̃ )− ct(nA)

≤ K + E[ZX+|Ft] + nE[βZA∆P̃ |Ft]− ct(nA),
(16)
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where Z ∈ Wt. Using that A, β are Ft-measurable and Cauchy-Schwarz applied pointwise, we bound from
above the sum of the last two terms in (16) on the set where A does not vanish by:

n|A||β||E[Z∆P̃ |Ft]| − ct(nA) ≤ n|A|
[
|β||E[Z∆P̃ |Ft]| −

ct(nA)

n|A|

]
.

Since Z ∈ L∞Ft(Ft+1) and |E[∆P̃ |Ft]| is a.s. finite by assumption, we see that the majorizing term tends
to −∞ on a non-negligible set as n → ∞ and so does gt(nA). Since gt(0) = Uat (X) − ct(0) > −∞ by
assumption, we get a contradiction, and so Theorem A.3 shows that Λ is L0(Ft)-bounded. Hence Theorem
A.6 applies to ess supA∈Λ gt(A), since the mapping A 7→ gt(A) is L0-upper semicontinuous by Proposition
A.9. This establishes attainability. �

The following is an immediate corollary of the previous lemma.

Corollary 3.2. Assume that Ht+1 ∈ dom(Uat ) and lim
|a|→∞

ct(a)
|a| = +∞. Then the one-step conditional

optimization problem of the Agent at time t, as in (8), is attained.

3.2. Principal’s Problem.

In this section we prove Theorem 2.18, which sharpens Proposition 2.16. The Principal’s problem at time
t consists in maximizing

Vt(A,Γ) := Uat (Γ)− ct(A) + Upt

(
ht+1 +A∆P̃t+1 − Γ

)
.

Recall from Remark 2.14 that the Principal’s preference functionals Upt may and will be considered as
mappings from L0(FT ) to L0(Ft), satisfying the usual assumptions w.r.t. F .

Proof of Theorem 2.18. Let us introduce the set

S := {(A,Γ) ∈ L0(Ft)N ×Q : V (A,Γ) ≥ V (0, 0)},

where Q :=
{

Γ ∈ L1
Ft(Ft+1) : E[Γ|Ft] = 0

}
. In maximizing V , i.e. in computing Σ, we may assume that

Γ ∈ L1
Ft(Ft+1), since for candidate optima, Γ and −Γ must be in the domains of Ua and Up respectively,

and by assumption this yields Γ−,Γ+ ∈ L1
Ft(Ft+1). We may thus further assume that (A,Γ) belong to S,

since Ft-measurable components of Γ cancel out in V , i.e.

Σ = ess sup
(A,Γ)∈S

V (A,Γ).

In a first step, we will show that the set

SA := {A ∈ L0(Ft)N : there exists Γ ∈ Q such that (A,Γ) ∈ S}

is L0(Ft)−bounded. To this end, we first notice that V (0, 0) = −c(0) + Upt (ht+1) ∈ L0(Ft). Taking

Z̃ ∈ dom(αp) ∩ dom(αa) ∩W ∩ L0(Ft)

(e.g. Z̃ = 1) and using the variational representation of the preference functionals, we get:

Uat (Γ) ≤ αa(Z̃) + Z̃E[Γ|Ft]
Upt (h+A∆P̃ − Γ) ≤ αp(Z̃) + Z̃E[h|Ft]− Z̃E[Γ|Ft] + Z̃E[A∆P̃t+1|Ft].

For Γ ∈ Q the term E[Γ|Ft] vanishes and hence

V (0, 0) ≤ αp(Z̃) + αa(Z̃) + Z̃E[h|Ft] + |A||Z̃E[∆P̃t+1|Ft]| − c(A).

Since SA is σ-stable, we can use Lemma A.5 to conclude. Indeed, if SA were not L0(Ft)-bounded, then
there exists a non-negligible set Ω̃ and a sequence {An} ⊂ SA such that |An| ≥ n on Ω̃. Similar arguments
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as in the proof of Lemma 3.1 would establish V (0, 0) = −∞ on a non-negligible set, contradicting our
hypotheses. Thus SA must be L0(Ft)-bounded.

Next, we prove that the set

SΓ := {Γ ∈ Q : there exists A ∈ L0(Ft)N such that (A,Γ) ∈ S}

is bounded in L1
Ft(FT ). Let us chose ε ∈ L0(Ft) ∩ (0, 1] as in the statement of this theorem, fix Γ ∈ SΓ

and define

Za := 1 + ε[1Γ≤0 − P(Γ ≤ 0|Ft)] ∈ L∞(FT ) ∩ [1− ε, 1 + ε]

Zp := 1 + ε[1Γ>0 − P(Γ > 0|Ft)] ∈ L∞(FT ) ∩ [1− ε, 1 + ε]

Since Γ ∈ Q we see that

E[ZaΓ|Ft] = −εE[(Γ)−|Ft] and E[ZpΓ|Ft] = εE[(Γ)+|Ft].

Moreover, E[Za|Ft] = E[Zp|Ft] = 1, implying that Za,p ∈ Wt and thus αp(Zp) ≤ Kp and αa(Za) ≤ Ka.
We hence obtain that

Ua(Γ) ≤ −εE[(Γ)−|Ft] +Ka,

Up(h+A∆P̃ − Γ) ≤ E[Zp(h+A∆P̃ )|Ft]− εE[Γ+|Ft] +Kp

≤ 2E[|h||Ft] + 2|A|E[|∆P̃ ||Ft]− εE[Γ+|Ft] +Kp

≤ N − εE[Γ+|Ft],

for some N ∈ L0(Ft) where the latter inequality follows by assumption and the fact that the effort levels
had already been proven to be L0(Ft)-bounded. Therefore for (A,Γ) ∈ S we have

V (0, 0) ≤ V (A,Γ) ≤ N +Ka − εE[(Γ)−|Ft]− εE[Γ+|Ft]− ct(A) ≤ K̃ − εE[|Γ||Ft],

for some K̃ ∈ L0(Ft). This implies that SΓ is bounded in L1
Ft(FT ) since ε > 0 a.s.

Next, we notice that there exists a sequence (An,Γn) ∈ S such that V (An,Γn) ↑ Σ since S is directed
upwards. Indeed, if V (Ai,Γi) ≥ V (0, 0) for i = 1, 2 and if we define ξ = {V (A1,Γ1) ≥ V (A2,Γ2)} and
(A,Γ) = (A1,Γ1)1ξ + (A2,Γ2)1ξc , then

V (A,Γ) = max{V (A1,Γ1), V (A2,Γ2)} ≥ V (0, 0),

thanks to the terms in V being Ft−stable and ξ ∈ Ft. By virtue of SA being L0(Ft)-bounded, we can
apply the usual Komlos lemma (or Lemma A.7) to the positive and negative parts of each component of
the sequence {An}n in an iterative, nested way, i.e. taking convex combinations of convex combinations
and so forth. On the other hand, the L1

Ft(FT )-boundedness of SΓ implies that the technical condition in
Lemma A.7 holds for the positive and negative parts of the sequence {Γn}n, by Jensen’s inequality, so we
can again take convex combinations of convex combinations. All in all we have found a sequence of non-
negative real numbers {λni } with

∑
i≥n λ

n
i = 1, and random variables Γ∗ ∈ L0(Ft+1) and A∗ ∈ L0(Ft)N

such that Γ̃n =
∑

i≥n λ
n
i Γi → Γ∗ and Ãn =

∑
i≥n λ

n
i Ai → A∗ a.s. (for each component). Also (Ãn, Γ̃n) ∈ S

by convexity. Moreover,

Σ = lim
n
V (An,Γn) = lim

n

∑
i≥n

λni V (Ai,Γi) ≤ lim sup
n

V (Ãn, Γ̃n),

since (a.s.) convergent sequences of real numbers remain converging under convex combinations of its tails
and V is concave.

The cost-term in V is u.s.c. and since SΓ is L1
Ft(FT )-bounded we get for the Ua term in V that

lim supn U
a
(

Γ̃n

)
≤ Ua(Γ∗). Finally, for the Up term in V , we obtain from the last assertion in Propo-

sition A.9 that lim supn U
p
(
ht+1 + Ãn∆P̃t+1 − Γ̃n

)
≤ Up(ht+1 + A∗∆P̃t+1 − Γ∗). We thus get that
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Σ ≤ V (A∗,Γ∗) and hence we have equality. This shows that Σ < ∞ since the preference functionals are
proper. Finally, by Proposition 2.16 we conclude that β = 1 is optimal and Principal’s one-step problem
is attained. 2

We proceed now to the proof of Theorem 2.19.

Proof of Theorem 2.19. Let us first fix an effort level A and put x := h + A∆P̃t+1 and γ̂ := γaγp

γa+γp .
Concavity of the preference functional yields:

ess sup
Γ
{Uat (Γ) + Upt (x− Γ)} = ess sup

Γ

1

γ̂

{
γ̂

γa
Ut(γ

aΓ) +
γ̂

γp
Ut(γ

p[x− Γ])

}
≤ 1

γ̂
Ut(γ̂x).

On the other hand, taking Γ∗ = γp

γa+γpx it follows that 1
γaUt(γ

aΓ∗)+ 1
γpUt(γ

p[x−Γ∗]) = 1
γ̂Ut(γ̂x). Therefore

this Γ∗ attains the essential supremum above. Thus the Principal’s problem reduces to:

(17) ess sup
Γ

{
−ct(A) +

1

γ̂
Ut

(
γ̂[ht+1 +A∆P̃t+1]

)}
.

If this problem is attained at A∗, then the previous argument shows that Γ∗ = γp

γa+γp (ht+1 +A∗∆P̃t+1) is
optimal. The problem (17) is of the same form as that analyzed in Lemma 3.1, simply replacing Ua by
1
γ̂Ut(γ̂·), calling X = h and taking β = 1. In particular, we obtain existence of an optimizer A∗. Because
the one-step unconstrained problem is attained, Proposition 2.16 shows that taking β = 1, A∗ and Γ∗ at
time t yields an optimal one-step decision. 2

Remark 3.3. In this article we chose to work in the biggest conditional (loc. convex) space of Lp-type,
this is, the conditional L1 space. The reason is twofold. On the one hand, had we worked with smaller
subspaces, we would have had in principle more tools at hand to prove the attainability of Principal’s
one-step problems. However, we chose not to limit the scope of utility functionals a priori, in terms of
their domains, for which the theory would be applicable to. On the other hand, even acknowledging the
fact that our L0 − L1 upper semicontinuity requirement is not a mild one, the alternative would have
been to impose from the outset some sort of “sup-compactness” of our functionals (more precisely, of their
convolutions) or again to work with smaller spaces than conditional L1; ideally conditionally reflexive
ones. It seems to us that our simple sequential (and rather point-wise) L0 − L1 upper semicontinuity has
the advantage of being a more tractable and less technical requirement than the other, very valid ones.

4. Optimal contracting under predictable representation

Up to now our probability space and price process were rather general. In this section we add more
structure to the problem in order to obtain more explicit solutions. In particular we fix a volatility matrix
σ ∈ RN,d with linearly independent rows (d ≥ N), assume that the flow of information is generated by
a d-dimensional process w̄ = (w1, ..., wd) whose evolution is observed by both parties and that the price
dynamics follows:

(18) ∆Pt+1 = diag(Pt) [µ+ σ∆w̄t+1]

Moreover, we shall work under the following “Predictable Representation Property” and assume that our
utility functionals satisfy a Markov condition.

Assumption 4.1. The Predictable Representation Property (PRP) holds: for some D ∈ N ∪ {0} there
exists processes wd+1, ..., wD adapted to the filtration {Ft} generated by the process w̄ such that the
extended process w = (w̄1, ..., w̄d, wd+1, ..., wD) has uncorrelated increments which are independent from
the past, have zero mean, non-trivial finite second moments, and

(19) L0(Ft+1) =
{
x+ Z∆wt+1 : x ∈ L0(Ft), Z ∈ [L0(Ft)]D

}
.
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We stress that if initially the d-dimensional w̄ process driving the price had not enjoyed the PRP, then
Assumption 4.1 simply says that we can complete the former process in such a way that the enlarged
process does enjoy the PRP, without changing the informational structure of the model. The following
example clarifies our PRP assumption.

Example 4.2 (Bernoulli Walk). Consider in Rd, d independent Bernoulli walks w1, . . . , wd on the time grid
{0, h, 2h, . . . , T} starting at 0, such that P(∆wit =

√
h) = P(∆wit = −

√
h) = 1

2 . They do not necessarily
fulfilll (19), unless d = 1. Yet it is well-known that for D = 2d − 1, there exists an adapted family
wd+1, · · · , wD of likewise distributed random walks, such that the whole extended family w1, . . . , wD has
increments uncorrelated to each other and independent from the past, and such that (19) holds.

We further restrict ourselves to preference functionals which satisfy the following Markov Property.

Assumption 4.3. The generators gl (l=a,p) defined by

Z ∈ [L0(Ft)]D 7→ glt(Z) := U lt(Z∆wt+1),

are Markovian in the sense that ga, gp map RD to R.

If a preference functional U satisfies the usual conditions and the PRP holds, then all the relevant in-
formation of Ut is summarized by its generator. Clearly gt inherits from Ut being null at the origin
and concave. In the case that P may only take a finite number of values, and by the “local property,”
1Z(·)=zgt(Z)(·) = 1Z(·)=zgt(z)(·).

Example 4.4. For optimized certainty equivalents, the generator g(x) := Ut(x∆wt) = sups{s−E(H(s−
x∆wt))} clearly satisfies the markovianity assumption under the PRP.

Remark 4.5. Under Assumption 4.1 one could re-write the Agent’s and Principal’s recursions as Backward
Stochastic Difference Equation in a direct way. In doing so we would replace Γ by γ∆w everywhere in
Principal’s problem, this having major advantages as by-product. First, one may drop the L0 −L1 upper
semicontinuity assumption and simply work with the variational representations of the utility functionals.
Indeed, by (26) of Proposition A.9 this would imply L0 upper semicontinuity of V (as in Principal’s one
step unconstrained problems) in the variables (A, γ), which is all we need. As a consequence, the results
of the previous section extend to e.g. every optimized certainty equivalent utility in the PRP case. We
spare the reader the repetitive work of proving the above points, and instead proceed to a more explicit
characterization of optimal contracts.

From the substitution Γt+1−E[Γt+1|Ft+1] = γ∆wt+1 for some γ ∈ [L0(Ft)]D valid by the PRP assumption,
we may call a tuple (A, β, γ) without danger of confusion a contract (we shall always work with these
variables under the PRP). Principal’s recursion (12) and the incentive compatibility set Ct(β) may then
be re-defined in terms of such tuple in an obvious way.

Remark 4.6. From equation (12) it becomes apparent that under the PRP and Markovianity Assumptions
ht becomes a real number for all t. Indeed, everything in the one-step optimization problems (the g’s and
c’s) is non-random when evaluated at non-random inputs, from which it suffices to consider (A, β, γ) ∈
RN × R × RD and maximize point-wise. This of course shows that in this case if there is an optimal
contract, then the optimizer (A, β, γ) is non-random.

4.1. Computing optimal contract and necessary optimality conditions.

Starting from the original formulation (12), we tackle the attainability issue without resorting immediately
to the unconstrained variant. We will thus see that in fact solving this unconstrained problem is not only
sufficient but necessary in a sense. Furthermore, in our present framework we will be able to write
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down explicitly the optimal contract. We first derive the First Order Conditions (FOC) for Agent’s and
Principal’s one-step problems:

Lemma 4.7. Assume that gpt is once and gat , ct are twice continuously differentiable, for t ∈ T. Then:

(20) (A, γ) ∈ Ct(β) if and only if βµ−∇ct(A) + βσ∇gat (γ) = 0.

Moreover, given an optimal contract {(At, βt, γt)} for the Principal, and supposing for every time t ∈ T
that the implied one-step contracts form a regular point for the corresponding constraints appearing in
the r.h.s. of (20) -this is, the matrices

[
µ + σ∇gat (γt) | βtσ∇2gat (γt) | − ∇2ct(At)

]
∈ RN×(1+D+N) have

full range- there exists Lagrange multipliers λt ∈ RN s.t. the following systems admit a solution:

0 = [βtµ−∇ct(At)] + βtσ∇gat (γt)(21)

0 = [µ−∇ct(At)] + σ∇gp(σ′At − γt)−∇2ct(At)λt(22)

0 = ∇gat (γt)−∇gpt (σ′At − γt) + βt∇2gat (γt)σ
′λt(23)

0 = λt[µ+ σ∇gat (γt)].(24)

Proof. We omit the time index for simplicity. The identity (20) follows by differentiation and noticing
that the optimization problem in Ct(β) is concave in the A variable. It is also easy to see that the matrix[

µ+ σ∇ga(γ) | βσ∇2ga(γ) | − ∇2c(A)
]
∈ RN×(N+d+1)

has as rows the gradients of the components of βµ−∇ct(A) + βσ∇gat (γ). By e.g. [4, Chapter 3] we thus
have the existence of a Lagrange multiplier λ. Forming the Lagrangian

L = [Aµ− ct(A)] + gat (γ) + gpt (A · σ − γ) + λ · {[βµ−∇ct(A)] + βσ∇ga (γ)}

and taking the partial derivatives w.r.t. λ,A, γ, β yields the desired system. �

Dropping the time index again, notice that multiplying (21) by λ yields λ∇c(A) = 0. Thus multiplying
(23) by λ′σ, (22) by λ, adding them up and then multiplying by β yields:

βλ′[βσ∇2ga(γ)σ′ −∇2c(A)]λ = 0.

Therefore, as soon as one searches for a β > 0 and either c or ga are respectively strictly convex or concave,
then necessarily λ = 0. This shows that a reasonable optimal solution to the problem must necessarily
solve also the “unconstrained” problem with FOC:

0 = [βµ−∇ct(A)] + βσ∇ga(γ)

0 = [µ−∇ct(A)] + σ∇gp(σ′A− γ)

0 = ∇ga(γ)−∇gp(σ′A− γ).

We knew from previous sections, in greater generality, that solving the unconstrained problem is sufficient
to construct a solution to the original constrained one. Hence these last equations show that, in the
present context at least, passing through the unconstrained formulation is actually also necessary, at least
for contracts with β > 0.

Subtracting the second from the first equation above and then using the third one, we get:

(β − 1)[µ+ σ∇ga(γ)] = 0.

Thus either β = 1 is optimal, or µ + σ∇ga(γ) = 0. This last case can be called degenerate, since under
it we derive from (21) that it is optimal for the Agent to exercise minimum effort: ∇c(A) = 0. Since
necessary conditions give a larger set of potential optimal points than the actual set of optima, we are
inclined to say that this degenerate case is suboptimal.
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4.2. Base preferences. We close this section with an analysis of the benchmark case where both parties’
preferences originate from a common base preference functional: U l(·) = 1

γl
U(γl·) for l = a, p. In terms of

generators, this means that gl(·) = 1
γl
g(γl·). We assume that ∇g is injective. Then (A∗, γ∗, β∗) satisfies

the system in Lemma 4.7, with λ = 0, where A∗ solves

(25) 0 = [µ−∇ct(A∗)] + σ∇g
[
γaγp

γa + γp
σ′A∗

]
,

and γ∗ = γp

γa+γpσ
′A∗ and β∗ = 1.

The final part of the following proposition shows to what extend the structure of optimal contracts in [20,
Theorem 1] can be recovered.

Proposition 4.8. Under the Markovianity and PRP Assumptions, the optimal contract (interpreted as
a mapping between strategies to payments) is of the form of:

A 7→ S̄(A) = κ+
∑

γ∗t ∆wt+1 + [WA
T − W̃T ],

where WA
T = W0 +

∑
At∆P̃t+1, W̃ = WA∗ , and κ ∈ R. Here A∗ and γ∗ (both vector/scalar valued

deterministic processes) are the optimal ones for the Principal. Moreover, if the utilities stem from a
common base functional, then we can write the optimal contract as:

A 7→ S̄(A) = κ̄+
γp

γp + γa
WA
T +

γa

γp + γa
[WA

T − W̃T ],

having the form of cash plus a convex combination of the wealth generated by the Agent and the perfor-
mance (gains/losses) obtained w.r.t. a benchmark portfolio, as in [20, Theorem 1].

Proof. By Theorem 2.15 we get:

Θ = R+
∑[

γ∗t ∆wt+1 + ct(A
∗
t )−A∗t∆P̃t+1 − gat (γ∗t )

]
= κ+

∑
γ∗t ∆wt+1 − W̃T ,

where we used that γ∗ and A∗ are optimal (Lemma 4.7), that β = 1 is optimal, that κ := R+
∑
c(A∗t )−

gat (Zat + σ′A∗t ) is a constant, thanks to Assumption 4.3, and the fact that A∗t and γ∗t are deterministic
(Remark 4.6). Again by Theorem 2.15 this shows that the contract A 7→ κ +

∑
γ∗t ∆w + WA

T − W̃T is
optimal. If further the utility functionals are a re-scaling of one another, we know that γ∗t = γp

γp+γaσ
′A∗t .

Plugging in this into the previous expression for the optimal contract, we conclude. �

Example 4.9 (1d-Bernoulli Setting, Entropic Utility). Suppose Agent’s and Principal’s utility functions
are respectively

Uat (X) = − 1

γa
log
(
E
[
e−γ

aX |Ft
])

and Upt (X) = − 1

γp
log
(
E
[
e−γ

pX |Ft
])
,

with γa, γp > 0, and that Agent’s cost function is c(a) = ha
2

2 . Assume also a one dimensional market
driven by a simple Bernoulli-walk setting (that is N = d = 1: one asset, one source of randomness);
see example 4.2. We first observe that gt(x) = − log

(
e
√
hx+e−

√
hx

2

)
= −log ◦ cosh(

√
hx), from which

∇gt(x) = −
√
h tanh(

√
hx). From here, and manipulating (25), we get that the optimal action A∗t at time

t is the solution to the equation:

− γaγp

γa + γp

√
hσA∗t =

1

2
log

(
σ
√
h+A∗th− µ

σ
√
h−A∗th+ µ

)
.
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5. Conclusion

The present article clarifies the structure of optimal linear contracts in dynamic models of portfolio delega-
tion when both parties’ preferences satisfy translation invariance, time consistency and certain regularity
conditions. We have shown how the problem of dynamic contracting can be reduced to a recursive sequence
of one-period conditional optimization problems. Using conditional analysis techniques we established gen-
eral attainability results for the Agent and Principal problems and derived the representation of optimal
contracts found in [20] under a Markov-PRP assumption and for base preferences and general costs. Sev-
eral questions are still open. First, the restriction to linear contracts is undesirable. Unfortunately, our
method does in no obvious way carry over to non-linear contracts. Second, in the PRP framework we
assumed that the Principal observes the driving process w̄. Although this assumption seems common in
the literature, it would be more natural to assume that the Principal observes the price increments only.
This would add an additional adverse selection component to our model, if one interprets the Agent’s
additional information as his type, and hence leading to very complex optimization problems. Finally, it
would be interesting to analyze portfolio delegation models under limited liability. If one restricts oneself
a-priori to a particular class of pay-off profiles such as call options, then our methods can probably still
be used to establish existence of optimal contracts (within the pre-specified class). It is an open questions
how to analyze models of limited liability without any such a-priori restriction.

Appendix A. Conditional Analysis

This appendix recalls conditional analysis results needed to analyze our dynamic contracting problem. We
also establish new results which are key to our PA problem. For a detailed discussion of finite dimensional
conditional analysis we refer to [8] and references therein; for a thorough treatment of conditional analysis
on Lp spaces we refer to [15].

A.1. Finite dimensional conditional analysis. On a given probability space (Ω,F ,P) we denote by
L and L0 the sets of all, respectively all a.s. finite random variables. We apply almost-sure identification
and ordering on this sets and put L := {X ∈ L : X > −∞} and L := {X ∈ L : X < ∞} and denote
by N(F) the set of variables in L0 which take values in N. We fix N ∈ N and view E := [L0(F)]N as a
finite-dimensional topological L0(F)-module over the ring L0(F). On E we define the conditional norm
‖X‖ = (XX)

1
2 (notice that this is a random variable), where the product is the euclidean one.

Definition A.1. A set C ⊂ E is called:

• stable if 1AX + 1AcY ∈ C, for every X,Y ∈ C, A ∈ F
• σ−stable if

∑
n∈N 1AnXn ∈ C, for every sequence (Xn) ⊂ C and partition (An) ⊂ F of Ω

• L0−convex if λX + (1− λ)Y ∈ C, for every X,Y ∈ C and λ ∈ L0 with values in [0, 1]

• sequentially closed if it contains all the limits of its a.s. converging sequences.
• L0−bounded if ess supX∈C ‖X‖ ∈ L0.

A stable and sequentially closed set is σ−stable. We define for M ∈ N(F) and (Xn) ⊂ E the element
XM =

∑
n∈N 1M=nXn ∈ E and notice that if the former sequence belongs to a σ−stable set, then the

latter does so too. The following result is a generalization of the classical Bolzano-Weierstrass Theorem.

Lemma A.2. Let (Xn) ⊂ E be L0−bounded. Then there exists X ∈ E and a sequence (Nn) ∈ N(F)

such that Nn+1 > Nn and X = limn→∞XNn a.s. Also, if (xn) ⊂ L0 is such that x := lim supxn ∈ L0,
then there exists a sequence (Nn) ∈ N(F) such that Nn+1 > Nn and x = limn→∞ xNn a.s.
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Proof. For the first statement refer to [8, Theorem 3.8]. For the second, define N0 = 0 and Nn = min{m >

Nn−1 : xm ≥ x− 1/n}. Then Nn ∈ N(F) and Nn+1 > Nn, from which Nn ≥ n follows. Now, notice that
supm≥n xm ≥ supm≥Nn xm ≥ xNn ≥ x− 1/n a.s., from which x = limn→∞ xNn a.s. �

As in the euclidean case, convexity opens the way to a necessary and sufficient characterization of bound-
edness (see [8, Theorem 3.13]):

Theorem A.3. Let C be a sequentially closed L0−convex subset of E which contains 0. Then C is
L0−bounded if and only if for any X ∈ C\{0} there exists a k ∈ N such that kX /∈ C.

Let us now introduce the notions of continuity, convexity and stability of functions defined on subsets of
E and taking values in a set of random variables.

Definition A.4. Let C ⊂ E. A function f : C → L is called:

• L0−lower semicontinuous at X ∈ C if f(X) ≤ lim inf f(Xn) for every sequence (Xn) ⊂ C with
a.s. limit X.
• L0−continuous at X ∈ C if f(X) = lim f(Xn) whenever (Xn) ⊂ C has a.s. limit X.
• L0−convex if f(λX + (1 − λ)Y ) ≤ λf(X) + (1 − λ)f(Y ), for every X,Y ∈ C and λ ∈ L0 with
values in [0, 1]

• stable if f(1AX + 1AcY ) = 1Af(X) + 1Acf(Y ), for every X,Y ∈ C, A ∈ F .

For the last two items it is assumed that C is L0−convex, respectively, stable. Strict L0−convexity is
defined in terms of a strict inequality. Finally f is called (upper/lower semi)continuous on C if it is so
on every point of C. If f is continuous and stable over a σ−stable and sequentially closed set, then it
satisfies the stability property for countable partitions too. If f is L0−convex or L0−concave, then it is
local (meaning 1Af(X) = 1Af(Y ) whenever 1AX = 1AY ), which in itself directly implies that it also
satisfies the stability property for countable partitions.

The following result is implied by the proof of [8, Theorem 4.13], since all the authors really use is
σ−stability of the set under consideration (which is implied by their stronger assumptions). We give a
self-contained proof here.

Lemma A.5. If a non-empty set C ⊂ E is σ−stable and is not L0−bounded, then there is a set Ω̃ with
P(Ω̃) > 0 and a sequence {Xn} ⊂ C such that, for every n ∈ N, |Xn| ≥ n over Ω̃

Proof. We define Un := {B ∈ F : ∃X ∈ C, |X| ≥ n on B}, which is non-empty since C is unbounded,

introduce the family of decreasing sets An :=

{
ess sup
B∈Un

1B = 1

}
and put A :=

⋂
nAn. Assuming that

P(A) = 0, or equivalently that P (∪nAcn) = 1, then for every X ∈ C:

|X| =

∣∣∣∣∣∑
n

X1{Acn∩An−1}

∣∣∣∣∣ ≤∑
n

|X|1{Acn∩An−1} ≤
∑
n

n1{Acn∩An−1} ∈ L
0(F).

Since X ∈ C was arbitrary, this implies that C is L0(F)−bounded. Therefore P(A) > 0 must hold. By
definition of ess sup we have that there exist {Bl,n}l ∈ Un such that ess sup

B∈Un
1B = supl 1Bl,n a.s. This

implies An =
⋃
lB

l,n a.s. Taking X l,n such that |X l,n| ≥ n on Bl,n, and fixing an X∗ ∈ C arbitrary, let us
define:

X(n) := X∗1{(⋃lBl,n)c} +
∑
l

X l,n1{Bl,n∩(∪m<lBm,n)c} +X0,n1B0,n ,

which belongs to C thanks to σ−stability. Clearly

|X(n)| ≥ n1{⋃lBl,n} + |X∗|1{(⋃lBl,n)c},
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and therefore a.s. |1AX(n)| ≥ n1A. Thus we have that |X(n)| ≥ n on A for every n. �

The following conditional optimization theorem is used to prove attainability of the Agent Problem. For
a proof we refer to [8, Theorem 4.4].

Theorem A.6. Let C be a sequentially closed and stable subset of E and f : C → L be a L0−lower
semicontinuous, stable function. Assume there exists an X0 ∈ C such that the set {X ∈ C : f(X) ≤
f(X0)} is L0−bounded. Then there exists an X̂ ∈ C such that

f
(
X̂
)

= ess inf
X∈C

f(X).

If f and C are L0−convex then the “arg min” set is also L0−convex, and if in addition f is strictly
L0−convex then X̂ is the sole (a.s.) optimizer.

We finally adapt a Komlos-type lemma (as in [12, Lemma A1.1]) for conditionally bounded random
variables, which we use to prove our general attainability result (Theorem 2.18). We thank a referee for
hinting at the proof we give now.

Lemma A.7. Let {ξn}n be [0,+∞)-valued random variables defined on a common probability space
(Ω,G,P), take F a sub-sigma algebra and assume that the set C := conv{ξn : n ∈ N} satisfies the
following conditional boundedness condition:

∀ε ∈ L0
+(F),∃a ∈ L0(F) such that ∀h ∈ C,P(h ≥ a|F) ≤ ε.

Then there exists a [0,+∞)-valued random variable X and a sequence {xn}, where xn belongs to the
convex hull of {ξn, ξn+1, . . . } such that xn → X almost surely.

Proof. By [12, Lemma A1.1] it suffices to show that C is bounded in probability. By assumption, we have
that pn := ess suph∈C P(h ≥ n|F) → 0, as n → ∞ and P−a.s. Since also pn ∈ [0, 1] a.s. we conclude by
dominated convergence that E [pn] → 0, which of course is stronger than suph∈C P[h ≥ n] → 0, so we
conclude. �

A.2. Conditional analysis on Lp. Let F be a sub sigma-algebra of G. For every p ∈ [1,+∞] we define:

||X||p =

{
E[|X|p|F ] if p ∈ [1,+∞)

ess inf{Y ∈ L0
+(F) s.t. Y ≥ |X|} if p = +∞.

This is well defined for every X ∈ L0(G). We further define the conditional Lp-space

LpF (G) := {X ∈ L0(G) st. ||X||p ∈ L0(F)}.

It is shown in [15] that LpF (G) is a topological L0(F)−module over the topological ring L0(F), and || · ||p
is an L0(F)−norm inducing the module topology on LpF (G).

A function U : LpF (G)→ L0 is called:

• L0(F)−concave: if U(λX + (1− λ)X ′) ≥ λU(X) + (1− λ)U(X ′) for every λ ∈ L0(F) ∩ [0, 1] and
every X,X ′ ∈ LpF (G)

• proper: if ∃X ∈ LpF (G) such that U(X) > −∞ and ∀X ′ ∈ LpF (G) it holds U(X) <∞
• LpF (G)-upper semicontinuous: if for every net {Xα} ⊂ LpF (G) converging to some X in conditional
norm, it holds that ess infβ ess supα≥β U(Xα) ≤ U(X)

• monotone: if U(X) ≥ U(X ′) whenever X ≥ X ′
• translation invariant: if U(X + Y ) = U(X) + Y for every X ∈ LpF (G) and Y ∈ L0(F)

The following representation result re-phrases [15, Corollary 3.14]:
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Theorem A.8. Let p ∈ [1,∞) and U : LpF (G)→ L0(F) satisfy the above conditions. Let q be the Hölder
conjugate of p and define

W := {Z ∈ LqF (G) : Z ≥ 0,E[Z|F ] = 1}, α(Z) := ess sup
X∈LpF (G)

{U(X)− E[ZX|F ]}.

Then U satisfies the following variational representation:

U(X) = ess inf
Z∈W

{E[ZX|F ] + α(Z)}.

In the next Proposition we prove that LpF (G)−upper semicontinuity is a consequence of L0 − Lp upper
semicontinuity (see Definition 2.6). This of course implies Proposition 2.8.

Proposition A.9. Let U : LpF (G)→ L0(F) be L0−Lp upper semicontinuous. Then U is also LpF (G)−upper
semicontinuous. Furthermore, if U is also proper, monotone, translation invariant and L0(F)-concave, then
U admits a variational representation and for any N ∈ N and ∆ ∈ [LpF (G)]N the functional

(26) A ∈ [L0(F)]N 7→ U(A∆)

is L0-upper semicontinuous in the sense of Definition A.4.Under the same hypotheses, if An ∈ [L0(F)]N →
A a.s. and {Γn}n is LpF (G)-bounded such that Γn → Γ a.s. then

lim sup
n

U(An∆ + Γn) ≤ U(A∆ + Γ)

Proof. For the first part, by [14, Lemma 3.10], it is enough to prove that the sets Kk := {X ∈ LpF (G) :

U(X) ≥ k} are conditionally closed for every k ∈ L0(F). We will prove that their complements are
conditionally open. To this end we fix such a k and and assume to the contrary that (Kk)

c is not open.
We thus take X such that U(X) < k on a non-negligible set and such that for every N ∈ N(F) we have
that Kk ∩B(X, 1/N) 6= ∅, where B(X, 1/N) = {Z : E(|Z−X|p|F) ≤ 1/N}. This means that we can find,
for every N ∈ N(F), an element XN ∈ B(X, 1/N) such that U(XN ) ≥ k a.s. A straightforward adaptation
of Markov’s inequality yields

P(|XN −X| ≥ ε|F) ≤ E(|XN −X|p|F)

εp

for every ε ∈ L0(F)++. From this we may find for every natural number n an element Mn ∈ N(F) such
that:

• for every N ∈ N(F) st. N ≥Mn it holds that P(|XN −X| ≥ 1/n|F) ≤ 1/n2 a.s.
• for every n: Mn+1 > Mn a.s.

Now, we will use a “Borel-Cantelli Lemma”-type reasoning in order to prove that the sequence {XMn}
converges almost surely to X. First notice that for a fixed l ∈ N:∑

n∈N
P(|XMn −X| ≥ 1/l|F) ≤

∑
n≤l

P(|XMn −X| ≥ 1/l|F) +
∑
n>l

P(|XMn −X| ≥ 1/n|F),

and since the last term is bounded above by
∑

n>l 1/n
2, the original sum belongs to L0(F) (and so is a.s.

finite). Define now i.o. {|XM· −X| ≥ 1/l} :=
⋂
m∈N

⋃
n≥m {|XMn −X| ≥ 1/l}. Then:

P (i.o. {|XM· −X| ≥ 1/l} |F) ≤ P

 ⋃
n≥m
{|XMn −X| ≥ 1/l}|F

 ≤ ∑
n≥m

P(|XMn −X| ≥ 1/l|F),

and so the left-hand side does not depend on m whereas the right one tends a.s. to 0 as m increases. This
shows that P (i.o. {|XM· −X| ≥ 1/l} |F) = 0 a.s. Taking expectations, P (i.o. {|XM· −X| ≥ 1/l}) = 0.
Since this holds for every l, we conclude that indeed {XMn} converges almost surely to X.
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Finally we have by the L0 − Lp upper semicontinuity assumption that k ≤ lim supn U(XMn) ≤ U(X) a.s.
since by definition XMn ∈ B(X, 1), but also U(X) < k on a non-negligible set, which is a contradiction.
This completes the proof of the first statement.

By Theorem A.8 and the first claim we know that U has a variational representation. That A 7→ U(A∆)

is L0-upper semicontinuous is a consequence of the last claim in the proposition (taking Γn = 0). So to
establish the last claim and finish the proof, is suffices to compute

E [|An∆ + Γn|p|F ]1/p ≤ C sup
i=1,...,N

|Ain|E [|∆|p|F ]1/p + E [|Γn|p|F ]1/p ,

and observe that the r.h.s. is bounded from above by some r.v. in L0(F), by conditional Lp-boundedness
of the Γn and since the (components of) the An converge a.s. All in all {An∆ + Γn}n is LpF (G)-bounded
and converges a.s. to A∆ + Γ, so we conclude by the L0 − Lp upper semicontinuity assumption. �

Appendix B. Optimized certainty equivalents and Proof of Theorem 2.21

We start with a number of technical results for the examples in Section 2.2.

Lemma B.1. The following hold.

(i) The extensions in (3) are well defined for TVAR and, more generally, for optimized certainty
equivalent families for which both 1 ∈ ∩tint(dom(H∗t )) and every Ht is bounded from below
(equivalently 0 ∈ dom(H∗t )).

(ii) Take F = Ft, G = Ft+1 for t fixed. For any γ > 0 and λ ∈ (0, 1), the entropic functional

X ∈ L1
F (G) 7→ −1

γ
log (E(exp(−γX)|F)) ,

as well as the Tail-value-at-risk functional

X ∈ L1
F (G) 7→ ess sup

s

{
s− λ−1E([s−X]+|F)

}
,

are L0−L1 u.s.c. More generally, optimized certainty equivalents for which 1 ∈ int(dom(H∗)) are
L0 − L1 u.s.c.

(iii) The TVAR family and, more generally, OCE families for which 1 ∈ ∩tint(dom(H∗t )) and every Ht

is bounded from below, all satisfy Assumption 2.7 after pasting.

Proof. For TVAR we have H(l) = λ−1[l]+ and H∗(x) = Ψ[0,λ−1](x), the convex indicator of [0, λ−1]. In
particular, 1 ∈ int(dom(H∗)) and H is lower bounded. In the following we work with abstract OCEs for
which the latter conditions hold.

i) It suffices to show that the extensions defined by (3) produce a functional which never attains the
value +∞. Let U stand for any OCE (associated to H) satisfying the stated properties and let X
be a r.v. not attaining +∞. For 1 + ε ∈ int(dom(H∗)) we define

N ε :=
∞∑
n=1

n1P(X≤n|F)>[1+ε]−1,P(X≤n−1|F)≤[1+ε]−1 = inf{n ∈ N : P(X ≤ n|F) > [1 + ε]−1},

which is then finite and belongs to N(F). Inspired by [7, Proof of (12)] we introduce a partition
A0 := {P(X ≤ N ε|F) > 0} and An := {P(X ≤ N ε + n|F) > 0, P(X ≤ N ε + n − 1|F) = 0} for
n ≥ 1, so we define

ξ =
∑
n≥0

1An
1X≤Nε+n

P(X ≤ N ε + n|F)
.
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It is then easy to see that E[ξ|F ] = 1 and that ξ ∈ [0, 1+ε], so that a.s. ξ ∈ dom(H∗). We conclude
that

U(X ∧ k) = ess sup
s
{s− E[H(s−X ∧ k)]}

≤ ess sup
s
{s− sE[ξ|F ] + E[ξ(X ∧ k) +H∗(ξ)|F ]}

≤ E[ξX|F ] + E[H∗(ξ)|F ] ≤
∑
n≥0

1An [N ε + n] + E[H∗(ξ)|F ] < +∞,

where finiteness comes from the fact that H∗ must send [0, 1 + ε] into a bounded set. Hence
limk→+∞ U(X ∧ k) < +∞ and we conclude.

ii) Let us take Xn bounded in L1
F (G) such that Xn → X a.s. For any C ∈ L0(F) we want to show

that if ess sups {s− E(H(s−Xn)|F)} ≥ C then also ess sups {s− E(H(s−X)|F)} ≥ C. Indeed,
let us first take sn ∈ L0(F) such that

sn − E(H(sn −Xn)|F) ≥ C − n−1.

Because H is convex, lower-semicontinuous and proper, we have that H(sn − E(Xn|F)) ≥ R[sn −
E(Xn|F)]−H∗(R) for each R, and so in particular

sn[1−R] ≥ C − n−1 −H∗(R)−RE(Xn|F),

for every R ∈ dom(H∗). If we were able to find R ∈ dom(H∗) ∩ (1,∞) then for such element we
would have

sn ≤
C − n−1 −H∗(R)−RE(Xn|F)

1−R
.

Similarly, if r ∈ dom(H∗) ∩ (−∞, 1) existed then we would get

sn ≥
C − n−1 −H∗(r)− rE(Xn|F)

1− r
.

Altogether, we could conclude that the quantities sn are L0(F)-bounded, since the random vari-
ables Xn were bounded in L1

F (G). By Lemma A.2 we could find Nn ∈ N(F) increasing to +∞
such that sNn → s̄ a.s. for some s̄ ∈ L0(F), and obviously XNn → X a.s. still. By locality we
would have that

sNn − E(H(sNn −XNn)|F) ≥ C −Nn
−1.

Taking lim supn, using the fact that H is bounded below by an affine function and conditional
Fatou’s Lemma, we may obtain

s̄− E(H(s̄−X)|F) ≥ C.

This readily implies what we wanted to prove. To conclude, observe that the conditions dom(H∗)∩
(1,∞) 6= ∅ and dom(H∗) ∩ (−∞, 1) 6= ∅ are together equivalent to 1 ∈ int(dom(H∗)) in our case,
since 1 ∈ dom(H∗) by definition and H∗ is convex.

iii) Upper semincontinuity has already been dealt with. Under the stated conditions pasting is also
already justified, so it only remains to show the condition on the domain of Ut. If X ∈ dom(Ut),
then there must be some s ∈ R such that E[H(s−X)|Ft] <∞. But as H is bounded from below,
this implies E[H(s+X−)|Ft] <∞, and by the normalization property on H (implying H(l) ≥ l)
we get in turn E[X−|Ft] <∞ as desired.

�

Remark B.2. The reason we had to prove [7, Proof of (12)] anew in the first part of the preceding proof, is
that we want to include the case where dom(H∗) 6= [0,∞), in order to cover e.g. the TVAR family. This
creates the difficulty of finding a ξ satisfying simultaneously E[ξ|F ] = 1, ξ ∈ [0, 1 + ε] and E[ξX|F ] <∞.
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Remark B.3. In case Uat arises as an optimized certainty equivalent (see example 2.4), we know by Lemma
B.1 and Proposition A.9 that it has a variational representation. Notice then by Young inequality that

αt(Z) ≤ ess sup
X

ess sup
s
{s− E[Ht(s−X)|Ft]− E[ZX|F ]} ≤ E[H∗t (Z)|Ft],

whenever Z ∈ L∞Ft(Ft+1) is s.t. E[Z|Ft] = 1. In [7] and [9] it is proved that under given conditions there is
equality above (for Z ∈ Wt). In any case we see that the conditions in Theorem 2.18 on Ka,p are satisfied
if these utility functionals are such that 1 ∈ int(dom(H∗t )); indeed, we may just take ε > 0 such that
[1− ε, 1 + ε] ⊂ dom(H∗t ).

Equipped with the previous result, we provide the proof of our general existence of optimal contracts.

Proof of Theorem 2.21. We may assume F = FA. Under the given condition on the H’s, the condition
on the K’s (see Theorem 2.18) is satisfied, thanks to Remark B.3. By Proposition 2.20 it remains to show
that ht+1 ∈ dom(Upt ) for each t.

Either using Young’s inequality or invoking Remark B.3, we know that Uat (X), Upt (X) ≤ E[X|Ft]. From
this we see

Vt(A,Γ) ≤ −c(A) +AE[∆P̃ |Ft] + E[ht+1|Ft]

≤ −
(
ct(A)

|A|
− 2p+

p−

)
|A|+ E[ht+1|Ft]

≤ Kt + E[ht+1|Ft],

where we used that |∆P̃t+1| = |diag(Pt)
−1∆Pt+1| ≤ 2p+

p−
and the existence of Kt ∈ R is a consequence of

the growth of ct and its continuity. From here we get by definition that ht ≤ Kt + E[ht+1|Ft] and since
hT = 0 by backwards inductions follows that hpt+1 ≤ L for some constant L and all t. Monotonicity of the
Up’s mean that ht+1 ∈ dom(Upt ). 2

Appendix C. Proof of Theorem 2.15

First we turn our attention to the Agent’s recursion. Let ā be a generic sequence of efforts. From equation
(7), we see that defining

Ht(āt, . . . , āT−1) := Uat

Θ(P0:T ) +
∑
s≥t

{
βs∆W

ā
s+1 − cs+1(ās+1)

}− ct(āt),
we get the recursion

HT (āt, . . . , āT−1) = Θ(P0:T ),

Ht(āt, . . . , āT−1) = Uat

(
Ht+1(āt+1, . . . , āT−1) + βtāt∆P̃t+1

)
− ct(āt).

Then, in terms of Ht := ess supat,...,aT−1
Ht(at, . . . , aT−1), we get:

Ht(āt, . . . , āT−1) ≤ −c(āt) + Uat

(
ess sup

at+1,...,aT−1

Ht+1(at+1, . . . , aT−1) + βtāt∆P̃t+1

)
.

This yields that Ht ≤ ess supat

{
−c(at) + Uat

(
Ht+1 + βtat∆P̃t+1

)}
. For t = T − 1 this is an equality and

by assumption the value HT−1 is attained at some âT−1. Suppose now that equality holds in the previous
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equation for t+ 1, . . . , T − 1, and Ht+1 was attained say at (ât+1, . . . , âT−1). This implies that:

Ht ≤ ess sup
at

{
−c(at) + Uat

(
Ht+1(ât+1, . . . , âT−1) + βtat∆P̃t+1

)}
≤ ess sup

at,...,aT−1

{
−c(at) + Uat

(
Ht+1(at+1, . . . , aT−1) + βtat∆P̃t+1

)}
= ess sup

At,...,AT−1

Ht(At, . . . , AT−1) =: Ht.

So indeed at time t also Ht = ess supat

{
−c(at) + Uat

(
Ht+1 + βtat∆P̃t+1

)}
holds and by assumption the

last term is attained at some ât, from which Ht is attained at (ât, . . . , âT−1). This closes the inductive
step, and therefore the desired recursion holds.

Now we will establish rigorously recursion (11) (equivalently (9)). To this end we denote by β = (βt)t
a generic decision variable for the Principal and a = (at)t where at ∈ L0(Ft)N , a corresponding optimal
effort for the Agent. Let

N :=
∑
s≥t+1

[
(1− βs)as∆P̃s+1 −∆Hs+1

]
.

Then using the just proven expression for Ht (i.e. (8)), and setting Γ = βtat∆P̃t+1 +Ht+1, we get:

Up
t

∑
s≥t

[
(1− βs)as∆P̃s+1 −∆Hs+1

] =Up
t

(
(1− βt)at∆P̃t+1 −Ht+1 − ct(at) +N

+ Ua
t

(
Ht+1 + βtat∆P̃t+1

))
,

=Up
t

(
at∆P̃t+1 − Γ + Ua

t (Γ)− ct(at) +N
)
,

=Ua
t (Γ)− ct(at) + Up

t

(
at∆P̃t+1 − Γ +N

)
.

And now, applying time-consistency and translation invariance in the last term above we get:

Up
t

∑
s≥t

[
(1− βs)as∆P̃s+1 −∆Hs+1

] = Ua
t (Γ)− ct(at) + Up

t

(
at∆P̃t+1 − Γ + Up

t+1(N)
)
.

Therefore calling ht+1(a,Γ) = Upt+1(N), we obtain recursion (11). That is to say, if (a,Γ) does not satisfy
this recursion, they will not be chosen by the Principal. In the same way we conclude for (a, β) and
recursion (9). With these recursions for ht(·) already established, we can proceed to prove (12) the same
way we proved the recursion for H. First recall that actually ht(a,Γ) is a short-hand for ht((as,Γs+1)s≥t).
From this and (11) we have:

ht((ās, Γ̄s+1)s≥t) ≤ Upt

(
ess sup
A,Γ

ht+1(A,Γ) + āt∆P̃t+1 − Γ̄t+1

)
+ Uat (Γ̄t+1)− ct(āt).

This yields

ht ≤ ess sup
(at,Γt+1)∈Ct(βt)

Upt

(
ht+1 + at∆P̃t+1 − Γt+1

)
+ Uat (Γt+1)− ct(at).

For t = T −1 this is an equality (we defined hT = 0) and by assumption the value hT−1 is attained. Using
induction, similarly as how we did it for H, we get that (12) holds.

The validity of the change of variables βtat∆P̃t+1 + Ht+1 → Γt+1 and the introduction of C(β) as a
constraint inducing incentive compatibility are now obvious. This means that h represents the future
wealth prospects of the Principal. Hence at time t = 0 we obtain a solution for the whole Principal’s
problem, proving as well that Principal’s optimal wealth is W0 −R+ h0.
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We proceed now to prove that a solution to Principal’s recursion delivers indeed an optimal (dynamic)
contract, and that the Agent behaves as predicted. Call (βt, At,Γt+1)t the optimal quantities attaining h
in (12). Define Θ and the contract S as in the statement of the present theorem. Then:

Ua
T−1

(
Θ + βT−1aT−1∆P̃T

)
− cT−1(aT−1) =

∑
0≤t<T−1

[
Γt+1 − βtAt∆P̃t+1 − Ua

t (Γt+1) + ct(At)
]

R+ [cT−1(AT−1)− cT−1(aT−1)]− Ua
T−1(ΓT )

+ Ua
T−1

(
ΓT − βT−1AT−1∆P̃T + βT−1aT−1∆P̃T

)
.

By definition of C(β) the sum of the last terms is smaller or equal than 0, and exactly zero when aT−1 =
AT−1. Therefore

ess sup
aT−1

{
Ua
T−1

(
Θ + βT−1aT−1∆P̃T

)
− cT−1(aT−1)

}
=R+

∑
0≤t<T−1

[Γt+1 − βtAt∆P̃t+1 + ct(At)− Ua
t (Γt+1)].

This shows that at time T − 1 the Agent chooses AT−1 when presented with (Θ, β). If we define HT = Θ,
we are thus entitled to call HT the value (left hand side or right one) in the above equality. By using
backwards induction, as we have often done and hence omit, we have proven that the contract S (defined
from (Θ, β)) is optimal for the Principal and incentive compatible (notice that automatically H0 = R),
and the Agent indeed chooses A under this contract. 2
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