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Abstract

We analyze novel portfolio liquidation games with self-exciting order flow. Both the N -player

game and the mean-field game are considered. We assume that players’ trading activities have an

impact on the dynamics of future market order arrivals thereby generating an additional transient

price impact. Given the strategies of her competitors each player solves a mean-field control problem.

We characterize open-loop Nash equilibria in both games in terms of a novel mean-field FBSDE

system with unknown terminal condition. Under a weak interaction condition we prove that the

FBSDE systems have unique solutions. Using a novel sufficient maximum principle that does not

require convexity of the cost function we finally prove that the solution of the FBSDE systems do

indeed provide open-loop Nash equilibria.
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1 Introduction

Models of optimal portfolio liquidation under market impact have received substantial consideration in

the financial mathematics and the stochastic control literature in recent years. Starting with the work of

Almgren and Chriss (2001) existence and uniqueness of optimal liquidation strategies under various forms

of market impact, trading restrictions and model uncertainty have been established by many authors

including Ankirchner et al. (2014), Bank and Voß (2018), Fruth et al. (2014), Gatheral and Schied (2011),

Graewe et al. (2015), Graewe et al. (2018), Horst et al. (2020), Kratz (2014), Kruse and Popier (2016)

and Popier and Zhou (2019).

One of the main characteristics of portfolio liquidation models is the terminal state constraint on the

portfolio process. The constraint translates into a singular terminal condition on the associated HJB

equation or an unknown terminal condition on the associated adjoint equation when applying stochastic

maximum principles. In deterministic settings the state constraint is typically no challenge. In stochastic

∗We thank the anonymous AE and two anonymous referees for valuable comments, which help improve the quality of
the paper. Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

†The Hong Kong Polytechnic University, Department of Applied Mathematics, Hung Hom, Kowloon, Hong Kong. G.
Fu’s research is supported by NSFC Grant No. 12101523.

‡Humboldt University Berlin, Department of Mathematics and School of Business and Economics, Unter den Linden 6,
10099 Berlin; horst@math.hu-berlin.de. U Horst gratefully acknowledge financial support by the Deutsche Forschungsge-
meinschaft through CRC TRR 190.

§Wenzhou University, College of Mathematics and Physics, Wenzhou 325035, PR China. X. Xia’s research is supported
by NSFC Grant No. 12101465.

1



settings, however, it causes significant difficulties when proving the existence of solutions to the HJB or

adjoint equation and hence in proving the existence and uniqueness of optimal trading strategies.

The majority of the optimal trade execution literature allows for either instantaneous or transient impact.

The first approach, initiated by Bertsimas and Lo (1998) and Almgren and Chriss (2001), describes the

price impact as a purely temporary effect that depends only on the present trading rate and does not

influence future prices. A second approach, initiated by Obizhaeva and Wang (2013), assumes that

the price impact is transient with the impact of past trades on current prices decaying over time. For

single player models Graewe and Horst (2017) and Horst and Xia (2019) combined instantaneous and

transient impacts into a single model. Assuming that the transient price impact follows an ordinary

differential equation with random coefficients driven by the large investor’s trading rate they showed that

the optimal execution strategies could be characterized in terms of the solutions to multi-dimensional

backward stochastic differential equations with singular terminal condition.

This paper studies a game theoretic extension of the liquidation model analyzed in Graewe and Horst

(2017) and Horst and Xia (2019). Our key conceptual contribution is to allow for an additional feedback

of the large investors’ trading activities on future market dynamics. There are many reasons why

large selling orders may have an impact on future price dynamics. Extensive selling (or buying) may,

for instance diminish the pool of counterparties and/or generate herding effects where other market

participants start selling (or buying) in anticipation of further price decreases (or increases). Extensive

selling may also attract predatory traders that employ front-running strategies. We refer Brunnermeier

and Pedersen (2005) and Carlin et al. (2007) for an in-depth analysis of predatory trading.

Specifically, we assume that the market buy and sell order dynamics follow Hawkes processes whose base

intensities depend on the large investors’ trading activities. Hawkes processes have recently received

considerable attention in the financial mathematics literature as a powerful tool to model self-exciting

order flow and its impact on stock price volatility; see Bacry et al. (2013, 2015); El Euch et al. (2018);

Jaisson and Rosenbaum (2015); Horst and Xu (2019) and references therein. In the context of liquidation

models, they have been employed in Alfonsi and Blanc (2016); Amaral and Papanicolaou (2019); Cartea

et al. (2018) albeit in very different settings. Alfonsi and Blanc (2016) considered a variant of model in

Obizhaeva and Wang (2013), in which the continuous martingale driving the benchmark price was re-

placed by a given point process involving mutually exciting Hawkes processes. Amaral and Papanicolaou

(2019) modeled the benchmark price by the difference of two mutually exciting processes. Cartea et al.

(2018) considered a liquidation model in which the investor placed limit orders whose fill rates depended

on a mutually exciting “influential” market order flow. In all three models the intensities of the Hawkes

processes were exogenous; in our model they are endogenously controlled by the large investors. Cayé

and Muhle-Karbe (2016) allowed for some form of endogenous feedback of past trades on future trans-

action costs but did not model this using Hawkes processes. All the aforementioned papers considered

single-player models while our focus is on liquidation games.

We use Hawkes processes to introduce an additional transient price impact, which leads to a mean field

control problem for each player. Finite player games with deterministic model parameters and transient

impact were studied by Luo and Schied (2019); Schied et al. (2017); Schied and Zhang (2019) and

Strehle (2017). We allow all impact parameters and cost coefficients to be stochastic. Liquidation games

with instantaneous and permanent impact and with and without strict liquidation constraint have been

studied in Carlin et al. (2007); Drapeau et al. (2021); Evangelista and Thamsten (2020); Fu and Horst

(2020); Voß (2019). Although our mathematical framework would clearly be flexible enough to allow for

an additional permanent impact we deliberately choose not to include a permanent impact as it does

not alter the mathematical analysis. Instead, we choose to clarify the effects of self-exciting order flow

on equilibrium liquidation strategies in a setting with only transient and instantaneous impact.

We consider both the finite player and the corresponding mean-field liquidation game. Mean-field games

(MFGs) of optimal liquidation without strict liquidation constraint have been studied by many authors

before. Cardaliaguet and Lehalle (2018) considered an MFG where each player has a different risk

aversion. Casgrain and Jaimungal (2018, 2020) considered games with partial information and different
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beliefs, respectively. Huang et al. (2019) considered a game between a major agent who is liquidating

a large number of shares and many minor agents that trade against the major player. To the best of

our knowledge mean-field (type) games with liquidation constraint have only been analyzed by Fu et al.

(2021) and Fu and Horst (2020) as well as in the recent work by Evangelista and Thamsten (2020).

Our model is very different from the one studied in the said papers. First, with our choice of feedback

effect, in the N -player game each player’s best response function is given by the solution to a mean-

field rather than a standard control problem. Second, in the N -player game, an individual player’s

optimization problem is not convex. Third, our model shows a much richer equilibrium dynamics.

Anticipating their impact on future order arrivals, the players typically trade more aggressively initially

and may take short positions in equilibrium. Moreover we prove that in a two player game where one

player starts with a strictly positive and the second starts with zero initial position, the second player

always shorts the asset in equilibrium, that is, there exists a beneficial round-trip for the second player.

While a similar effect has been observed before in, e.g. Fu et al. (2021) and Fu and Horst (2020) in our

model the players benefit from their impact on future order flow rather than a pure liquidity provision

effect. Finally, numerical simulations suggest that cyclically oscillating trading strategies may occur in

the single player benchmark model if the impact of the player’s trading rate on market dynamics is very

strong. Cyclic oscillations have been observed in single-player models before by Gatheral et al. (2012)

and in multi-player models by e.g. Schied et al. (2017) and Schied and Zhang (2019). It has been argued

by e.g. Alfonsi et al. (2012) and Gatheral et al. (2012) that cyclic fluctuations should be viewed as model

irregularities and should hence be avoided, at least in single player models. In our model oscillating

strategies can indeed be viewed as “model irregularities” as that they seem to occur only if market

impact is too strong for our verification (“no statistical arbitrage”) argument to hold. Interestingly, we

did not find numerical evidence for cyclically oscillating strategies in the N -player game or the MFG.

We apply a stochastic method to solve the liquidation games. The stochastic maximum principle suggests

that the equilibrium trading strategies in both the N -player game and the MFG can be characterized

in terms of the solutions to coupled mean-field FBSDE systems. The forward components describe the

players’ optimal portfolio processes and the expected child order flow; hence their initial and in the case

of the portfolio processes also terminal conditions are known. The backward components are the adjoint

processes; they describe the respective equilibrium trading rates. Due to the liquidation constraint some

of the terminal values are unknown.

We analyze both FBSDE systems within a common mathematical framework. Making a standard affine

ansatz the system with unknown terminal condition can be replaced by an FBSDE with known initial and

terminal condition, yet singular driver. Proving the existence of a small time solution to this FBSDE

is not hard. The challenge is to prove the existence of a global solution on the whole time interval.

Extending the continuation method for singular FBSDEs established in Fu et al. (2021) to our higher-

dimensional system we prove that the FBSDE system does indeed have a unique solution in a certain

space under a weak interaction condition that limits the impact of an individual player on the payoff

of other players. Weak interaction conditions have been extensively used in the game theory literature

before; see, e.g. Horst (2005) and references therein.

Subsequently, we establish a novel verification argument for the N -player game1 from which we deduce

that the solution to the FBSDE system does indeed give the desired Nash equilibrium. Our maximum

principle does not require convexity of the cost function as it is usually the case; see e.g. (Pham, 2009,

Theorem 6.4.6). In fact, unlike in Evangelista and Thamsten (2020), Fu et al. (2021), and Fu and Horst

(2020), in our model the players’ optimization problems are not convex and hence standard verification

arguments do not apply. Instead, we establish a novel maximum principle that strongly relies on the

liquidation constraint. Our idea is to decompose trading costs into a sum of equilibrium plus round-trip

costs and then to show that deviations from the equilibrium strategy (which are round-trips) are costly.

The decomposition result provides a sufficient condition for our impact model to be viable. Viability

of impact models is not trivial. Huberman and Stanzl (2004) were among the first to point out that

1The MFG is convex; hence general verification arguments apply.
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market impact may lead to statistical arbitrage and price manipulation. They showed that when the price

impact of trades is permanent and time independent, only linear impact functions support viable markets.

When impact is transient, the issue of viability is considerably more challenging and the literature is

rather sparse. Alfonsi et al. (2012), Gatheral (2011) and Gatheral et al. (2012) discussed viability in

deterministic single-player models for a variety of impact kernels. To the best of our knowledge our

verification result is the first that applies to non-convex multi-player models in stochastic environments.2

Finally, we prove that under an additional homogeneity assumption on the players’ cost function the

sequence of Nash equilibria in the N -player game converges in a suitable sense to the unique equilibrium

in the MFG as the number of players tends to infinity. This complements the analysis in Fu et al. (2021)

where no such convergence result was established.

The benchmark model where all model parameters are deterministic, except the initial portfolios, is

much easier to analyze. In this case, the FBSDE system reduces to an ODE system. The systems for the

MFG, the single player model and the two-player model can be solved explicitly. The explicit solution

is used to illustrate the possible impact of anticipating one’s own impact on future order flow by three

specific examples.

The remainder of this paper is organized as follows. The liquidation game is introduced in Section

2. Existence and uniqueness of equilibria in both the N -player game and the corresponding MFG is

established in Section 3. Convergence of the N -player equilibria to the unique MFG equilibrium is

shown in Section 4. Numerical simulations are provided in Section 5.

Notation. We use the following notation and notational conventions. We denote by 〈·, ·〉 the inner

product of two vectors. For a matrix y ∈ Rn×m, denote by |y| :=
(∑

1≤i≤n,1≤j≤m |yij |2
)1/2

the 2-norm

of y. For a R-valued essentially bounded stochastic process y, denote by ymin and by ‖y‖ its lower bound

and upper bound, respectively. For a Rn×m-valued essentially bounded stochastic process y, without

confusion, we still denote by ‖y‖ its upper bound in terms of 2-norm, i.e., ‖y‖ := (
∑
i,j ‖yij‖2)1/2.

For a filtration F we denote by L2
F the space of all F progressively measurable processes such that

‖y‖L2 :=
(
E
[∫ T

0
|yt|2 dt

]) 1
2

< ∞. We let S2F be the space of all F progressively measurable processes

with continuous trajectories such that ‖y‖S2 :=
(
E
[
sup0≤t≤T |yt|2

]) 1
2 < ∞ and denote by Ha,F the

subspace of S2F such that ‖y‖a :=

(
E
[
sup0≤t≤T

(
|yt|

(T−t)a

)2]) 1
2

<∞. Finally, L2,−
F denotes the space of

all F progressively measurable processes such that for each ε > 0 it holds that E
[∫ T−ε

0
|yt|2 dt

]
< ∞,

and S2,−F denotes the space of all F progressively measurable processes with continuous trajectories such

that ‖y‖S2,− :=
(
supε≥0 E

[
sup0≤t≤T−ε |yt|2

]) 1
2 <∞.

Throughout, C denotes a generic constant that may vary from line to line.

2 The liquidation game

In this paper we introduce a novel portfolio liquidation game with self-exciting order flow. Both the

N -player game and the corresponding MFG will be considered. Our starting point is the portfolio

liquidation model with instantaneous and persistent price impact analyzed in Graewe and Horst (2017).

We briefly review this model in the next subsection before extending it by adding an additional feedback

term of mean-field type into the dynamics of the benchmark price process. We assume throughout that

2We require traders to be risk averse. The benchmark case of a deterministic risk-neutral single player liquidation model
can be solved in closed form as shown in Chen et al. (2021). Even in this case, the impact kernel is different from the ones
considered in the above mentioned papers.
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randomness is described by a multi-dimensional Brownian motion W , unless otherwise stated, defined

on a filtered probability space (Ω,F , (Ft),P) that satisfies the usual conditions.

2.1 The single player benchmark model

In Graewe and Horst (2017) the authors analyzed a liquidation model in which the investor needs to

unwind an initial portfolio of X shares over a finite time horizon [0, T ] using absolutely continuous trading

strategies. Assuming a linear-quadratic cost function, the large investor’s stochastic control problem is

given by

ess inf
ξ∈L2

F (0,T ;R)
E

[∫ T

0

{ηξ2s + ξsYs + λsX
2
s} ds

]
(2.1)

subject to the state dynamics 
Xt = X −

∫ t

0

ξs ds, t ∈ [0, T ],

XT = 0,

Yt =

∫ t

0

{−ρsYs + γξs} ds, t ∈ [0, T ].

(2.2)

Here, η and γ are positive constants while ρ and λ are progressively measurable, non-negative and

essentially bounded stochastic processes. The quantity Xt denotes the number of shares the investor

needs to sell at time t ∈ [0, T ], while ξt denotes the rate at which the stock is traded at that time. The

process Y describes the persistent price impact. It can be viewed as a shift in the mid quote price caused

by past trades where the impact is measured by impact factor γ. Alternatively, it can be viewed as an

additional spread caused by the large investor in a block-shaped limit order book market with constant

order book depth 1/γ > 0 as in Horst and Naujokat (2014); Obizhaeva and Wang (2013). This results

in an execution price process of the form

S̃t = St − ηξt − Yt (2.3)

where S is a Brownian martingale that describes the dynamics of the unaffected mid-price process. The

essentially bounded process ρ describes the rates at which the order book recovers from past trades. The

constant η > 0 describes an additional instantaneous impact as in Almgren and Chriss (2001), Ankirchner

et al. (2014), Graewe et al. (2015) or Graewe et al. (2018) among many others. The first two terms of

the running cost term in (2.1) capture the expected liquidity cost resulting from the instantaneous and

the persistent impact, respectively. The third term can be interpreted as a measure of the market risk

associated with an open position. It penalizes slow liquidation.

We are now going to introduce an additional feedback effect into the above model that accounts for the

possibility of an additional order flow (“child orders”) triggered by the large investor’s trading activity.

To this end, we assume that the market order dynamics follows a Hawkes process with exponential kernel.

Specifically, we assume that market sell and buy orders arrive according to independent Hawkes processes

N± with respective intensities

ζ±t := µ±t + α

∫ t

0

e−β(t−s)dN±s

where µ± are the base intensities and α, β are deterministic coefficients that capture the impact of past

orders on future order flow. In the absence of the large trader we set µ± ≡ µ. In this case the base

intensities are equal, and the same number of sell and buy orders arrive on average. In particular, the

order flow imbalance N+ −N− is a martingale.

In the presence of the large trader the base intensities change to µ±t = µ + ξ±t where ξ± denotes the

positive/negative part of the large investor’s liquidation strategy; if ξt > 0 the investor is selling, else the
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investor is buying. In this case, the expected intensities satisfy

E[ζ±t ] = µ+ E[ξ±t ] + α

∫ t

0

e−β(t−s)E[ζ±s ]ds.

Thus, if we let N̄±t denote the expected number of sell/buy market orders that arrived over the period

[0, t], then the expected net sell order flow imbalance N̄t := N̄+
t − N̄−t is given by

N̄t =

∫ t

0

(
E[ζ+s ]− E[ζ−s ]

)
ds =

∫ t

0

E[ξs]ds+ α

∫ t

0

e−β(t−s)N̄sds. (2.4)

As a result, the expected order flow imbalance generated by the large trader can be decomposed into the

trader’s own expected accumulated order flow plus the expected number of (net) sell child orders

Ct = α

∫ t

0

e−β(t−s)N̄sds. (2.5)

In order to account for the possible feedback effect of the large trader’s activity on future order flow and

hence price dynamics we suggest to add the average child order flow rate dCt to the dynamics of the

transient impact process, assuming that the child order flow contributes to the price impact in exactly

the same way as the large trader’s order flow.3

Differentiating equation (2.5) we see that

dCt = (−(β − α)Ct + α(EX − EXt)) dt, C0 = 0. (2.6)

The child order flow rate increases linearly in the investor’s expected traded volume EX − EX. The

child order flow is mean-reverting if α
β < 1. It is well known that the Hawkes process with constant base

intensity is stable in the long term and that each order triggers at most one child order on average if
α
β < 1; see Hawkes and Oakes (1974) for details.

Starting from (2.2) but accounting for the additional child order flow in the dynamics of the market

impact process Y results in the following mean-field type control problem for our large investor:

ess inf
ξ∈L2

F (0,T ;R)
E

[∫ T

0

{
ηsξ

2
s + ξsYs + λsX

2
s

}
ds

]
(2.7)

subject to the state dynamics

dXt = −ξt dt, t ∈ [0, T ],

X0 = X , XT = 0,

dYt =
(
− ρtYt + γt

(
ξt − (β − α)Ct + α(EX − EXt)

))
dt, t ∈ [0, T ],

Y0 = 0,

dCt = (−(β − α)Ct + α(EX − EXt)) dt, t ∈ [0, T ],

C0 = 0.

(2.8)

Remark 2.1. i) It would clearly be desirable to consider the conditional child order flow, given the

large trader’s submission rates instead of the unconditional expectation. The unconditional expec-

tation is considered for mathematical convenience as we are unaware of any tractable representation

of the conditional child order flow.

ii) At first sight it might also be desirable to consider the child order process directly rather than

the rate dC. This, however, would be inconsistent with the way we model the large trader who

is supposed to trade in rates, which, of course, should be viewed as a mathematically tractable

approximation of discrete trading.
3This assumption can be justified by assuming that the market does not or cannot differentiate different origins of order

flow.
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2.2 Many player models

Let us now consider a game theoretic extension of the above liquidation model with N strategically

interacting investors. The trading rate, initial portfolio and portfolio process of player i ∈ {1, ..., N} are

denoted by ξi, X i and Xi, respectively. The corresponding averages over the set of players are denoted

by ξ̄, X̄ and X̄, respectively. We assume that the initial portfolios are (not necessarily independent)

square-integrable random variables.

Assuming that both the child order flow and the impact process are driven by the average trading rate

results in the following mean-field type optimization problem for player i given the liquidation strategies

ξj (j 6= i) of all the other players:

ess inf
ξi∈L2

F (0,T ;R)
E

[∫ T

0

ηit(ξ
i
s)

2 + ξisY
i
s + λis(X

i
s)

2 ds

]
(2.9)

subject to 

dXi
t = −ξit ds, t ∈ [0, T ],

Xi
0 = X i, Xi

T = 0,

dY it =

(
− ρitY it + γit

(
ξ̄t − (βit − αit)Cit + αit(E[X̄ ]− E[X̄t])

))
dt, t ∈ [0, T ]

Y i0 = 0

dCit =
(
−(βit − αit)Cit + αit(E[X̄ ]− E[X̄t])

)
dt, t ∈ [0, T ]

Ci0 = 0.

(2.10)

Under the assumption that all the cost coefficients and model parameters are essentially bounded, F-

progressively measurable stochastic processes and that the instantaneous impact term and the risk aver-

sion parameters are uniformly bounded away from zero we prove that the N -player liquidation game

admits a Nash equilibrium under a weak interaction condition that limits the impact of an individual

player on the trading costs of other players. Since each player affects the state dynamics of other players

mainly through the impact parameters γi our existence of equilibrium result requires these parameters

to be small enough and/or the unaffected processes ηi and λi to be large enough. Moreover, we require

the stability condition αi

βi < 1 so that child order dynamics is mean-reverting.

Remark 2.2. Assuming that all players trade the same stock in the same venue it is natural to assume

that the model parameters and cost coefficients are the same across the players’ cost functions, except

to the initial portfolios and the risk aversion parameters. We are allowing for additional heterogeneity

in the players’ cost functions and state dynamics as this does not alter the mathematical analysis.

Under the additional assumption that the player’s cost functions are homogeneous in sense that

ηit = η
(
t,X i, (W i

s)0≤s≤t
)
, λit = λ

(
t,X i, (W i

s)0≤s≤t
)
, ρit = ρ

(
t,X i, (W i

s)0≤s≤t
)
,

αit = α
(
t,X i, (W i

s)0≤s≤t
)
, βit = β

(
t,X i, (W i

s)0≤s≤t
)
, γit = γ

(
t,X i, (W i

s)0≤s≤t
)
,

(2.11)

for independent Brownian motions W 1,W 2, .... and measurable functions η, λ, ρ, α, β, γ and

X 1,X 2, ... are i.i.d. square integrable and independent of W 1,W 2, ... (2.12)

we also prove that the equilibrium converges (in a sense to be defined) to the unique equilibrium of a

corresponding MFG as the number of players tends to infinity.

The MFG is obtained by first replacing the average quantities ξ̄ and X̄ by deterministic processes µ

and ν, respectively and then by solving a representative player’s optimization problem subject to an
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additional fixed point condition. In the MFG randomness is described by a Brownian motion W defined

on some filtered probability space (Ω,F , (F t),P) and all processes are (F t)-progressively measurable.

The corresponding MFG is then given by

ess inf
ξ∈L2

F
(0,T ;R)

E

[∫ T

0

{ηt(ξt)2 + ξtYt + λt(Xt)
2} dt

]
(2.13)

subject to the state dynamics

dXt = −ξt ds, t ∈ [0, T ],

X0 = X , XT = 0,

dYt =

(
− ρtYt + γt

(
µt − (βt − αt)Ct + αt(E[X ]− νt)

))
dt, t ∈ [0, T ]

Y0 = 0

dCt = (−(βt − αt)Ct + αt(E[X ]− νt)) dt, t ∈ [0, T ]

C0 = 0.

(2.14)

and the equilibrium condition {
E[ξ∗t (µ, ν)] = µt, t ∈ [0, T ],

E[X∗t (µ, ν)] = νt, t ∈ [0, T ].
(2.15)

Here ξ∗(µ, ν) denotes the unique solution to (2.13) given (µ, ν), and X∗(µ, ν) is the corresponding

portfolio process.

We prove that the MFG admits a unique solution under a weak interaction condition. Under an additional

homogeneity assumption we then prove that the sequence of equilibria in the finite player games converges

to the mean-field equilibrium if the number of players tends to infinity.

3 Existence of Equilibria

In this section we provide an existence of equilibrium result for both the N -player and the mean-field

liquidation games introduced in the previous section. We first characterize the equilibria of both games

in terms of solutions to certain mean-field FBSDE systems with singular terminal conditions. Subse-

quently, we establish the existence of a unique solution to these systems within a common mathematical

framework. Finally, we prove a verification argument from which we deduce the solutions to the FBSDEs

do indeed provide the desired Nash equilibria.

3.1 Characterization of open-loop equilibria

We start by characterizing Nash equilibria in the N -player liquidation game. The Hamiltonian associated

with the mean-field control problem (2.9) and (2.10) is given by

Hi = −
N∑
j=1

ξjP i,j +

N∑
j=1

Qi,j{−ρjY j + γj(ξ̄ − (βj − αj)Cj) + αjγj(E[X̄ ]− E[X̄t])}

+

N∑
j=1

Ri,j{−(βj − αj)Cj + αj(E[X̄ ]− E[X̄t])}+ ξiY i + ηi(ξi)2 + λi(Xi)2.

Using the same arguments as in Fu et al. (2021); Fu and Horst (2020) the stochastic maximum principle

suggests that the best response function of player i given her competitors’ actions is given by

ξ∗,i =
P i,i − Y i − γi

NQ
i,i

2ηi
, (3.1)
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where the adjoint processes (P i,j , Qi,j , Ri,j) (j = 1, ..., N) satisfy the stochastic system

−dP i,jt =

(
2λitX

i
tδij −

1

N
E
[
αjtγ

j
tQ

i,j
t

]
− 1

N
E
[
αjtR

i,j
t

])
dt− ZP

i,j

t dWt,

−dQi,jt =

(
P i,it − Y it −

γit
NQ

i,i
t

2ηit
δij − ρjtQ

i,j
t

)
dt− ZQ

i,j

t dWt,

−dRi,j =
(
−γjt (β

j
t − α

j
t )Q

i,j
t − (βjt − α

j
t )R

i,j
t

)
dt− ZR

i,j

t dWt

Qi,jT = Ri,jT = 0,

(3.2)

with a-priori unknown terminal conditions on the processes P i,j . We recall that W denotes a Wiener

process of arbitrary dimension. It can be seen from the above system that the processes P i,j for j 6= i

are not relevant for the equilibrium dynamics and that Qi,j = Ri,j = 0 for j 6= i by standard BSDE

theory. Putting P i := P i,i, Qi := Qi,i, Ri := Ri,i and M i := P i − Y i we arrive at the following coupled

mean-field forward-backward system4: for i = 1, ..., N ,

dXi
t = −

M i
t −

γit
NQ

i
t

2ηit
dt,

dY it =

−ρitY it + γit

 1

N

N∑
j=1

M j
t −

γit
NQ

j
t

2ηjt
− (βit − αit)Cit + αit(E[X̄ ]− E[X̄t])

 dt,

dCit =
{
−(βit − αit)Cit + αit(E[X̄ ]− E[X̄t])

}
dt

−dM i
t =

{(
2λitX

i
t −

1

N
E
[
αitγ

i
tQ

i
t

]
− 1

N
E
[
αitR

i
t

])

− ρitY it + γit

 1

N

N∑
j=1

M j
t −

γj

N Q
j
t

2ηjt
− (βit − αit)Cit + αit(E[X̄ ]− E[X̄t])

} dt− ZMi

t dWt,

−dQit =

(
M i
t −

γit
NQ

i
t

2ηit
− ρitQit

)
dt− ZQ

i

t dWt,

−dRit =
(
−γit(βit − αit)Qit − (βit − αit)Rit

)
dt− ZR

i

t dWt

Xi
0 = X i, Y i0 = Ci0 = 0, QiT = RiT = Xi

T = 0.
(3.3)

In terms of

Si =

(
Y i

Ci

)
, Ai =

(
ρi γi(βi − αi)
0 βi − αi

)
, Bi = (Bi,(1), Bi,(2)) =

(
γi −αiγi
0 −αi

)
,

and

Ri =

(
αiγi

N

∑N
j=1 E[X j ]

αi

N

∑N
j=1 E[X j ]

)
, Pi =

(
Qi

Ri

)
, Θ =

(
1

0

)
, χ =

1

N

N∑
j=1

(
ξ∗,j

E[Xj ]

)
,

4We prove below that the adjoint processes are determined uniquely by the solution to this mean-field FBSDE system.
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the above system can be compactly rewritten as

dXi
t = −

M i
t − 1

N

〈
B
i,(1)
t ,Pit

〉
2ηit

dt,

dSit =
(
−AitS

i
t +Bitχt +Rit

)
dt

−dM i
t =

(
2λitX

i
t +

〈
Θ,−AitS

i
t +Bitχt +Rit

〉
+

1

N
E
[〈
B
i,(2)
t ,Pit

〉])
dt− ZM

i

t dWt,

−dPit =

(
−(Ait)

>Pit + Θ
M i
t − 1

N

〈
Bi,(1),Pit

〉
2ηit

)
dt− ZP

i

t dWt

Xi
0 = X i, Xi

T = 0, Si0 = (0, 0)>, PiT = (0, 0)>.

(3.4)

The Hamiltonian associated with the representative player’s optimization problem in the MFG reads

H = ηξ2 + ξY + λX2 − ξP +Q{−ρY + γ(µ− (β − α)C) + αγ(E[X ]− ν)}
+R{−(β − α)C + α(E[X ]− ν)},

(3.5)

where (P,Q,R) is the adjoint processes to (X,Y,C). Again, the stochastic maximum principle suggests

that the optimal strategy is given by

ξ =
P − Y

2η
.

Putting M := P − Y the candidate equilibrium strategy can be obtained in terms of a solution to the

FBSDE system

dXt = − Mt

2ηt
dt

dYt =

(
−ρtYt + γt

(
E
[
Mt

2ηt

]
− (βt − αt)Ct

)
+ αtγt(E[X ]− E[Xt])

)
dt

dCt = (−(βt − αt)Ct + αt(E[X ]− E[Xt])) dt

−dMt =

(
2λtXt − ρtYt + γt

(
E
[
Mt

2ηt

]
− (βt − αt)Ct

)
+ αtγt(E[X ]− E[Xt])

)
dt− ZMt dW t

−dQt =

(
Mt

2ηt
− ρtQt

)
dt− ZQt dW t

−dRt = (−γt(βt − αt)Qt − (βt − αt)Rt) dt− ZRt dW t

X0 = X , Y0 = C0 = 0, QT = RT = XT = 0.

(3.6)

In terms of

S =

(
Y

C

)
, A =

(
ρ γ(β − α)

0 β − α

)
, B = (B(1), B(2)) =

(
γ −αγ
0 −α

)
,

R =

(
αγE[X ]

αE[X ]

)
, P =

(
Q

R

)
, χ =

(
E[M2η ]

E[X]

)
,

this system can be compactly rewritten as

dXt = − Mt

2ηt
dt

dSt =
(
−AtSt +Btχt +Rt

)
dt

−dMt =
(
2λtXt +

〈
Θ,−AtSt +Btχt +Rt

〉)
dt− ZMt dW t

−dPt =

(
−A>t Pt + Θ

Mt

2ηt

)
dt− ZPt dW t

X0 = X , XT = 0, S0 = (0, 0)>, PT = (0, 0)>.

(3.7)
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3.2 The mean field FBSDE

This section provides a unified approach for solving a class of linear mean-field FBSDE systems that

contains the systems (3.4) and (3.7) as special cases. Specifically, we consider the FBSDE system

dXi
t = −

M i
t − 1

N

〈
B̂
i,(1)
t ,Pit

〉
2ηit

dt,

dSit =
(
−AitSit +Ki

tχt +Rit
)
dt,

−dM i
t =

(
2λitX

i
t +

1

N
E
[〈
B̂
i,(2)
t ,Pit

〉]
+
〈
Θ,−AitSit +Ki

tχt +Rit
〉)

dt− ZM
i

t dWt,

−dPit =

−(Ait)
>Pit + Θ

M i
t − 1

N

〈
B̂
i,(1)
t ,Pit

〉
2ηit

 dt− ZP
i

t dWt,

Xi
0 = X i, Xi

T = 0, Si0 = (0, 0)>, PiT = (0, 0)>,

(3.8)

for i = 1, ..., N where Ki = (Ki,(1),Ki,(2),Ki,(3)) is an R2×3-valued stochastic process,

ξj =
M j − 1

N

〈
B̂j,(1),Pj

〉
2ηj

,

and

χ = (ξ,E[X],E[ξ])> =

 1

N

N∑
j=1

ξj ,E

 1

N

N∑
j=1

Xj

 , 1

N

N∑
j=1

E[ξj ]

> .
Remark 3.1. Let 02×1 be the 2× 1 zero matrix. If Ki = (Bi,(1), Bi,(2), 02×1), B̂i,(1) = Bi,(1), B̂i,(2) =

Bi,(2) and Ri = Ri, then the system (3.8) reduces to (3.4). If N = 1, B̂1,(1) = B̂1,(2) = 0, K1 =

(02×1, B
(2), B(1)) and R1 = R, then it reduces to (3.7).

In order to solve the above system we make the following assumptions.

Assumption 3.2. (i) The processes Ai, B̂i,Ki are progressively measurable w.r.t. the natural filtration

generated by W and uniformly bounded:

‖A‖ := sup
i
‖Ai‖ <∞,

‖B̂(1)‖ := sup
i
‖B̂i,(1)‖ <∞, ‖B̂(2)‖ := sup

i
‖B̂i,(2)‖ <∞,

‖K(1)‖ := sup
i
‖Ki,(1)‖ <∞, ‖K(2)‖ := sup

i
‖Ki,(2)‖ <∞, ‖K(3)‖ := sup

i
‖Ki,(3)‖ <∞.

(ii) There exists constants ρ̂ > 0 and ρ̃ > 0 such that for any R2-valued process y and i = 1, · · · , N,

E
[
y>t A

i
tyt
]
≥ ρ̂E

[
y>t yt

]
, E

[
y>t (Ait)

>yt + y>t
Θ〈B̂i,(1)t , yt〉

2Nηit

]
≥ ρ̃E

[
y>t yt

]
. (3.9)

(iii) The processes λi and ηi are progressively measurable, essentially bounded and there exist constants

θ0, θ1, θ2, θ3 > 0 such that λmin := inf
i
λimin and ηmin := inf

i
ηimin satisfy

2λmin −
θ0 + θ1 + θ2

2
−
(

1 +
1

θ3

)
‖K(2)‖2

(
‖A‖2

2θ1ρ̂2
+

1

2θ2

)
> 0,

2ηmin −
‖B̂(1)‖
Nρ̃

− ‖B̂
(2)‖2

2N2ρ̃2θ0
−

(
1 +

‖B̂(1)‖
2Nηminρ̃

)2

(1 + θ3)(‖K(1)‖+ ‖K(3)‖)2
(
‖A‖2

2θ1ρ̂2
+

1

2θ2

)
> 0.

(3.10)

(iv) The random variables X i are square integrable for each i = 1, · · · , N , which are independent of the

Brownian motions.
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The first assumption is standard. The second assumption essentially means that Ai+ (Ai)> is uniformly

positive definite. The third condition is similar to conditions made in Fu et al. (2021) and Fu and Horst

(2020). It states that the impact of other players on an individual player’s best response function is

weak enough. Specifically, it requires either the cost functions to be dominated by the terms ηit(ξ
i
t)

2 and

λit(X
i
t)

2 that are unaffected by the choices of other players (large λmin and large ηmin), or the impact of

other players on an individual player’s cost function and state dynamics to be weak enough.

Remark 3.3. If the number of players is large enough and the processes αi, βi, γi, ρi are identical across

players and constant (cf. Remark 2.2), then condition (3.9) reduces to 4ρ > γ2(β−α), β > α and we can

define ρ̂ and ρ̃ by the minimum eigenvalue of the matrix A+A>

2 , i.e.

ρ̂ = ρ̃ :=
ρ+ β − α−

√
(ρ+ β − α)2 − 4ρ(β − α) + γ2(β − α)2

2
.

Moreover, for any choice of θ0, θ1, θ2 and θ3 we can choose λi and ηi large enough for (3.10) to be satisfied.

We emphasize that both risk aversion and resilience are required to satisfy (3.10). It should be clear

that (3.9) and (3.10) are very strong and by no means necessary conditions.

We are now ready to state and prove our main result of this section. It states that our general FBSDE

system (3.8) admits a unique solution in a suitable space if Assumption 3.2 is satisfied. The proof is

based on an extension of the continuation method introduced in Fu et al. (2021).

Theorem 3.4. Under Assumption 3.2, there exists a unique solution

(Xi,Si,M i,Pi, ZM
i

, ZP
i

) ∈ Ha,F × S2F × L2
F ×Hι,F × L

2,−
F × L2

F

to the FBSDE system (3.8) for some positive constants a < 1, ι < 1/2.

Proof. Let p ∈ [0, 1], f j ∈ L2
F , g

j ∈ Ha,F for each j = 1, · · · , N , where a is to be determined later. We

apply the method of continuation to the following FBSDE indexed by (p, f j , gj)j=1,··· ,N :

dX̃i
t = −

M̃ i
t − 1

N

〈
B̂
i,(1)
t , P̃it

〉
2ηit

dt,

dS̃it =
(
−AitS̃it +Ki

t χ̃t +Rit
)
dt,

−dM̃ i
t =

(
2λitX̃

i
t +

1

N
E
[〈
B̂
i,(2)
t , P̃it

〉]
+
〈

Θ,−AitS̃it +Ki
t χ̃t +Rit

〉)
dt− ZM̃

i

t dWt,

−dP̃it =

−(Ait)
>P̃it + Θ

pM̃ i
t − 1

N

〈
B̂
i,(1)
t , P̃it

〉
2ηit

+ Θf it

 dt− ZP̃
i

t dWt,

X̃i
0 = xi, X̃i

T = 0, S̃i0 = (0, 0)>, P̃iT = (0, 0)>,

(3.11)

where for j = 1, · · · , N , 
ξ̃j :=

pM̃ j − 1
N

〈
B̂j,(1), P̃j

〉
2ηj

+ f j

χ̃ :=
1

N

N∑
j=1

(
ξ̃j ,E[pX̃j + gj ],E[ξ̃j ]

)>
.

We now make the ansatz

M̃ i = A iX̃i + Bi.

Integration by parts suggests that
−dA i

t =

(
2λit −

(A i
t )2

2ηit

)
dt− ZA i

t dWt,

lim
t↗T

A i
t = +∞

(3.12)
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and that Bi satisfies the BSDE

−dBi
t =

(
−A i

t Bi
t

2ηit
+

A i
t

2Nηit

〈
B̂
i,(1)
t , P̃it

〉
+

1

N
E
[〈
B̂
i,(2)
t , P̃it

〉]
+
〈

Θ,−AitS̃it +Ki
t χ̃t +Rit

〉)
dt

− ZBi

t dWt

(3.13)

on [0, T ). It has been shown in Ankirchner et al. (2014) and Graewe et al. (2018) that (3.12) admits a

unique solution (A i, ZA i

) ∈ H−1,F × L2
F and that

exp

(
−
∫ s

r

A i
u

2ηiu
du

)
≤
(
T − s
T − r

)b
, where b := min

i

ηimin

‖ηi‖
∈ (0, 1]. (3.14)

The existence of a unique solution to (3.13) will be shown in Step 1 below.

We now proceed in two steps. In Step 1 we prove that (3.11) admits a unique solution when p = 0. In

Step 2 we show that once (3.11) admits a unique solution for some p ≥ 0 and for any (f j , gj)j=1,··· ,N ,

then the same holds if p is replaced by p + σ for every σ ≤ σ0 where σ0 is a strictly positive constant

that is independent of p. By iterating p we can then solve (3.11) for p = 1. It reduces to (3.8) by letting

f j = gj = 0 for all j = 1, · · · , N .

Step 1. In this step, we prove that the system (3.11) is uniquely solvable in Ha,F × S2F × L2
F ×Hι,F ×

L2,−
F × L2

F for some positive constants a < b, ι < 1/2 when p = 0.

To this end, we first consider the mean-field BSDE for (P̃i, ZP̃i). This BSDE has a Lipschitz continuous

driver and so it has a unique solution in the space S2F × L2
F ; see e.g. (Buckdahn et al., 2009, Theorem

3.1). Taking conditional expectations on both sides yields

P̃it = E

∫ T

t

−(Ais)
>P̃is −Θ

〈
B̂
i,(1)
s , P̃is

〉
2Nηis

+ Θf is ds

∣∣∣∣∣∣Ft
 ,

which implies that

|P̃it |
(T − t)ι

≤

(
‖A‖+

‖B̂(1)‖
2Nηmin

)
1

(T − t)ι
E

[∫ T

t

|P̃is| ds

∣∣∣∣∣Ft
]

+
1

(T − t)ι
E

[∫ T

t

|f is| ds

∣∣∣∣∣Ft
]
.

Next, we take E[sup0≤t≤T (·)2] on both sides of the above inequality. By Hölder’s inequality, Doob’s

maximal inequality and ι < 1/2

E

 sup
0≤t≤T

(
1

(T − t)ι
E

[∫ T

t

|f is| ds

∣∣∣∣∣Ft
])2


≤ E

 sup
0≤t≤T

(
E

[∫ T

0

|f is|
1

1−ι ds

∣∣∣∣∣Ft
])2(1−ι)

 ≤ (2− 2ι

1− 2ι

)2(1−ι)

T 1−2ιE

[∫ T

0

|f is|2 ds

]
.

Similarly, we have that

E

 sup
0≤t≤T

(
1

(T − t)ι
E

[∫ T

t

|P̃is| ds

∣∣∣∣∣Ft
])2

 ≤ (2− 2ι

1− 2ι

)2(1−ι)

T 1−2ιE

[∫ T

0

|P̃is|2 ds

]
.

Therefore, we conclude that

E

 sup
0≤t≤T

(
|P̃it |

(T − t)ι

)2
 ≤ C

(
‖P̃i‖2S2 + ‖f i‖2L2

)
,
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which implies that P̃i ∈ Hι,F . Next, we consider the process S̃i. Since it solves a linear ODE we get

that

E
[

sup
0≤t≤T

|S̃it |2
]
≤ C

(
‖Ri‖2L2 +

N∑
i=1

‖f i‖2L2 +

N∑
i=1

‖gi‖2a

)
.

As a result, S̃i ∈ S2F . Next, we set, for t ∈ [0, T )

Bi
t :=E

[∫ T

t

e
−

∫ s
t

A i
r

2ηir
dr
(

A i
s

2Nηis

〈
B̂i,(1)s , P̃is

〉
+

1

N
E
[〈
B̂i,(2)s , P̃is

〉]
+
〈

Θ,−AisS̃is +Ki
sχ̃t +Ris

〉)
ds

∣∣∣∣Ft].
The estimate (3.14) along with Doob’s maximal inequality yields a constant C > 0 s.t. for any ε > 0,

E
[

sup
0≤t≤T−ε

∣∣Bi
t

∣∣2] ≤ C
 1

N

N∑
j=1

‖P̃j‖2ι + ‖S̃i‖2S2 + ‖Ri‖2L2 +

N∑
i=1

‖f i‖2L2 +

N∑
i=1

‖gi‖2a

 . (3.15)

Thus, Bi belongs to S2,−F and so the martingale representation theorem yields a unique process ZBi ∈
L2,−
F such that the pair (Bi, ZBi

) satisfies the BSDE (3.13).

We now analyze the process X̃i. Taking the ansatz M̃ i = A iX̃i + Bi into the SDE of X̃i yields

X̃i
t = X ie−

∫ t
0

A i
r

2ηir
dr −

∫ t

0

e
−

∫ t
s

A i
r

2ηir
dr

Bi
s − 1

N

〈
B̂
i,(1)
s , P̃is

〉
2ηis

ds.

Since a < b ≤ 1, it follows from (3.14) that

E

 sup
0≤t≤T

∣∣∣∣∣ X̃i
t

(T − t)a

∣∣∣∣∣
2
 ≤ C

‖X i‖L2 + E

[∫ T

0

∣∣∣∣ Bi
s

(T − s)a

∣∣∣∣2 ds
]

+ E

 sup
0≤t≤T

∣∣∣∣∣ P̃it
(T − t)ι

∣∣∣∣∣
2


= C

(
‖X i‖L2 + lim

ε→0
E

[∫ T−ε

0

∣∣∣∣ Bi
s

(T − s)a

∣∣∣∣2 ds
]

+ ‖P̃i‖2ι

)

≤ C

(
‖X i‖L2 + lim

ε→0
E
[

sup
0≤t≤T−ε

∣∣Bi
t

∣∣2]+ ‖P̃i‖2ι
)
.

In view of the estimate (3.15) this shows that X̃i ∈ Ha,F .

It remains to analyze the process M̃ i. Using the equality M̃ i = A iX̃i + Bi and (3.15) again, we see

that for each 0 ≤ τ < T

E
[

sup
0≤t≤τ

∣∣∣M̃ i
t

∣∣∣2] ≤ C

(T − τ)2(1−a)
‖X̃i‖2a + E

[
sup

0≤t≤τ

∣∣Bi
t

∣∣2] . (3.16)

Moreover, for any ε > 0, integration by parts implies that

X̃i
T−εM̃

i
T−ε − X̃i

0M̃
i
0

=

∫ T−ε

0

X̃i
tdM̃

i
t +

∫ T−ε

0

M̃ i
tdX̃

i
t

=−
∫ T−ε

0

X̃i
t

(
2λitX

i
t +

1

N
E
[〈
B̂
i,(2)
t , P̃it

〉]
+
〈

Θ,−AitS̃it +Ki
t χ̃t +Rit

〉)
dt

−
∫ T−ε

0

M̃ i
t

M̃ i
t − 1

N

〈
B̂
i,(1)
t , P̃it

〉
2ηit

dt+ martingale part.

(3.17)
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Since

X̃i
T−εM̃

i
T−ε = A i

T−ε(X̃
i
T−ε)

2 + X̃i
T−εB

i
T−ε ≥ X̃i

T−εB
i
T−ε,

by taking expectations on both sides and using (3.16) we obtain that

E

[∫ T−ε

0

2λit(X̃
i
t)

2 +
(M̃ i

t )
2

2ηit
dt

]

≤ ε′E

[∫ T−ε

0

(M̃ i
t )

2 dt

]
+ C(ε′)

(
‖X̃i‖2a + ‖Bi‖2S2,− + ‖S̃i‖2S2 + ‖P̃i‖2ι + ‖Ri‖2L2 +

N∑
i=1

‖f i‖2L2 +

N∑
i=1

‖gi‖2a

)
.

Letting ε′ < 1
2‖η‖ and then taking ε → 0, we conclude that M̃ i ∈ L2

F . The martingale representation

theorem yields a unique ZM̃
i ∈ L2,−

F .

Step 2. We now prove that if (3.11) with parameter p admits a solution in Ha,F × S2F × L2
F ×Hι,F ×

L2,−
F ×L2

F for any f i ∈ L2
F , g

i ∈ Ha,F , then there exists a strictly positive constant σ0 that is independent

of p and f i, gi such that the same result holds for p+ σ whenever σ ∈ [0, σ0].

For any (Xi,M i) ∈ Ha,F × L2
F , it holds that

f i(M) := σ
M i

2ηi
+ f i ∈ L2

F , gi(X) := σXi + gi ∈ Ha,F .

Hence by assumption there exists a unique solution (X̃i, S̃i, M̃ i, P̃i, ZM̃i

, ZP̃
i

) in Ha,F × S2F × L2
F ×

Hι,F × L2,−
F × L2

F to the FBSDE system (3.11) with f i = f i(M) and gi = gi(X). It is now sufficient to

show that the mapping

Φ :
(
(Xj)j=1,··· ,N , (M

j)j=1,··· ,N
)
7→
(

(X̃j)j=1,··· ,N , (M̃
j)j=1,··· ,N

)
.

is a contraction under Assumption 3.2. To this end, we denote for any two stochastic processes H and

H ′ their difference by δH := H −H ′ and use again the representation M̃ i = A iX̃i + Bi.

Integration by parts implies for any ε > 0 that (3.17) holds with X̃i replaced by δX̃i and without

non-homogenous term. Using the fact that δX̃i
T−εδM̃

i
T−ε ≥ δX̃i

T−εδB
i
T−ε, we have that∫ T−ε

0

2λit(δX̃
i
t)

2 +
(δM̃ i

t )
2

2ηit
dt

≤− δX̃i
T−εδB

i
T−ε +

∫ T−ε

0

δM̃ i
t

〈
B̂
i,(1)
t , δP̃it

〉
2Nηit

dt+ martingale part

−
∫ T−ε

0

δX̃i
t

(
1

N
E
[〈
B̂
i,(2)
t , δP̃it

〉]
+
〈

Θ,−AitδS̃it +Ki
tδχ̃t

〉)
dt.

Taking expectations on both sides and then letting ε→ 0, we obtain that

E

[∫ T

0

2λit(δX̃
i
t)

2 +
(δM̃ i

t )
2

2ηit
dt

]

≤− E

[∫ T

0

δX̃i
t

(
1

N
E
[〈
B̂
i,(2)
t , δP̃it

〉]
+
〈

Θ,−AitδS̃it +Ki
tδχ̃t

〉)
dt

]
+ E

∫ T

0

δM̃ i
t

〈
B̂
i,(1)
t , δP̃it

〉
2Nηit

dt

 .
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Young’s inequality and the inequality |〈x, y〉| ≤ |x||y| for any two vectors x, y imply that

E

[∫ T

0

2λit(δX̃
i
t)

2 +
(δM̃ i

t )
2

2ηit
dt

]

≤θ0
2
E

[∫ T

0

(δX̃i
t)

2 dt

]
+
‖B̂(2)‖2

2N2θ0
E

[∫ T

0

|δP̃it |2 dt

]

+
θ1
2
E

[∫ T

0

(δX̃i
t)

2 dt

]
+
‖A‖2

2θ1
E

[∫ T

0

|δS̃it |2 dt

]

+
θ2
2
E

[∫ T

0

(δX̃i
t)

2 dt

]
+

1

2θ2
E

[∫ T

0

∣∣Ki
tδχ̃t

∣∣2 dt]

+
θ

2
E

∫ T

0

(
δM̃ i

t

2ηit

)2

dt

+
‖B̂(1)‖2

2N2θ
E

[∫ T

0

|δP̃it |2 dt

]
.

(3.18)

Applying Itô’s formula for |δP̃ it |2, we have that

−|δP̃it |2 =− 2

∫ T

t

(δP̃is)>
−(Ait)

>δP̃it + Θ
pδM̃ i

t + σδM i
t − 1

N

〈
B̂
i,(1)
t , δP̃it

〉
2ηit

 ds

+

∫ T

t

|δZP̃
i

s |2 ds+ 2

∫ T

t

(δP̃is)>δZP̃
i

s dWs.

Recalling the condition (3.9) and using Young’s inequality 〈x, y〉 ≤ ρ̃
2 |x|

2 + 1
2ρ̃ |y|

2, we obtain that

E

[∫ T

0

|δP̃it |2 dt

]
≤ 1

ρ̃2
E

∫ T

0

(
pδM̃ i

t + σδM i
t

2ηit

)2

dt

 . (3.19)

Using similar arguments on |δS̃it |2, we get that

|δS̃it |2 = 2

∫ t

0

(δS̃is)>
(
−AitδS̃it +Ki

tδχ̃t

)
ds,

and

E

[∫ T

0

|δS̃it |2 dt

]
≤ 1

ρ̂2
E

[∫ T

0

∣∣Ki
tδχ̃t

∣∣2 dt] . (3.20)

Recalling the definition of χ̃ and ξ̃j , Remark 3.1, and using Young’s inequality again, we have that

E

[∫ T

0

∣∣Ki
tδχ̃t

∣∣2 dt]

≤(1 + θ3)(‖K(1)‖+ ‖K(3)‖)2 1

N

N∑
j=1

E

[∫ T

0

(δξ̃jt )
2 dt

]
+

(
1 +

1

θ3

)
‖K(2)‖2 1

N

N∑
j=1

E

[∫ T

0

(pδX̃j
t + σδXj

t )2 dt

]

≤(1 + θ3)(‖K(1)‖+ ‖K(3)‖)2 1

N

N∑
j=1

E

∫ T

0

(1 + ε)

(
pδM̃ j

t + σδM j
t

2ηjt

)2

+

(
1 +

1

ε

) 1
N

〈
B̂
j,(1)
t , δP̃jt

〉
2ηjt

2

dt


+

(
1 +

1

θ3

)
‖K(2)‖2 1

N

N∑
j=1

E

[∫ T

0

(
pδX̃j

t + σδXj
t

)2
dt

]
.
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Letting ε := ‖B̂(1)‖
2Nηminρ̃

, from the above estimate and (3.19) we have that

E

[∫ T

0

∣∣Ki
tδχ̃t

∣∣2 dt]

≤(1 + θ3)(‖K(1)‖+ ‖K(3)‖)2 1

N

N∑
j=1

E

∫ T

0

(
1 + ε+

(
1 +

1

ε

)
‖B̂(1)‖2

4N2η2minρ̃
2

)(
pδM̃ j

t + σδM j
t

2ηjt

)2

dt


+

(
1 +

1

θ3

)
‖K(2)‖2 1

N

N∑
j=1

E

[∫ T

0

(
pδX̃j

t + σδXj
t

)2
dt

]

=(1 + θ3)(‖K(1)‖+ ‖K(3)‖)2 1

N

N∑
j=1

E

∫ T

0

(
1 +

‖B̂(1)‖
2Nηminρ̃

)2(
pδM̃ j

t + σδM j
t

2ηjt

)2

dt


+

(
1 +

1

θ3

)
‖K(2)‖2 1

N

N∑
j=1

E

[∫ T

0

(
pδX̃j

t + σδXj
t

)2
dt

]
.

(3.21)

Recalling the inequality (3.18), collecting the estimates (3.19)-(3.21) and taking sum from 1 to N on

both sides we get(
2λmin −

θ0 + θ1 + θ2
2

) N∑
i=1

E

[∫ T

0

(δX̃i
t)

2 dt

]
+

(
2ηmin −

θ

2

) N∑
i=1

E

∫ T

0

(
δM̃ i

t

2ηit

)2

dt


≤

[
1

N2ρ̃2

(
‖B̂(2)‖2

2θ0
+
‖B̂(1)‖2

2θ

)

+(1 + θ3)(‖K(1)‖+ ‖K(3)‖)2
(
‖A‖2

2θ1ρ̂2
+

1

2θ2

)(
1 +

‖B̂(1)‖
2Nηminρ̃

)2
 N∑
i=1

E

∫ T

0

(
pδM̃ i

t + σδM i
t

2ηit

)2

dt


+

(
1 +

1

θ3

)
‖K(2)‖2

(
‖A‖2

2θ1ρ̂2
+

1

2θ2

) N∑
i=1

E

[∫ T

0

(
pδX̃i

t + σδXi
t

)2
dt

]

≤(1 + ε)

[
1

N2ρ̃2

(
‖B̂(2)‖2

2θ0
+
‖B̂(1)‖2

2θ

)

+(1 + θ3)(‖K(1)‖+ ‖K(3)‖)2
(
‖A‖2

2θ1ρ̂2
+

1

2θ2

)(
1 +

‖B̂(1)‖
2Nηminρ̃

)2
 N∑
i=1

E

∫ T

0

(
δM̃ i

t

2ηit

)2

dt


+ (1 + ε)

(
1 +

1

θ3

)
‖K(2)‖2

(
‖A‖2

2θ1ρ̂2
+

1

2θ2

) N∑
i=1

E

[∫ T

0

(
δX̃i

t

)2
dt

]

+ C

(
1 +

1

ε

)
σ

(
N∑
i=1

E

[∫ T

0

(
δM i

t

)2
dt

]
+

N∑
i=1

E

[∫ T

0

(
δXi

t

)2
dt

])
.

Thus, choosing θ = ‖B̂(1)‖
Nρ̃ and choosing ε small enough, the assumption (3.10) yields

N∑
i=1

E

[∫ T

0

(
δM̃ i

t

)2
dt

]
+

N∑
i=1

E

[∫ T

0

(
δX̃i

)2
dt

]

≤ Cσ

(
N∑
i=1

E

[∫ T

0

(
δM i

t

)2
dt

]
+

N∑
i=1

E

[∫ T

0

(
δXi

t

)2
dt

])
.
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Furthermore, going back to the dynamics of X̃i and using M̃ i = A iX̃i + Bi, we have that

N∑
i=1

E

 sup
0≤t≤T

∣∣∣∣∣ δX̃i

(T − t)a

∣∣∣∣∣
2
 ≤ Cσ( N∑

i=1

E

[∫ T

0

(
δM i

t

)2
dt

]
+

N∑
i=1

E

[∫ T

0

(
δXi

t

)2
dt

])
.

Hence, when σ is small enough, the mapping Φ is a contraction. Iterating p finitely many times until

p = 1 and letting f i = gi = 0, we obtain the desired result.

3.3 Verification

Having established the existence of a unique solution to the respective FBSDEs, the candidate optimal

strategies are well defined. In this section we provide a verification result that shows that the candidate

strategy (3.1) does indeed define a Nash equilibrium of the N -player game (2.9)-(2.10). Our analysis

is based on a novel sufficient stochastic maximum principle that does not require convexity of the cost

function as it is usually the case; see e.g. (Pham, 2009, Theorem 6.4.6). Instead, our argument strongly

relies on the liquidation constraint Xi
T = 0. The following is the main result of this section.

Theorem 3.5. Let (Xi,Si,M i,Pi, ZMi

, ZP
i

) ∈ Ha,F × S2
F × L2

F × Hι,F × L
2,−
F × L2

F (i = 1, · · · , N)

be the unique solution to the FBSDE system (3.4). Under Assumption 3.2 with the inequalities in (iii)

replaced by the following slightly different condition
λmin −

θ1 + θ2
2

− ‖B
(2)‖2

N2

(
1 +

1

θ3

)(
‖A‖2

2θ1ρ̂2
+

1

2θ2

)
> 0,

ηmin − (1 + θ3)
‖B(1)‖2

N2

(
‖A‖2

2θ1ρ̂2
+

1

2θ2

)
> 0,

(3.22)

the processes ξ∗ = (ξ∗,1, · · · , ξ∗,N ) forms an open-loop Nash equilibrium of the N -player game (2.9)-

(2.10), where

ξ∗,i =
M i − 1

N

〈
Bi,(1),Pi

〉
2ηi

.

Remark 3.6. (1) If Assumption 3.2 (iii) holds, then the condition (3.22) holds for all N ≥ 2.

(2) The impact process Y is exogenous in the optimization problem of the MFG. Thus, the convex-

ity requirement for the standard sufficient maximum principle holds. We omit the proof of the

verification result, which is standard.

In what follows we denote by (Xi,Si) the states corresponding to the strategy profile (ξi, (ξ∗,j)j 6=i) and

by (X∗,i,S∗,i) the states corresponding to the strategy profile (ξ∗,i, (ξ∗,j)j 6=i). Moreover, we put

χ :=
1

N
(ξi,E[Xi])> +

1

N

∑
j 6=i

(ξ∗,j ,E[X∗,j ])> and χ∗ :=
1

N

N∑
j=1

(ξ∗,j ,E[X∗,j ])>.

Then it holds thatdX
i
t = − ξit dt

dSit =
(
−AitS

i
t +Bitχt +Rit

)
dt

and

dX
∗,i
t = − ξ∗,it dt

dS∗,it =
(
−AitS

∗,i
t +Bitχ

∗
t

+Rit
)
dt.

The admissibility of the candidate ξ∗ has already been established; in particular, X∗,iT = 0 for each

i = 1, . . . , N because X∗,i ∈ Ha,F . It remains to prove that

J i(ξ∗,i, ξ∗,−i) ≤ J i(ξi, ξ∗,−i)
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for each 1 ≤ i ≤ N and any admissible control ξi. To this end, we prove that the cost J i(ξi, ξ∗,−i) can

be decomposed into the equilibrium cost plus the cost of a round-trip strategy as

J i(ξi, ξ∗,−i) = J i(ξ∗,i, ξ∗,−i) + E

[∫ T

0

ηit

(
ξit − ξ

∗,i
t

)2
+ λit

(
Xi
t −X

∗,i
t

)2
+
(
Xi
t −X

∗,i
t

)〈
Θ,−Ait(S

i
t − S

∗,i
t ) +Bit(χt − χ

∗
t
)
〉
dt
] (3.23)

and that the additional cost is non-negative under Assumption (3.22). In order to prove the decomposi-

tion (3.23) we proceed in various steps. In a first step, we establish an alternative representation of the

cost function.

Lemma 3.7. The cost associated with the strategy (ξi, ξ∗,−i) can be rewritten as

J i(ξi, ξ∗,−i) =E

[∫ T

0

Xi
t

〈
Θ,−AitS

i
t +Bitχt +Rit

〉
+ ηit(ξ

i
t)

2 + λit(X
i
t)

2 dt

]
.

Proof. Using integration by parts and Xi
T = 0, Si0 = 0, we have that

0 = E
[
Xi
T

〈
Θ,SiT

〉
−Xi

0

〈
Θ,Si0

〉]
= E

[∫ T

0

Xi
t

〈
Θ,−AitS

i
t +Bitχt +Rit

〉
− ξit

〈
Θ,Sit

〉
dt

]
. (3.24)

As a result,

J i(ξi, ξ∗,−i) =E

[∫ T

0

ξit
〈
Θ,Sit

〉
+ ηit(ξ

i
t)

2 + λit(X
i
t)

2 dt

]

=E

[∫ T

0

Xi
t

〈
Θ,−AitS

i
t +Bitχt +Rit

〉
+ ηit(ξ

i
t)

2 + λit(X
i
t)

2 dt

]
.

In view of Lemma 3.7, it holds

J i(ξi, ξ∗,−i)− J i(ξ∗,i, ξ∗,−i)

= E

[∫ T

0

Xi
t

〈
Θ,−AitS

i
t +Bitχt +Rit

〉
+ ηit(ξ

i
t)

2 + λit(X
i
t)

2 dt

]

− E

[∫ T

0

X∗,it

〈
Θ,−AitS

∗,i
t +Bitχ

∗
t

+Rit
〉

+ ηit(ξ
∗,i
t )2 + λit(X

∗,i
t )2 dt

]
=: I.

(3.25)

It remains to bring the term on the right-hand side in equation (3.25) into the form (3.23). For this, let

II :=E

[∫ T

0

(
2ηitξ

∗,i
t +

1

N

〈
B
i,(1)
t ,Pit

〉)(
ξit − ξ

∗,i
t

)
dt

]

+ E

[∫ T

0

(
Xi
t −X

∗,i
t

)(
2λitX

∗,i
t +

1

N
E
[〈
B
i,(2)
t ,Pit

〉]
+
〈

Θ,−AitS
∗,i
t +Bitχ

∗
t

+Rit
〉)

dt

]
.

(3.26)

Heuristically, this term equals E
[∫ T

0

(
(Xi

t −X
∗,i
t )dM i

t −M i
t (dX

i
t − dX

∗,i
t )
)]

. In view of the liquidation

constraint, using an integration by parts argument, we expect that II = 0 in which case it remains to

bring the difference I− II into the form (3.23).

Lemma 3.8. The representation (3.23) holds true.

19



Proof. We proceed in two steps. In a first step, we prove that II = 0. Indeed, integration by parts on

[0, T − ε] yields that

E
[
M i
T−ε

(
Xi
T−ε −X

∗,i
T−ε

)
−M i

0

(
Xi

0 −X
∗,i
0

)]
=− E

[∫ T−ε

0

M i
t

(
ξit − ξ

∗,i
t

)
dt

]

− E

[∫ T−ε

0

(
Xi
t −X

∗,i
t

)(
2λitX

∗,i
t +

1

N
E
[〈
B
i,(2)
t ,Pit

〉]
+
〈

Θ,−AitS
∗,i
t +Bitχ

∗
t

+Rit
〉)

dt

]
.

Letting ε→ 0, a similar argument as in the proof of (Fu et al., 2021, Proposition 2.14) yields that

lim
ε→0

E
[
M i
T−ε(X

i
T−ε −X

∗,i
T−ε)

]
= 0.

Thus, dominated convergence implies

− E

[∫ T

0

M i
t

(
ξit − ξ

∗,i
t

)
dt

]

=E

[∫ T

0

(
Xi
t −X

∗,i
t

)(
2λitX

∗,i
t +

1

N
E
[〈
B
i,(2)
t ,Pit

〉]
+
〈

Θ,−AitS
∗,i
t +Bitχ

∗
t

+Rit
〉)

dt

]
.

Putting the preceding equation into (3.26) implies that

II =E

[∫ T

0

(
2ηitξ

∗,i
t +

1

N

〈
B
i,(1)
t ,Pit

〉
−M i

t

)(
ξit − ξ

∗,i
t

)
dt

]
= 0.

Using integration by parts again yields that

0 =E
[〈
PiT ,S

i
T − S

∗,i
T

〉
−
〈
Pi0,S

i
0 − S

∗,i
0

〉]
=E

[∫ T

0

〈
(Ait)

>Pit −Θξ∗,it ,Sit − S
∗,i
t

〉
+
〈
Pit ,−Ait(S

i
t − S

∗,i
t ) +Bit(χt − χ

∗
t
)
〉
dt

]

=E

[∫ T

0

−ξ∗,it
〈

Θ,Sit − S
∗,i
t

〉
+
〈
Pit , Bit(χt − χ

∗
t
)
〉
dt

]

=E

[∫ T

0

−X∗,it
〈

Θ,−Ait(S
i
t − S

∗,i
t ) +Bit(χt − χ

∗
t
)
〉
dt

]
+ E

[
X∗,iT

〈
Θ,SiT − S

∗,i
T

〉
−X∗,i0

〈
Θ,Si0 − S

∗,i
0

〉]
+ E

[∫ T

0

〈
Pit , Bit(χt − χ

∗
t
)
〉
dt

]

=E

[∫ T

0

−X∗,it
〈

Θ,−Ait(S
i
t − S

∗,i
t ) +Bit(χt − χ

∗
t
)
〉
dt

]
+ E

[∫ T

0

〈
Pit , Bit(χt − χ

∗
t
)
〉
dt

]
,

where in the fourth equality we use the liquidation constraint X∗,iT = 0. Using that E[E[x]y] = E[x]E[y] =

E[xE[y]] for any random variables x and y, the second term in the above sum can be rewritten as

E

[∫ T

0

〈
Pit , Bit(χt − χ

∗
t
)
〉
dt

]

=
1

N
E

[∫ T

0

〈
Pit , B

i,(1)
t

〉(
ξit − ξ

∗,i
t

)
dt

]
+

1

N
E

[∫ T

0

〈
Pit , B

i,(2)
t

〉
E
[
Xi
t −X

∗,i
t

]
dt

]

=
1

N
E

[∫ T

0

〈
Pit , B

i,(1)
t

〉(
ξit − ξ

∗,i
t

)
dt

]
+

1

N
E

[∫ T

0

E
[〈
Pit , B

i,(2)
t

〉](
Xi
t −X

∗,i
t

)
dt

]
.
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Thus,

E

[∫ T

0

X∗,it

〈
Θ,−Ait(S

i
t − S

∗,i
t ) +Bit(χt − χ

∗
t
)
〉
dt

]

=
1

N
E

[∫ T

0

〈
Pit , B

i,(1)
t

〉(
ξit − ξ

∗,i
t

)
dt

]
+

1

N
E

[∫ T

0

E
[〈
Pit , B

i,(2)
t

〉](
Xi
t −X

∗,i
t

)
dt

]
.

(3.27)

Note that

I− II =E

[∫ T

0

ηit

(
ξit − ξ

∗,i
t

)2
+ λit

(
Xi
t −X

∗,i
t

)2
+Xi

t

〈
Θ,−Ait(S

i
t − S

∗,i
t ) +Bit(χt − χ

∗
t
)
〉

− 1

N

〈
B
i,(1)
t ,Pit

〉(
ξit − ξ

∗,i
t

)
− 1

N
E
[〈
Pit , B

i,(2)
t

〉](
Xi
t −X

∗,i
t

)
dt

]
.

(3.28)

Plugging (3.27) into (3.28), we get the desired representation.

We are now ready to finish the proof of the verification result.

Proof of Theorem 3.5. Using the constants appearing in (3.18), we have

E

[∫ T

0

(
Xi
t −X

∗,i
t

)〈
Θ,−Ait(S

i
t − S

∗,i
t ) +Bit(χt − χ

∗
t
)
〉
dt

]

≤ θ1 + θ2
2

E

[∫ T

0

|Xi
t −X

∗,i
t |2

]
+
‖A‖2

2θ1
E

[∫ T

0

|Sit − S
∗,i
t |2 dt

]
+

1

2θ2
E

[∫ T

0

|Bit(χt − χ
∗
t
)|2 dt

]
.

The dynamics Sit − S
∗,i
t =

∫ t
0

(
−Ais(S

i
s − S

∗,i
s ) +Bis(χs − χ

∗
s
)
)
ds and the estimate leading to (3.20)

imply

E

[∫ T

0

|Sit − S
∗,i
t |2 dt

]
≤ 1

ρ̂2
E

[∫ T

0

|Bit(χt − χ
∗
t
)|2 dt

]
.

Thus,

E

[∫ T

0

(
Xi
t −X

∗,i
t

)〈
Θ,−Ait(S

i
t − S

∗,i
t ) +Bit(χt − χ

∗
t
)
〉
dt

]

≤ θ1 + θ2
2

E

[∫ T

0

|Xi
t −X

∗,i
t |2

]
+

(
‖A‖2

2θ1ρ̂2
+

1

2θ2

)
E

[∫ T

0

|Bit(χt − χ
∗
t
)|2 dt

]

≤
(
θ1 + θ2

2
+
‖B(2)‖2

N2

(
1 +

1

θ3

)(
‖A‖2

2θ1ρ̂2
+

1

2θ2

))
E

[∫ T

0

|Xi
t −X

∗,i
t |2 dt

]

+ (1 + θ3)
‖B(1)‖2

N2

(
‖A‖2

2θ1ρ̂2
+

1

2θ2

)
E

[∫ T

0

|ξit − ξ
∗,i
t |2 dt

]
.

Due to the decomposition (3.23) and Assumption (3.22), we have

J(ξ, ξ∗,−i)− J(ξ∗,i, ξ∗,−i)

≥
(
λmin −

θ1 + θ2
2

− ‖B
(2)‖2

N2

(
1 +

1

θ3

)(
‖A‖2

2θ1ρ̂2
+

1

2θ2

))
E

[∫ T

0

(
Xi
t −X

∗,i
t

)2
dt

]

+

(
ηmin − (1 + θ3)

‖B(1)‖2

N2

(
‖A‖2

2θ1ρ̂2
+

1

2θ2

))
E

[∫ T

0

(
ξit − ξ

∗,i
t

)2
dt

]
≥ 0.
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Our verification Theorem 3.5 excludes the existence of beneficial round trips for the single player model.

Corollary 3.9. Under assumptions of Theorem 3.5, there is no beneficial round trip when N = 1.

Proof. Let the initial position x = 0 and ξ∗ ≡ 0, which implies

X∗ = S∗ = χ∗ = R = J(ξ∗) ≡ 0. (3.29)

Moreover, let ξ be a round trip, that is,
∫ T
0
ξt dt = 0. In view of Lemma 3.7 and (3.29), the decomposition

(3.23) holds with N = 1 and the proof of Theorem 3.5 yields J(ξ) > 0 = J(ξ∗). Thus, ξ is not

beneficial.

Remark 3.10. Note that the exclusion of beneficial round trips cannot be obtained from the FBSDE

representation of the optimal strategy; this is because our optimization is non-convex and thus unique-

ness result cannot be guaranteed. For the two-player game, the next corollary shows that our FBSDE

characterization provides the existence of a beneficial round trip.

Corollary 3.11. If X 1 > 0 and X 2 = 0, then X∗,2 6= 0. That is, X∗,2 or ξ∗,2 is a beneficial round trip.

Proof. We prove the corollary by contradiction. If X∗,2 ≡ 0, which is equivalent to ξ∗,2 ≡ 0, then

J2(ξ∗,2, ξ∗,1) = 0. In view of the representation (3.23) and Lemma 3.7,

E

[∫ T

0

X2
t 〈Θ,−dS

∗,2
t 〉

]
= 0, for any X2.

This implies that E
[∫ T

0
X2
t dY

∗,2
t

]
= 0 for all X2. Thus, Y ∗,2 ≡ 0. From the dynamics of Y ∗,2 we get

that
ξ∗,1

2
− (β2 − α2)C∗,2 +

α2

2
E
[
X 1 −X∗,1

]
= 0. (3.30)

Since C∗,2 can be expressed in terms of the function E
[
X 1 −X∗,1

]
and the constants α2 and β2 we

conclude that (3.30) is an equation for X 1 −X∗,1 that only depends on the constants α2 and β2. This

contradicts the FBSDE characterization (3.4) that states that X∗,1 and hence X 1 −X∗,1 only depends

on the coefficients indexed by 1 if X 2 = X∗,2 = ξ∗,2 = 0.

3.4 Approximation by penalization

It has been shown in various settings that the optimal trading strategies in models in which open positions

are increasingly penalized converge to optimal trading strategies in models where full liquidation is

required; see, e.g. Evangelista and Thamsten (2020); Fu et al. (2021); Horst and Xia (2019) for details.

If the strict liquidation constraint is replaced by a penalization n(Xi
T )2 of open positions at the terminal

time, the FBSDE system (3.8) changes to



dXi
t = −

M i
t − 1

N 〈B̂
i,(1)
t ,Pit〉

2ηit
dt,

dSit =
(
−AitSit +Ki

tχt +Rit
)
dt,

−dM i
t =

(
2λitX

i
t +

1

N
E
[〈
B̂
i,(2)
t ,Pit

〉]
+
〈
Θ,−AitSit +Ki

tχt +Rit
〉)

dt− ZM
i

t dWt,

−dPit =

(
−(Ait)

>Pit + Θ
M i
t − 1

N 〈B̂
i,(1)
t ,Pit〉

2ηit

)
dt− ZP

i

t dWt,

Xi
0 = X i, Si0 = (0, 0)>, M i

T = 2nXi
T − S

i,(1)
T , PiT = (0, 0)>,

(3.31)
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where Si,(1) is the first component of Si. The same arguments as in the proof of (Fu et al., 2021, Lemma

4.5) show that

E

[∫ T

0

|Pi,nt − Pit |2 dt

]
+ E

[∫ T

0

|M i,n
t −M i

t |2 dt

]
+ E

[∫ T

0

|Si,nt − Sit |2 dt

]
→ 0.

From this, we immediately obtain that the model with liquidation constraint can be approximated by a

sequence of models with increasing penalization. Specifically, using the same arguments as in the proof

of (Fu et al., 2021, Theorem 4) it is not difficult to prove the following approximation result.

Proposition 3.12. Let (Xi,Si,M i,Pi, ZMi

, ZP
i

) and (Xi,n,Si,n,M i,n,Pi,n, ZMi,n

, ZP
i,n

) be the so-

lutions of (3.8) and (3.31), respectively. Then,

E
[

sup
0≤t≤T

|Xi,n
t −Xi

t |2
]

+ E
[

sup
0≤t≤T

|Si,nt − Sit |2
]
→ 0 as n→∞.

4 From many player games to mean-field games

In this section we prove the convergence of the Nash equilibria in the N -player game to the Nash

equilibrium of the corresponding MFG under the homogeneity conditions (2.11) and (2.12). This is

achieved by establishing the convergence of the solutions to the FBSDE system (3.4) to the solution to

the corresponding mean-field FBSDE (3.7) as N →∞. More precisely, let(
X
i
,Si,M i

,Pi, ZM
i

, ZP
i
)
∈ Ha,F × S2F × L2

F ×Hι,F × L
2,−
F × L2

F

be the unique solution to the mean-field FBSDE (3.7) with W = W i, X = X i, λ = λi, η = ηi, ρ = ρi,

α = αi, β = βi and γ = γi. Using the Yamada-Watanabe result for mean-field FBSDE established in

(Fu et al., 2021, Lemma 3.2), there exists a measurable function Σ independent of i such that

(X
i

t,S
i

t,M
i

t,P
i

t) = Σ(t,X i,W i
·∧t). (4.1)

In particular, the mean field equilibrium state and control satisfy

νt = E[X
i

t] and µt = E

[
M

i

t

2ηit

]
.

Lemma 4.1. It holds that

E

∫ T

0

 1

N

N∑
j=1

M
j

t

2ηjt
− µt

2

dt

 N→∞−−−−→ 0, (4.2)

and

E

 sup
0≤t≤T

 1

N

N∑
j=1

X
j

t − νt

2

dt

 N→∞−−−−→ 0. (4.3)

Proof. By (2.11), (2.12) and (4.1),
M
k
t

2ηkt
and

M
j
t

2ηjt
are independent and identically distributed for k 6= j.

By Theorem 3.4, there exists a constant C independent of i such that

E

∫ T

0

(
M

i

t

2ηit

)2

dt

 ≤ C. (4.4)
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Moreover, it follows that

E

∫ T

0

 1

N

N∑
j=1

M
j

t

2ηjt
− µt

2

dt


=

1

N2
E

∫ T

0

∑
k 6=j

(
M

k

t

2ηkt
− µt

)(
M

j

t

2ηjt
− µt

)
dt

+
1

N2
E

∫ T

0

N∑
k=1

(
M

k

t

2ηkt
− µt

)2

dt


≤4C

N

N→∞−−−−→ 0.

By considering the dynamics of X
i
, the convergence (4.3) follows.

Let (Xi,Si,M i,Pi, ZMi

, ZP
i

) be the unique solution of (3.4) and(
δXi, δSi, δM i, δPi, δZM

i

, δZP
i
)

:=
(
Xi −Xi

,Si − Si,M i −M i
,Pi − Pi, ZM

i

− ZM
i

ei, Z
Pi − ZP

i

ei

)
,

where ei denotes the ith unit vector in RN . The FBSDE

dδXi
t = −

δM i
t − 1

N

〈
B
i,(1)
t ,Pit

〉
2ηit

dt,

dδSit =
(
−AitδSit +Bitδχt + δRit

)
dt,

−dδM i
t =

(
2λitδX

i
t +

1

N
E
[〈
B
i,(2)
t ,Pit

〉]
+
〈
Θ,−AitδSit +Bitδχt + δRit

〉)
dt− δZM

i

t dWt,

−dδPit =

−(Ait)
>δPit + Θ

δM i
t − 1

N

〈
B
i,(1)
t ,Pit

〉
2ηit

 dt− δZP
i

t dWt,

δXi
0 = 0, δXi

T = 0, δSi0 = (0, 0)>, δPiT = (0, 0)>,

(4.5)

where

δχ =

 1

N

N∑
j=1

M j − 1
N

〈
Bj,(1),Pj

〉
2ηj

− E

[
M

i

2ηi

]
,

1

N

N∑
j=1

E[Xj ]− E[X
i
]

>

and

δRi =

αiγi
N

N∑
j=1

E[X j ]− αiγiE[X i], α
i

N

N∑
j=1

E[X j ]− αiE[X i]

> ≡ (0, 0)>

has a unique solution. This allows us to establish the convergence of the Nash equilibria of the N -player

game to the mean field solution as N →∞.

Theorem 4.2. Let (3.9) and (3.10) hold for all N large enough. The following convergence holds

E

[∫ T

0

|δM i
t |2 dt

]
+ E

[
sup

0≤t≤T
|δXi

t |2 dt
]
N→∞−−−−→ 0.

As a result, the optimal strategy of player i in the N -player game converges to the one in MFG, i.e.,

E

[∫ T

0

|ξ∗,i,Nt − ξ∗,it |2 dt

]
→ 0,

where ξ∗,i,N :=
Mi− 1

N 〈Bi,(1),Pi〉
2ηi and ξ

∗,i
:= M

i

2ηi .
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Proof. Using M j
t = δM j

t +M
j

t and Xj
t = δXj

t +X
j

t we have that

δχ =

 1

N

N∑
j=1

δM j

2ηj
+

1

N

N∑
j=1

M
j

2ηj
− E

[
M

i

2ηj

]
,

1

N

N∑
j=1

E[δXj ] +
1

N

N∑
j=1

E[X
j
]− E

[
X
i
]>

+

− 1

N2

N∑
j=1

〈
Bj,(1),Pj

〉
2ηj

, 0

>

=

 1

N

N∑
j=1

δM j

2ηj
+

1

N

N∑
j=1

M
j

2ηj
− E

[
M

i

2ηj

]
,

1

N

N∑
j=1

E[δXj ]

>

+

− 1

N2

N∑
j=1

〈
Bj,(1),Pj

〉
2ηj

, 0

> .

(4.6)

In view of (3.19) and (3.20), we have that

E

[∫ T

0

|Pit |2 dt

]
≤ 1

ρ̃2
E

[∫ T

0

(
M i
t

2ηit

)2

dt

]
=

1

ρ̃2
E

∫ T

0

(
δM i

t +M
i

t

2ηit

)2

dt

 . (4.7)

and that

E

[∫ T

0

|δSit |2 dt

]
≤ 1

ρ̂2
E

[∫ T

0

|Bitδχt|2
]
. (4.8)

Taking (4.6) into (4.5), following the proof of Theorem 3.4 and using (4.7) and (4.8), we obtain(
2λmin −

θ0 + θ1 + θ2
2

)
E

[∫ T

0

(δXi
t)

2 dt

]
+

(
2ηmin −

θ

2

)
E

[∫ T

0

(
δM i

t

2ηit

)2

dt

]

≤
(
‖B(2)‖2

θ0
+
‖B(1)‖2

θ

)
1

2N2
E

[∫ T

0

|Pit |2 dt

]
+

(
‖A‖2

2θ1ρ̂2
+

1

2θ2

)
E

[∫ T

0

|Biδχt|2 dt

]

≤
(
‖B(2)‖2

θ0
+
‖B(1)‖2

θ

)
1

2N2
E

[∫ T

0

|Pit |2 dt

]

+ (1 + θ3)

(
‖A‖2

2θ1ρ̂2
+

1

2θ2

)
‖B(1)‖2E

∫ T

0

 1

N

N∑
j=1

δM j

2ηj

+
1

N

N∑
j=1

M
j

2ηj
− E

[
M

i

2ηj

]
− 1

N2

N∑
j=1

〈
Bj,(1),Pj

〉
2ηj

2

dt


+

(
1 +

1

θ3

)(
‖A‖2

2θ1ρ̂2
+

1

2θ2

)
‖B(2)‖2 1

N

N∑
j=1

E

[∫ T

0

|δXj
t |2 dt

]

≤
(
‖B(2)‖2

θ0
+
‖B(1)‖2

θ

)
1

2N2
E

[∫ T

0

|Pit |2 dt

]

+ (1 + ε)2(1 + θ3)

(
‖A‖2

2θ1ρ̂2
+

1

2θ2

)
‖B(1)‖2 1

N

N∑
j=1

E

[∫ T

0

(
δM j

2ηj

)2

dt

]

+ (1 + ε)

(
1 +

1

ε

)
(1 + θ3)

(
‖A‖2

2θ1ρ̂2
+

1

2θ2

)
‖B(1)‖2E

∫ T

0

 1

N

N∑
j=1

M
j

2ηj
− E

[
M

i

2ηj

]2
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+

(
1 +

1

ε

)
(1 + θ3)

(
‖A‖2

2θ1ρ̂2
+

1

2θ2

)
‖B(1)‖4

4η2minN
2

1

N

N∑
j=1

E

[∫ T

0

|Pjt |2 dt

]

+

(
1 +

1

θ3

)(
‖A‖2

2θ1ρ̂2
+

1

2θ2

)
‖B(2)‖2 1

N

N∑
j=1

E

[∫ T

0

|δXj
t |2 dt

]

≤ (1 + ε)

(
‖B(2)‖2

θ0
+
‖B(1)‖2

θ

)
1

2N2ρ̃2
E

[∫ T

0

(
δM i

t

2ηit

)2

dt

]

+

(
1 +

1

ε

)(
‖B(2)‖2

θ0
+
‖B(1)‖2

θ

)
1

2N2ρ̃2
E

∫ T

0

(
M

i

t

2ηit

)2

dt


+ (1 + ε)2(1 + θ3)

(
‖A‖2

2θ1ρ̂2
+

1

2θ2

)
‖B(1)‖2 1

N

N∑
j=1

E

[∫ T

0

(
δM j

2ηj

)2

dt

]

+ (1 + ε)

(
1 +

1

ε

)
(1 + θ3)

(
‖A‖2

2θ1ρ̂2
+

1

2θ2

)
‖B(1)‖2E

∫ T

0

 1

N

N∑
j=1

M
j

2ηj
− E

[
M

i

2ηj

]2


+ (1 + ε)

(
1 +

1

ε

)
(1 + θ3)

(
‖A‖2

2θ1ρ̂2
+

1

2θ2

)
‖B(1)‖4

4η2minN
2ρ̃2

1

N

N∑
j=1

E

∫ T

0

(
δM j

t

2ηjt

)2

dt


+

(
1 +

1

ε

)2

(1 + θ3)

(
‖A‖2

2θ1ρ̂2
+

1

2θ2

)
‖B(1)‖4

4η2minN
2ρ̃2

1

N

N∑
j=1

E

∫ T

0

(
M

j

t

2ηjt

)2

dt


+

(
1 +

1

θ3

)(
‖A‖2

2θ1ρ̂2
+

1

2θ2

)
‖B(2)‖2 1

N

N∑
j=1

E

[∫ T

0

|δXj
t |2 dt

]
.

Letting θ = ‖B(1)‖
Nρ̃ , ε be small enough, N be large enough, taking average and upper limit on both sides,

we obtain by (3.10)

lim sup
N→∞

1

N

N∑
i=1

E

[∫ T

0

(
δM i

t

2ηit

)2

dt

]
+ lim sup

N→∞

1

N

N∑
i=1

E

[∫ T

0

(
δXi

t

)2
dt

]

≤ C lim sup
N→∞

1

N

N∑
i=1

E

∫ T

0

 1

N

N∑
j=1

M
j

t

2ηjt
− E

[
M

i

t

2ηit

]2

dt


+ lim sup

N→∞
O

(
1

N

)
1

N

N∑
j=1

E

∫ T

0

(
M

j

t

2ηjt

)2

dt


= 0.

Going back to the inequality for E
[∫ T

0

(
δMi

t

2ηit

)2
dt

]
and E

[∫ T
0

(
δXi

t

)2
dt
]
, we have

E

[∫ T

0

(
δM i

t

2ηit

)2

dt

]
+ E

[∫ T

0

(
δXi

t

)2
dt

]
N→∞−−−−→ 0.

Furthermore,

E
[

sup
0≤t≤T

|δXi
t |2 dt

]
≤ CE

[∫ T

0

(
δM i

t

)2
dt

]
+
C

N
E

[∫ T

0

(
δM i

s +M
i

s

)2
ds

]
N→∞−−−−→ 0.
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5 Deterministic benchmark models

In this section we consider three deterministic benchmark examples. In Section 5.1 we consider a MFG

where all model parameters except the initial portfolios are deterministic. In Section 5.2 and Section

5.3 we consider a single player model and a two player model, respectively, where all model parameters

including initial portfolios are deterministic. In all deterministic models, our FBSDE systems reduce

to ODE systems. Existence and uniqueness of solutions to these systems can easily be established; in

particular, Assumption 3.2 is not required. For simplicity we also replace the strict liquidation constraint

by a penalization n(Xi
T )2 of open positions at the terminal time. This considerably simplifies our

numerical analysis; see Section 3.4. We display the solutions to the corresponding ODE system for

various choices of model parameters.

5.1 The mean-field game

If all model parameters except the initial positions are deterministic constants, then the stochastic

integral terms drop out of the FBSDE system (3.6). Taking expectations on both sides in (3.6) and

putting

F := (E[X],E[Y ],E[C])> and B := (E[P ],E[Q],E[R])>,

we obtain that 

F′ = ϕ00F + ϕ01B + F 0,

B′ = ϕ10F + ϕ11B,

F0 =

E[X ]

0

0

 , BT =

2n 0 0

0 0 0

0 0 0

FT ,
(5.1)

where

ϕ00 =

 0 1
2η 0

−αγ −ρ− γ
2η −γ(β − α)

−α 0 −(β − α)

 , ϕ01 =

− 1
2η 0 0
γ
2η 0 0

0 0 0

 , F 0 =

 0

γαE[X ]

αE[X ]

 ,

and

ϕ10 =

−2λ 0 0

0 1
2η 0

0 0 0

 , ϕ11 =

 0 0 0

− 1
2η ρ 0

0 γ(β − α) (β − α)

 .

Making the ansatz B = DF +D0 yields the following ODE system for D and D0:
D′ = −Dϕ01D −Dϕ00 + ϕ11D + ϕ10, DT =

2n 0 0

0 0 0

0 0 0


(D0)′ = (ϕ11 −Dϕ10)D0 −DF 0, D0

T = (0, 0, 0)>.

(5.2)

Let Φ(T, t) = eP(T−t) be the fundamental solution to (5.1), where

P =

(
ϕ00 ϕ01

ϕ10 ϕ11

)
.
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From (5.1) one has

0 = (DT ,−I3×3)

(
FT
BT

)
= (DT ,−I3×3)Φ(T, t)

(
Ft
Bt

)
+ (DT ,−I3×3)

∫ T

t

Φ(T, s) ds

(
F 0

O3×1

)
= (DT ,−I3×3)Φ(T, t)

(
I3×3
O3×3

)
Ft + (DT ,−I3×3)Φ(T, t)

(
O3×3
I3×3

)
Bt

+ (DT ,−I3×3)

∫ T

t

Φ(T, s) ds

(
F 0

O3×1

)
,

where I3×3, O3×3 and O3×1 are the 3× 3 identity matrix and 3× 3, 3× 1 zero matrices, respectively. If

(DT ,−I3×3)Φ(T, t)

(
O3×3
I3×3

)
is invertible, which will be the case in our simulations, a direct calculation

shows that the unique solution to (5.2) is given by

Dt = −
[
(DT ,−I3×3)Φ(T, t)

(
O3×3
I3×3

)]−1
(DT ,−I3×3)Φ(T, t)

(
I3×3
O3×3

)
(5.3)

and

D0
t = −

[
(DT ,−I3×3)Φ(T, t)

(
O3×3
I3×3

)]−1
(DT ,−I3×3)

∫ T

t

Φ(T, s) ds

(
F 0

O3×1

)
. (5.4)

Having derived an explicit solution for the expected equilibrium portfolio process allows us to derive an

explicit solution for the equilibrium portfolio process itself. It is not difficult to see that
(Xt − E[Xt])

′ = − Pt − E[Pt]

2η

−(Pt − E[Pt])
′ = 2λ(Xt − E[Xt])

X0 − E[X0] = X − E[X ]

PT − E[PT ] = 2n(XT − E[XT ])

which is approximated by 
(Xt − E[Xt])

′ = − Pt − E[Pt]

2η

−(Pt − E[Pt])
′ = 2λ(Xt − E[Xt])

X0 − E[X0] = X − E[X ]

XT − E[XT ] = 0.

Making the ansatz P − E[P ] = A(X − E[X]) yields

A′ =
A2

2η
− 2λ, AT =∞,

or equivalently,

At = 2
√
ηλ coth

(√
λ

η
(T − t)

)
.

Thus, we get that

Xt − E[Xt] = (X − E[X ])e−
∫ t
0
As
2η ds = (X − E[X ])

sinh
(√

λ
η (T − t)

)
sinh

(√
λ
ηT
)
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and hence the optimal position approximately equals

Xt ≈ E[Xt] + (X − E[X ])
sinh

(√
λ
η (T − t)

)
sinh

(√
λ
ηT
) .

Figure 1: Dependence of equilibrium portfolio process on the market impact parameter α, γ = 0.1(left)

and γ = 1(right). Other parameters are chosen as η = 0.1, ρ = 0.2, λ = 0.3, β = 1.1, x = 1.5, E[X ] = 1

and T = 5.

The MFG is convex; hence no additional verification arguments are required. Figure 1 displays the

equilibrium portfolio processes in an MFG for varying degrees of child order flow and transient market

impact. We can see from both pictures that short positions do not occur in equilibrium if the impact

as measured by the quantities α and γ is small. For near critical values of α it is optimal for the

representative player to unwind his position before the terminal time, and then to take a negative

position that he closes at the end of the trading period. This effect increases significantly in the impact

parameter γ. The result is intuitive; the larger α and γ, the stronger the representative player benefits

from the inertia in market order flow when closing a short position.

5.2 Single player model

When N = 1 and all model parameters are deterministic constants, then our mean-field FBSDE reduces

to a forward-backward ODE system, and can be rewritten as

F′ = ψ00F + ψ01B + F 0,

B′ = ψ10F + ψ11B,

F0 =

x0
0

 , BT =

2n 0 0

0 0 0

0 0 0

FT ,
(5.5)

where

F = (X,Y,C) and B = (P,Q,R),

and

ψ00 =

 0 1
2η 0

−αγ −ρ− γ
2η −γ(β − α)

−α 0 −(β − α)

 , ψ01 =

−
1
2η

γ
2η 0

γ
2η −γ

2

2η 0

0 0 0

 , F 0 =

 0

γαx

αx

 ,

ψ10 =

−2λ 0 0

0 1
2η 0

0 0 0

 , ψ11 =

 0 αγ α

− 1
2η ρ+ γ

2η 0

0 γ(β − α) (β − α)

 .

29



Making again a linear ansatz B = DF + D0, yields
D ′ = −Dψ01D −Dψ00 + ψ11D + ψ10, DT =

2n 0 0

0 0 0

0 0 0

 ,

(D0)′ = (ψ11 −Dψ01)D0 −DF 0, D0
T = (0, 0, 0)>,

(5.6)

and the same argument as in the previous section shows that the unique solution to the above ODE

system is given by

Dt = −
[
(DT ,−I3×3)Ψ(T, t)

(
O3×3
I3×3

)]−1
(DT ,−I3×3)Ψ(T, t)

(
I3×3
O3×3

)
and

D0
t = −

[
(DT ,−I3×3)Ψ(T, t)

(
O3×3
I3×3

)]−1
(DT ,−I3×3)

∫ T

t

Ψ(T, s) ds

(
F 0

O3×1

)
,

where Ψ(T, t) = eG (T−t) and

G =

(
ψ00 ψ01

ψ10 ψ11

)
.

Note that
∫ T
t
ψ(T, s) ds = G−1(eG (T−t)−I6×6) as long as G is invertible. This is indeed the case because

β > α and so

det(G ) = −ρλ(β − α)2
(
γ

η2
+
ρ

η

)
6= 0.

In particular, the ODE system can be solved explicitly. The solution to the ODE system yields candidate

optimal portfolios; portfolios for various choices of model parameters are shown in Figure 2. The left

figure shows the portfolio process for various degrees of child order flow when γ = 1, β = 1.1 and λ = 0.3.

We see that the initial trading rate increases in α and that it is optimal to oversell for near-critical values

of α. The right picture shows the portfolio process for different degrees of transient market impact. For

very large values of γ cyclic fluctuations in the optimal portfolio process emerge. Oscillating strategies

arise when a trader expects his impact on future order flow to be very strong. Aggressively selling

generates additional sell flow at later points in time from which the trader may benefit when switching

from selling to buying.

Cyclic oscillations can be viewed as a form of transaction-triggered price manipulation. As already

argued by Alfonsi et al. (2012) they are economically undesirable and should, as Gatheral et al. (2012)

write (p.456), “be regarded as an additional model irregularity that should be excluded.” Our numerical

simulations suggest that cyclic oscillations occur only for unreasonably large values of γ that violate the

assumptions of our verification theorem. Although the assumptions of our verification theorem are far

from being necessary, it seems natural that some bound on the impact of traders’ on market dynamics is

necessary to exclude arbitrage and/or price manipulation. Interestingly, we found no numerical evidence

that cyclic oscillations may occur in game-theoretic settings. This suggests that within our modelling

framework strategic interactions may stabilize markets. We leave a more detailed analysis of this question

for future research.

5.3 Two player model

If N = 2 and all model parameters are deterministic constants, then our mean-field FBSDE reduces to

a forward-backward ODE system, and can be rewritten as
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Figure 2: Dependence of optimal portfolio process on the market impact parameters α and γ, γ = 1(left)

and α = 1(right). Parameters are chosen as η = 0.1, ρ = 0.2, λ = 0.3, β = 1.1, x = 1 and T = 1.



F′ = φ00F + φ01B + F 0,

B′ = φ10F + φ11B,

F0 =



x1

0

0

x2

0

0

 , BT =



2n 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 2n 0 0

0 0 0 0 0 0

0 0 0 0 0 0

FT ,
(5.7)

where

F = (X(1), Y (1), C(1), X(2), Y (2), C(2))> and B = (P (1), Q(1), R(1), P (2), Q(2), R(2))>

and

φ00 =



0 1
2η1

0 0 0 0

−γ
1α1

2 −ρ1 − γ1

4η1 −γ1(β1 − α1) −γ
1α1

2 − γ1

4η2 0

−α
1

2 0 −(β1 − α1) −α
1

2 0 0

0 0 0 0 1
2η2

0

−γ
2α2

2 − γ2

4η1 0 −γ
2α2

2 −ρ2 − γ2

4η2 −γ2(β2 − α2)

−α
2

2 0 0 −α
2

2 0 −(β2 − α2)


,

φ01 =



− 1
2η1

γ1

4η1 0 0 0 0
γ1

4η1 − (γ1)2

8η1 0 γ1

4η2 −γ
1γ2

8η2 0

0 0 0 0 0 0

0 0 0 − 1
2η2

γ2

4η2 0
γ2

4η1 −γ
1γ2

8η1 0 γ2

4η2 − (γ2)2

8η2 0

0 0 0 0 0 0


, φ10 =



−2λ1 0 0 0 0 0

0 1
2η1 0 0 0 0

0 0 0 0 0 0

0 0 0 −2λ2 0 0

0 0 0 0 1
2η2 0

0 0 0 0 0 0


,

φ11 =



0 α1γ1

2
α1

2 0 0 0

− 1
2η1 ρ1 + γ1

4η1 0 0 0 0

0 γ1(β1 − α1) (β1 − α1) 0 0 0

0 0 0 0 α2γ2

2
α2

2

0 0 0 − 1
2η2 ρ2 + γ2

4η2 0

0 0 0 0 γ2(β2 − α2) (β2 − α2)


,
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and

F 0 =

(
0,
γ1α1

2
(x1 + x2),

α1

2
(x1 + x2), 0,

γ2α2

2
(x1 + x2),

α2

2
(x1 + x2)

)>
.

Again making the ansatz B = DF +D0, where

D′ = −Dφ01D −Dφ00 + φ11D + φ10, DT =



2n 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 2n 0 0

0 0 0 0 0 0

0 0 0 0 0 0

 ,

(D0)′ = (φ11 −Dφ01)D0 −DF 0, D0
T = (0, 0, 0, 0, 0, 0)

>

(5.8)

the same arguments as in the mean-field case yield the unique solution

Dt = −
[
(DT ,−I6×6)Φ(T, t)

(
O6×6
I6×6

)]−1
(DT ,−I6×6)Φ(T, t)

(
I6×6
O6×6

)
and

D0
t = −

[
(DT ,−I6×6)Φ(T, t)

(
O6×6
I6×6

)]−1
(DT ,−I6×6)

∫ T

t

Φ(T, s) ds

(
F 0

O6×1

)
,

where Φ(T, t) = eG(T−t) and

G =

(
φ00 φ01
φ10 φ11

)
.

There is no explicit expression for the integral since det(G) ≡ 0. Figure 3 shows equilibrium positions in

a two player model with different degrees of transient market impact. In both cases, Player 2 benefits

from the presence of Player 1; there is a beneficial round-trip for this player in equilibrium. As expected

the round-trip is stronger (more convex) for larger degrees of transient impact.

As pointed out above, we did not find numerical evidence for the occurrence of cyclic oscillations in the

2-Player game. As illustrated by Figure 4 some form of oscillation may occur for large values of γ but

the oscillations are not as regular as in the single player case and are not cyclic, even if both players are

completely identical.

Figure 3: Portfolio process in the two player game under different parameters γ, γ = 1(left) and γ =

0.1(right). Other parameters are chosen as η1 = η2 = 0.1, ρ1 = ρ2 = 0.2, λ1 = λ2 = 0.3, α1 = α2 = 1,

β1 = β2 = 1.1, x1 = 1, x2 = 0, and T = 1.
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Figure 4: Portfolio process in the two player game for γ = 10 and different (left) respectively same (right)

initial portfolios.
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