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Abstract

We consider a mean-field control problem with càdlàg semimartingale strategies arising in portfolio

liquidation models with transient market impact and self-exciting order flow. We show that the value

function depends on the state process only through its law, and that it is of linear-quadratic form and

that its coefficients satisfy a coupled system of non-standard Riccati-type equations. The Riccati

equations are obtained heuristically by passing to the continuous-time limit from a sequence of

discrete-time models. A sophisticated transformation shows that the system can be brought into

standard Riccati form from which we deduce the existence of a global solution. Our analysis shows

that the optimal strategy jumps only at the beginning and the end of the trading period.
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1 Introduction

Let T ∈ (0,∞) and let W be a Brownian motion on a probability space (Ω,F ,P) and F = (Ft)t∈[0,T ] be

the augmented Brownian filtration. In this paper we consider the mean-field stochastic control problem

min
Z∈A

E

[∫ T

0

(
Ys− dZs +

γ2

2
d[Z]s + σsd[Z,W ]s

)
+

∫ T

0

λX2
s ds

]
(1.1)

subject to the state dynamics

dXs = −dZs

dYs =
(
− ρYs + γ1C

′
s

)
dt+ γ2 dZs + σs dWs

dCs = −(β − α)Csds+ α(E[x0]− E[Xs]) ds

X0− = x0; Y0− = C0− = 0; XT = 0

(1.2)

for 0 ≤ s ≤ T where the set of admissible controls is given by

A := {Z : Z is an F semimartingale with [Z]T <∞}.
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Control problems of the above form arise in models of optimal portfolio liquidation with instantaneous

and transient market impact and self-exciting order flow. In such models the process (Xt)t∈[0,T ] describes

the portfolio holdings (“inventory”) of a large investor, the terminal state constraint XT = 0 reflects the

liquidation constraint, (Zt)t∈[0,T ] is the trading strategy, and (Yt)t∈[0,T ] specifies the transient impact of

the investor’s past trading on future transaction prices. We may think of Y as an additional drift added

to an unaffected (martingale) benchmark price process or a randomly fluctuating spread that increases

linearly in order flow and recovers from past trading at a constant rate ρ.

The process (Ct)t∈[0,T ] can be viewed as describing the expected number of child orders resulting from

the large investor’s trading activity. There are many reasons why (large) selling orders may trigger child

orders. For instance, extensive selling may diminish the pool of counterparties and/or generate herding

effects where other market participants start selling in anticipation of further price decreases. Extensive

selling may also attract predatory traders that employ front-running strategies; see Brunnermeier and

Pedersen [8], Carlin et al [12] and Schied and Schöneborn [37] for an in-depth analysis of predatory

trading.

Single and multi-player liquidation models with self-exciting order flow and absolutely continuous controls

where dZt = ξtdt have recently been considered in Chen et al [15] and Fu et al [23], respectively. In

both models, the market order dynamics follows a Hawkes process with exponential kernel, and the large

investor’s trading triggers an additional flow of child orders whose rate increases linearly in the investor’s

traded volume. Assuming that the drift/spread depends on the aggregate order arrival rate (child order

rate plus the large investor’s rate) then leads to an equation of the above form for the transient impact

factor Y .

While the restriction to absolutely continuous controls is standard in much of the liquidation literature,

the assumption seems restrictive; it is often made for mathematical convenience as the resulting control

problem is much simpler to analyze. In fact, while abstract existence and characterization of solutions

results can be obtained for models allowing for more general classes of admissible strategies (see [29] and

references therein), explicit solutions in stochastic settings are rarely available. Retaining the assumption

that the large investor’s trading activity triggers an absolutely continuous flow of child orders that

increases linearly in his/her traded volume, we obtain explicit solutions for both the value function and

the optimal strategy when allowing for general càdlàg semimartingale trading strategies.

Allowing for semimartingale strategies, we explicitly allow inventory processes to be of infinite variation.1

Portfolio liquidation/choice models with inventory processes with infinite variation were considered by

several authors before, including [1, 7, 24, 28, 33]. The most important difference between previous work

and our model is that we consider a mean field control problem, while the control problems analyzed in

the existing literature are standard ones.

Closest to our work are the recent papers by Ackermann et al [1] and Horst and Kivman [28]. As in [1]

we analyze the continuous time model by passing to the limit from a sequence of discrete time model; by

contrast [28] approximates semimartingale strategies by absolutely continuous ones. At the same time,

the main difficulty in [1] arises from allowing a very general filtration while we consider a Brownian

filtration but allow for self-exciting order flow which results in the said mean-field control problem.

When working with semimartingale strategies one needs to penalize the (co)variation of the semimartinagle

strategy (with the driving Brownian motion); otherwise the optimization problem would not be well

posed. This observation goes back at least to Gârleanu and Pedersen [24]. This explains the second and

third term in our cost function. Similar cost terms have also been considered in [1, 28, 33]. The first

term in the cost function describes the trading cost while the last term captures the market risk. These

two terms are standard in the liquidation literature; see [2, 3, 14, 21, 30, 35] and references therein.

1Carmona and Webster [13] provide strong evidence that inventories of large traders often do have indeed a non-trivial

quadratic variation component.
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To the best of our knowledge, we are the first to address mean field control problems with càdlàg

semimartingale strategies, which include mean field singular control problems as special cases. Mean

field singular control problems have been considered by many authors, including [22, 25, 27, 31]. Among

them, using a relaxed approach Fu and Horst [22] established an existence of optimal control result for a

general class of mean field singular control problems. Guo et al [25] established a novel Itô’s formula for

the flow of measures on semimartingales; however, the examples provided in [25] are mean field control

problems with either regular or singular controls. Hafayed [27] established a maximum principle for

general class of mean field type singular control problems. Using a maximum principle approach, Hu et

al [31] studied mean field type singular control games arising in harvesting problems.

Our paper also contributes to the literature on the characterization of non-Markovian singular control

problems. One-dimensional models were studied in, e.g. [4, 5, 6, 33]. Multidimensional problems are

much more difficult to analyze, even in Markovian settings; see Dianetti and Ferrari [17]. For non-

Markovian ones, refer to e.g. [1, 19]. In [1], Ackermann et al solved a two-dimensional problem with

random coefficients arising in optimal liquidation problems. In [19], Elie et al studied a multidimensional

path-dependent singular control problem arising in utility maximization problems. Our control problem

is a three-dimensional non-Markovian one with the non-Markovianity arising from a possibly non-

Markovian volatility process σ and the mean field term E[X]. Moreover, our strategy is of infinite

variation.

The main challenge when analyzing control problems with semimartingale strategies (with or without

mean-field term) is that there are usually no canonical candidates for the value functions and/or the

optimal strategies. Even the linear-quadratic case is difficult to analyze; although it is intuitive that

the value function is of linear-quadratic form, the dynamics of the coefficients is a priori not clear. This

calls for case-by-case approaches when analyzing such problems. We follow the approach taken in [1, 24]

and consider a sequence of discrete time models and then pass to a heuristic continuous time limit. Our

approach suggests that the value function depends on the state process only through its distribution and

that it is of linear quadratic form driven by three deterministic processes and a BSDE.

It turns out that the driving processes follow a system of Riccati equations that does not satisfy the

assumptions that are usually required to guarantee the existence and uniqueness of a solution. Our main

mathematical contribution is to show - through a sophisticated transformation - that our system can

be rewritten in terms of a more standard system that satisfies the assumption in Kohlmann and Tang

[32] under a weak interaction condition that bounds the impact of the child order flow on the market

dynamics. Subsequently, we employ a non-standard verification argument that shows that the candidate

optimal strategy is indeed optimal. The key idea is to rewrite the cost function as a sum of complete

squares plus a correction term that turns out to be the value function.

Our analysis shows that the optimal strategy jumps only at the beginning and the end of the trading

period. This is consistent with earlier findings in [24, 28, 29, 34]; in the absence of an external “trigger”

there is no reason for the optimal strategy to jump, except at the terminal time to close the position and

at the initial time.

The remainder of this paper is structured as follows. The main results and assumptions are stated in

Section 2. The wellposedness of the system of the Riccati equations that specify the candidate value

function and strategy is established in Section 3. The verification argument is given in Section 4.

Numerical simulations illustrating the nature of the optimal solution are given in Section 5. Section 6

concludes. The heuristic derivation of the value function is postponed to an appendix.

Notation. For a deterministic function X , denote by Ẋ its derivative. For a stochastic process X

satisfying some SDE, we still use the same notation Ẋ to denote the drift of X . For a matrix (or vector)

Y , Yij (or Yi) denotes its (i, j)- (or i-) component. For a space D , we denote by L∞([0, T ]; D) the space

of all D-valued bounded functions. C([0, T ]; D) is the space of D-valued continuous functions. For an
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integer n, we denote by Sn the space of symmetric n×n matrices. For a measure µ on Rn we denote by

µ̄ the vector of expected values, and for a matrix A ∈ Rn×n we put

Var(µ)(A) :=

∫
R3

(x− µ)>A(x− µ)µ(dx) =

∫
R3

x>Axµ(dx)− µ>Aµ.

2 Main results

To solve the control problem (1.1)-(1.2) we consider the following dynamic version of (1.1)-(1.2):

min
Z∈At

J(t, Z) := min
Z∈At

E

[∫ T

t

(
Ys− dZs +

γ2

2
d[Z]s + σsd[Z,W ]s

)
+

∫ T

t

λX2
s ds

]
(2.1)

subject to the state dynamics

dXs = −dZs

dYs =
(
− ρYs + γ1C

′
s

)
dt+ γ2 dZs + σs dWs

dCs = −(β − α)Csds+ α(E[x0]− E[Xs]) ds

(Xt−, Yt−, Ct−) = X ; XT = 0,

(2.2)

where

At = {Z : Z is an F semimartingale starting at t with [Z]T <∞}. (2.3)

We denote the value function, given the random initial state X = (Xt−, Yt−, Ct−) at time t ∈ [0, T ), by

V (t,X ) = inf
Z∈At

J(t, Z). (2.4)

2.1 The value function

Let µ be the law of the initial state X , and let µ̄ be the vector of expected values. Our goal is to represent

the value function in terms of two deterministic symmetric R3×3-valued processes A,B, an R3-valued

deterministic process D and a real-valued adapted square integrable process F as2

V (t,X ) = Var(µ)(At) + µ̄>Btµ̄+D>t µ̄+ E[Ft]. (2.5)

The dynamics of the processes A,B,D, F is derived heuristically in Appendix A by first analyzing a

discrete time model and then taking the limit as the time difference between two consecutive trading

periods tends to zero. It turns out that:

• The process A is symmetric, satisfies A11 = γ2A21, A12 = γ2A22 + 1
2 , A13 = γ2A23, and the ODE

Ȧ11,t =

(
−λ+

(ρA11,t + λ)
2

γ2ρ+ λ

)

Ȧ13,t =

(
γ1(β − α)

γ2
A11,t + (β − α)A13,t −

(ρA11,t + λ) (γ1(β − α)− 2ρA13,t)

2(γ2ρ+ λ)

)
Ȧ33,t =

(
2(β − α)A33,t + 2

γ1(β − α)

γ2
A13,t +

(γ1(β − α)− 2ρA13,t)
2

4(γ2ρ+ λ)

)
A11,T =

γ2

2
, A13,T = 0, A33,T = 0.

(2.6)

The above is a standard ODE system that can be uniquely solved.

2The notation Var(µ)(At) was introduced at the end of the introduction.
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• The process B is symmetric, satisfies B11 = γ2B21, B12 = γ2B22 + 1
2 , B13 = γ2B23, and the fully

coupled system of Riccati-type equations

Ḃ11,t =

(
2
γ1α

γ2
B11,t + 2αB13,t − λ

+

(
2(γ1α− γ2ρ)B11,t + γ1γ2α+ 2αγ2B13,t − 2γ2λ

)2

4γ2
2(γ2ρ− γ1α+ λ)

)

Ḃ33,t =

(
2(β − α)B33,t + 2

γ1(β − α)

γ2
B13,t

+

(
2(γ1α− γ2ρ)B13,t + 2γ2αB33,t + γ1γ2(β − α)

)2

4γ2
2(γ2ρ− γ1α+ λ)

)

Ḃ13,t =

{
γ1(β − α)

γ2
B11,t + αB33,t + (β − α+

γ1α

γ2
)B13,t

+
(

2(γ1α− γ2ρ)B11,t + γ1γ2α+ 2αγ2B13,t − 2γ2λ
)

· (2(γ1α− γ2ρ)B13,t + 2γ2αB33,t + γ1γ2(β − α))

4γ2
2(γ2ρ− γ1α+ λ)

}
B11,T =

γ2

2
, B13,T = 0, B33,T = 0.

(2.7)

This system is complicated to analyze; its analysis is postponed to the next section.

• The vector-valued process D satisfies D2 = γ−1
2 D1, and the components D1 and D3 satisfy the

coupled linear ODE system

Ḋ1,t =

{
− 2γ1αE[x0]

γ2
B11,t − 2αE[x0]B13,t +

γ1α

γ2
D1,t + αD3,t

+
(
− 2λγ2 + 2(γ1α− γ2ρ)B11,t + γ1γ2α+ αγ2B13,t

)
·

(
− γ1γ2αE[x0] + (γ1α− γ2ρ)D1,t + αγ2D3,t

)
2γ2

2(γ2ρ− γ1α+ λ)

}

Ḋ3,t =

{
− 2αE[x0]B33,t −

2γ1αE[x0]

γ2
B13,t +

γ1(β − α)

γ2
D1,t + (β − α)D3,t

+
(

2(γ1α− γ2ρ)B13,t + 2γ2αB33,t + γ1γ2(β − α)
)

·

(
− γ1γ2αE[x0] + (γ1α− γ2ρ)D1,t + αγ2D3,t

)
2γ2

2(γ2ρ− γ1α+ λ)

}
D1,T = D3,T = 0

(2.8)

• Due to the random volatility process, the process F satisfies a BSDE, namely

−dFt =

{
σ2
t

2A11,t − γ2

2γ2
2

+ αγ1E[x0]
D1,t

γ2
+ αE[x0]D3,t

− 1

4(λ+ γ2ρ− αγ1)

(
−αγ1E[x0] + (γ1α− γ2ρ)

D1,t

γ2
+ αD3,t

)2}
dt− ZFt dWt

FT = 0.

(2.9)
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We prove in Section 3 that the system (2.7) is well posed and admits a unique global solution if the

feedback effect as measured by the constant α is weak enough. In this case, the joint dynamics of the

process (A,B,D, F ) is well-defined.

2.2 The main result

We assume throughout that the following standing assumption holds.

1. The coefficients γ1, γ2, α, β, ρ and λ are nonnegative constants.

2. The coefficients satisfy β − α > 0 and γ2ρ− γ1α+ λ > 0.

3. The initial position x0 is an integrable r.v. that is independent of the Brownian motion. The

volatility process σ is a square integrable progressively measurable process.3

It will be convenient to rewrite the state dynamics and the cost function in matrix form as

dXs =
(
HXs +HE[Xs] + G

)
ds+Ds dWs +K dZs, s ∈ [t, T ),

Xt− = X
(2.10)

where

H =

0 0 0

0 −ρ −γ1(β − α)

0 0 −(β − α)

 , H =

 0 0 0

−αγ1 0 0

−α 0 0

 ,

G =
(
0 αγ1E[x0] αE[x0]

)>
, Ds =

(
0 σs 0

)>
,

K =
(
−1 γ2 0

)>
.

(2.11)

The following is the main result of this paper. Its proof is given in Sections 3 and 4 below.

Theorem 2.1. If the standing assumption is satisfied, and if either λ = 0 or λργ2 > 0 and α is small

enough, then the following holds.

i) In terms of the processes A,B,D, F introduced in (2.6)-(2.9) the value function defined in (2.4) is

given by

V (t,X ) = V (t, µ) = Var(µ)(At) + µ̄>Btµ̄+D>t µ̄+ E[Ft]. (2.12)

ii) The optimal strategy Z̃ jumps only at the beginning and the end of the trading period where the

initial and terminal jump is given by

∆Z̃t = −I
A
t

ã
(Xt− − µ)− IBt

a
µ− IDt

a
and ∆Z̃T = XT− (2.13)

respectively. On the time interval (t, T ) the optimal strategy satisfies the dynamics

dZ̃s =

(
− İ

A
s

ã
(Xs − E[Xs])−

İBs
a
E[Xs]−

İDs
a
− IAs

ã
H(Xs − E[Xs])

− IBs
a

((H+H)E[Xs] + G)

)
ds− IAs

ã
Ds dWs, s ∈ (t, T )

(2.14)

3We emphasize that σ is allowed to be degenerate.
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where ã = γ2ρ+ λ, a = γ2ρ− γ1α+ λ, and the processes IA, IB and ID are given by

IA =

 −ρA11 − λ
−ρA11

γ2
+ ρ

γ1(β−α)
2 − ρA13


>

, IB =


αγ1−γ2ρ

γ2
B11 + αB13 − λ+ αγ1

2
αγ1−γ2ρ

γ2
2

B11 + αB13

γ2
+ ρ− αγ1

2γ2

γ1(β−α)
2 + (γ1α− γ2ρ)B13

γ2
+ αB33


>

and

ID = −αγ1

2
E[x0] + (γ1α− γ2ρ)

D1

2γ2
+
α

2
D3.

3 Wellposedness of the Riccati Equation

In this section, we prove that the system (2.7) is well posed and has a unique global solution. Specifically,

we prove the following result.

Theorem 3.1. In addition to the standing assumption, let us assume that α is small enough and

that λ, γ2, ρ > 0. Then the matrix Riccati equation (2.7) admits a unique solution

B ∈ L∞([0, T ];R3) ∩ C([0, T ];R3).

To prove Theorem 3.1, it will be convenient to introduce the matrix-valued processes

P =

(
B11 B13

B13 B33

)
, N1 =

(
γ1α
γ2

+ (γ1α−γ2ρ)(γ1α−2λ)
2γ2(γ2ρ−γ1α+λ) α+ α(γ1α−2λ)

2(γ2ρ−γ1α+λ)
γ1(β−α)

γ2
+ (γ1α−γ2ρ)γ1(β−α)

2γ2(γ2ρ−γ1α+λ) β − α+ γ1α(β−α)
2(γ2ρ−γ1α+λ)

)
, N2 =

(
γ1α− γ2ρ

γ2α

)
,

N0 =
1

γ2
2(γ2ρ− γ1α+ λ)

, M = −

(
γ2

1α
2−4λγ2ρ

4(γ2ρ−γ1α+λ)
γ1(β−α)(γ1α−2λ)

4(γ2ρ−γ1α+λ)
γ1(β−α)(γ1α−2λ)

4(γ2ρ−γ1α+λ)
γ2

1(β−α)2

4(γ2ρ−γ1α+λ) ,

)
, G =

(
γ2 0

0 0

)
,

so that the system (2.7) can be rewritten in the matrix form as:{
Ṗt =

(
PtN2N0N>2 Pt +N1Pt + PtN>1 −M

)
, t ∈ [0, T )

PT = G.
(3.1)

The matrix-valued Riccati equation (3.1) does not satisfy the requirements of [32, Proposition 2.1, 2.2]

as M is not positive semi-definite. To overcome this problem we employ a sophisticated transformation

to bring the equation into standard Riccati-form. To this end, we define

P̃ = P + Λ̃,

where the matrix Λ̃ is given by

Λ̃ =

(
λ1 λ2

λ2 λ3

)
=

(
Λα2 Λα(β − α)

Λα(β − α) Λ(β − α)2

)
for some constant Λ that will be determined in what follows. The process P̃ satisfies the dynamics

˙̃Pt = P̃tN2N0N>2 P̃t + Ñ1P̃t + P̃tÑ1

>
− M̃, t ∈ [0, T )

P̃T = G + Λ̃,
(3.2)

where the matrices Ñ1 and M̃ are given by, respectively,

Ñ1 = N1 − Λ̃N2N0N>2 and M̃ = −Λ̃N2N0N>2 Λ̃ +N1Λ̃ + Λ̃N>1 +M.

7



It is enough to prove that the above matrix-valued ODE has a unique solution for a suitable Λ ∈ R.

Proof of Theorem 3.1. We are going to show that the equation (3.2) satisfies the assumptions of

of [32, Proposition 2.1, 2.2], that is that the matrix M̃ is positive semidefinite for a suitably chosen

constant Λ. The entries of M̃ are given by, respectively,

M̃11 =−

{
λ1(γ1α− γ2ρ) + λ2γ2α

}2

γ2
2(γ2ρ− γ1α+ λ)

+ 2λ1

(
γ1α

γ2
+

(γ1α− γ2ρ)(γ1α− 2λ)

2γ2(γ2ρ− γ1α+ λ)

)
+ 2λ2

(
α+

α(γ1α− 2λ)

2(γ2ρ− γ1α+ λ)

)
− γ2

1α
2 − 4λγ2ρ

4(γ2ρ− γ1α+ λ)
,

M̃12 = M̃21

= −

{
λ1(γ1α− γ2ρ) + λ2γ2α

}{
λ2(γ1α− γ2ρ) + λ3γ2α

}
γ2

2(γ2ρ− γ1α+ λ)

+ λ2

(
γ1α

γ2
+

(γ1α− γ2ρ)(γ1α− 2λ)

2γ2(γ2ρ− γ1α+ λ)

)
+ λ3

(
α+

α(γ1α− 2λ)

2(γ2ρ− γ1α+ λ)

)
+ λ1

(
γ1(β − α)

γ2
+

(γ1α− γ2ρ)γ1(β − α)

2γ2(γ2ρ− γ1α+ λ)

)
+ λ2

(
β − α+

γ1α(β − α)

2(γ2ρ− γ1α+ λ)

)
− γ1(β − α)(γ1α− 2λ)

4(γ2ρ− γ1α+ λ)
,

M̃22 = −

{
λ2(γ1α− γ2ρ) + λ3γ2α

}2

γ2
2(γ2ρ− γ1α+ λ)

+ 2λ2

(
γ1(β − α)

γ2
+

(γ1α− γ2ρ)γ1(β − α)

2γ2(γ2ρ− γ1α+ λ)

)
+ 2λ3

(
β − α+

γ1α(β − α)

2(γ2ρ− γ1α+ λ)

)
− γ2

1(β − α)2

4(γ2ρ− γ1α+ λ)
.

In terms of the functions

f(Λ) := −
α2
(
γ1α− γ2ρ+ γ2(β − α)

)2

γ2
2(γ2ρ− γ1α+ λ)

Λ2 + 2

(
γ1α

γ2
+

γ1α(γ1α− γ2ρ)

2γ2(γ2ρ− γ1α+ λ)
+ β − α

+
γ1α(β − α)

2(γ2ρ− γ1α+ λ)

)
Λ +

γ2
1

4(γ2ρ− γ1α+ λ)
,

g(Λ) := λ

(
γ1α− γ2ρ

γ2(γ2ρ− γ1α+ λ)
+

β − α
γ2ρ− γ1α+ λ

)
Λ,

the matrix M̃ can be written as(
f(Λ)α2 − 2α2g(Λ) + λγ2ρ

γ2ρ−γ1α+λ f(Λ)α(β − α)− α(β − α)g(Λ) + λγ1(β−α)
2(γ2ρ−γ1α+λ)

f(Λ)α(β − α)− α(β − α)g(Λ) + λγ1(β−α)
2(γ2ρ−γ1α+λ) f(Λ)(β − α)2

)
.

Straightforward calculations show that

Det[M̃]

= (β − α)2

(
f(Λ)

λγ2ρ

γ2ρ− γ1α+ λ
− λ2γ2

1

4(γ2ρ− γ1α+ λ)2
− α2g2(Λ)− (f(Λ)− g(Λ))

λγ1α

γ2ρ− γ1α+ λ

)
=

λγ2ρ(β − α)2

γ2ρ− γ1α+ λ

(
f(Λ)− λγ2

1

4γ2ρ(γ2ρ− γ1α+ λ)

)
+O(α).

The proof of the positive semi-definiteness of M̃ is now split into the following two cases.

8



• Case 1. γ1α− γ2ρ+ γ2(β − α) ≤ 0. In this case,

g(Λ) ≤ 0 for all Λ ≥ 0 (3.3)

and we put

h1(Λ) := f(Λ)− λγ2
1

4γ2ρ(γ2ρ− γ1α+ λ)
.

Case 1.1. α(γ1α− γ2ρ+ γ2(β − α)) = 0. In this case either α = 0 or γ1α− γ2ρ+ γ2(β − α) = 0

and hence h1 is linear with a positive leading coefficient. Thus, choosing Λ = Λ0 > 0 large enough,

h1(Λ0) > 0 and thus f(Λ0) > 0 as well. Moreover,

M̃11 = f(Λ0)α2 − 2g(Λ0)α2 +
λγ2ρ

γ2ρ− γ1α+ λ
> 0, M̃22 = f(Λ0)(β − α)2 > 0

and

Det[M̃] =
λγ2ρ(β − α)2

γ2ρ− γ1α+ λ

(
f(Λ0)− λγ2

1

4γ2ρ(γ2ρ− γ1α+ λ)

)
+O(α) > 0

by choosing Λ0 large enough. Hence, in this case our matrix is positive semi-definite.

Case 1.2. α(γ1α− γ2ρ+ γ2(β−α)) < 0. In this case, h1 is a quadratic function with a maximum

point Λ0 > 0. If α is small enough, then the discriminant of h1 is positive since(
2(β − α) +

γ1α{γ2ρ− γ1α+ γ2(β − α) + 2λ}
γ2(γ2ρ− γ1α+ λ)

)2

− 4
α2
(
γ1α− γ2ρ+ γ2(β − α)

)2

γ2
2(γ2ρ− γ1α+ λ)

·
(

γ2
1

4(γ2ρ− γ1α+ λ)
+

λγ2
1

4γ2ρ(γ2ρ− γ1α+ λ)

)
=

(
2(β − α) +

γ1α{γ2ρ− γ1α+ γ2(β − α) + 2λ}
γ2(γ2ρ− γ1α+ λ)

)2

−
γ2

1α
2
(
γ1α− γ2ρ+ γ2(β − α)

)2

γ2
2(γ2ρ− γ1α+ λ)2

−
λγ2

1α
2
(
γ1α− γ2ρ+ γ2(β − α)

)2

ργ3
2(γ2ρ− γ1α+ λ)2

> 4(β − α)2 − o(α)

> 0.

As a result, f(Λ0)− λγ2
1

4γ2ρ(γ2ρ−γ1α+λ) > 0, which implies that f(Λ0) > 0. Thus,

M̃11 = f(Λ0)α2 − 2g(Λ0)α2 +
λγ2ρ

γ2ρ− γ1α+ λ
> 0, M̃22 = f(Λ0)(β − α)2 > 0

and

Det[M̃] =
λγ2ρ(β − α)2

γ2ρ− γ1α+ λ

(
f(Λ0)− λγ2

1

4γ2ρ(γ2ρ− γ1α+ λ)

)
+O(α) > 0

for small α. Hence, in this case, too, the matrix M̃ is positive semidefinite.

• Case 2: γ1α− γ2ρ+ γ2(β − α) > 0. In this case, we put

h2(Λ) := f(Λ)− 2g(Λ)

= −
α2
(
γ1α− γ2ρ+ γ2(β − α)

)2

γ2
2(γ2ρ− γ1α+ λ)

Λ2

+

(
2γ2(γ2ρ− γ1α)(β − α) + γ1α(γ2ρ− γ1α) + γ1γ2α(β − α) + 2γ2ρλ

γ2(γ2ρ− γ1α+ λ)

)
Λ

− γ2
1

4(γ2ρ− γ1α+ λ)
.
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The discriminant of the quadratic function h2 is positive since(
2γ2(γ2ρ− γ1α)(β − α) + γ1α(γ2ρ− γ1α) + γ1γ2α(β − α) + 2γ2ρλ

γ2(γ2ρ− γ1α+ λ)

)2

− 4
α2
(
γ1α− γ2ρ+ γ2(β − α)

)2

γ2
2(γ2ρ− γ1α+ λ)

· γ2
1

4(γ2ρ− γ1α+ λ)

=

(
2γ2(γ2ρ− γ1α)(β − α) + γ1α(γ2ρ− γ1α) + γ1γ2α(β − α) + 2γ2ρλ

γ2(γ2ρ− γ1α+ λ)

)2

−

(
γ1α(γ2ρ− γ1α) + γ1γ2α(β − α)

)2

γ2
2(γ2ρ− γ1α+ λ)2

> 0.

Let us denote the maximum point by Λ1. Then Λ1 > 0 and so h2(Λ1) > 0. To show that the

determinant of M̃ is positive we first show that

f(Λ1)− λγ2
1

4γ2ρ(γ2ρ− γ1α+ λ)
> 0

for α small enough. Indeed,

f(Λ1)− λγ2
1

4γ2ρ(γ2ρ− γ1α+ λ)

=
1

4α2
(
γ1α− γ2ρ+ γ2(β − α)

)2

(γ2ρ− γ1α+ λ)
·

({
2γ2(β − α)(γ2ρ− γ1α) + 2λ(γ1α− γ2ρ+ γ2(β − α)) + γ1α(γ2ρ− γ1α+ γ2(β − α)) + 2γ2ρλ

}2

− 4λ2(γ1α− γ2ρ+ γ2(β − α))2 − α2γ2
1

(
γ1α− γ2ρ+ γ2(β − α)

)2
(

1 +
λ

γ2ρ

))

>
1

4α2
(
γ1α− γ2ρ+ γ2(β − α)

)2

(γ2ρ− γ1α+ λ)
·
(
4γ2

2ρ
2λ2 − o(α)

)
> 0

for α small enough. In this case,

M̃11 = h2(Λ1)α2 +
λγ2ρ

γ2ρ− γ1α+ λ
> 0, M̃22 = f(Λ1)(β − α)2 > 0

and

Det[M̃] =
λγ2ρ(β − α)2

γ2ρ− γ1α+ λ

(
f(Λ1)− λγ2

1

4γ2ρ(γ2ρ− γ1α+ λ)

)
+O(α) > 0,

and so M̃ is positive semidefinite.

In conclusion, we can always find a constant Λ > 0 such that M̃ is positive semidefinite. Since the

terminal value ( γ2

2 + Λα2 Λα(β − α)

Λα(β − α) Λ(β − α)2

)
is positive definite, all the coefficients in (3.2) satisfy the requirements in [32, Proposition 2.1, 2.2]. As

a result, the system (3.2) has a unique solution in L∞([0, T ];S2) ∩ C([0, T ];S2). �

Remark 3.2. In the case of risk-neutral investors, i.e. if λ = 0, the assumption that α is small enough

can be dropped. Indeed, in the risk-neutral case, the matrix M̃ can be written as(
f(Λ)α2 f(Λ)α(β − α)

f(Λ)α(β − α) f(Λ)(β − α)2

)
,
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where

f(Λ) := −
α2
(
γ1α− γ2ρ+ γ2(β − α)

)2

2γ2
2(γ2ρ− γ1α)

Λ2 +

(
2(β − α) +

γ1α

γ2
+
γ1α(β − α)

(γ2ρ− γ1α)

)
Λ− γ2

1

2(γ2ρ− γ1α)
.

Since the determinant of M̃ is zero, it is sufficient to prove that f(Λ) > 0, for some Λ. This can be

seen as follows. If α(γ1α − γ2ρ + γ2(β − α)) = 0, then f(Λ) > 0 by choosing a Λ large enough. If

α(γ1α − γ2ρ + γ2(β − α)) 6= 0, then the maximum point of the quadratic function f is strictly positive

and the discriminant of f is positive since

(
2(β − α) +

γ1α

γ2
+
γ1α(β − α)

(γ2ρ− γ1α)

)2

− 4
α2
(
γ1α− γ2ρ+ γ2(β − α)

)2

2γ2
2(γ2ρ− γ1α)

· γ2
1

2(γ2ρ− γ1α)

=

2(β − α) +
γ1α

(
γ2ρ− γ1α+ γ2(β − α)

)
γ2(γ2ρ− γ1α)

2

−
γ2

1α
2
(
γ1α− γ2ρ+ γ2(β − α)

)2

γ2
2(γ2ρ− γ1α)2

>

2(β − α) +
γ2

1α
2
(
γ2ρ− γ1α+ γ2(β − α)

)2

γ2(γ2ρ− γ1α)

− γ2
1α

2
(
γ2ρ− γ1α+ γ2(β − α)

)2

γ2
2(γ2ρ− γ1α)2

> 0.

Hence there exists a Λ > 0 such that f(Λ) > 0.

4 The verification theorem

To verify that the strategy given by equations (2.13) and (2.14) is indeed optimal we first prove that the

cost functional can be written as a sum of two complete square terms and a correction term that we will

identify as the value function.

Proposition 4.1. Let the standing assumption hold. Then the cost functional can be rewritten as

J(t, Z) = E
[ ∫ T

t

1

ã

(
IAs (Xs − µ̄s)

)2
ds+

∫ T

t

1

a

(
IBs µ̄s + IDs

)2
ds
]

+ Var(µt−)(At) + µ̄>t−Btµ̄t− +D>t µ̄t− + E[Ft],

where µ· is the law of X·. In particular, the cost functional reaches its global minimum if∫ T

t

(
IAs (Xs − µ̄s)

)2
ds =

∫ T

t

(
IBs µ̄s + IDs

)2
ds = 0, a.s.

In this case, the value function is indeed given by (2.12).

Proof. For any strategy Z ∈ At, we first separate the cost of the jump at the terminal time from the
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cost functional. To this end, we write the cost functional as

J(t, Z) = E

[∫
[t,T )

(
Ys− dZs +

γ2

2
d[Z]s + σs d[Z,W ]s

)
+

∫ T

t

λX2
s ds

]
+ E

[
−
(
YT− −

γ2

2
∆XT

)
∆XT

]
= E

[∫
[t,T )

(
Ys− dZs +

γ2

2
d[Z]s + σs d[Z,W ]s

)
+

∫ T

t

λX2
s ds

]
+ E

[γ2

2
X2
T− +XT−YT−

]
( since XT = 0)

= E

[∫
[t,T )

(
Ys− dZs +

γ2

2
d[Z]s + σs d[Z,W ]s

)
+

∫ T

t

λX2
s ds

]
+ E

[
(XT− − µ̄T−)>AT (XT− − µ̄T−) + µ̄>T−BT µ̄T− +D>T µ̄T− + FT

]
.

(4.1)

Next, we are going to analyze the expected jump cost term-by-term. From this we will see that many

terms cancel and then arrive at the desired representation of the cost functional.

• We start with the term E [XT−ATXT−]. Using Itô’s formula in [36, Theorem 36],∫
R3

x>ATxµT−(dx) = E
[ ∫ T−

t

2(AsXs−)>dXs + Tr(Asd[X ,X ]cs)

+
∑

t≤s<T

(
X>s AsXs −X>s−AsXs− − 2(AsXs−)>∆Xs

) ]
+

∫
R3

x>Atxµt−(dx) +

∫ T

t

∫
R3

x>Ȧsxµs(dx) ds.

Note that

d[X ,X ]cs =

 d[Zc, Zc]s −σs d[Zc,W ]s + γ2d[Zc, Zc]s 0

−σsd[Zc,W ]s + γsd[Zc, Zc]s σ2
s ds+ γ2

2 d[Zc, Zc]s + 2γ2σs d[Zc,W ]s 0

0 0 0

 ,

which implies by the relationship between the entries of the matrix A (cf. the statement above

(2.6)) that∫ T−

t

Tr(As d[X c,X c]s) ds =

∫ T

t

(
−γ2

2
d[Zc, Zc]s − σs d[Zc,W ]s + σ2

sA22,s ds
)
.

Taking this back into the above equation shows that∫
R3

x>ATxµT−(dx)

= E

[∫ T

t

2(AsXs)>
(
HXs +HE[Xs] + G

)
ds+

∫ T−

t

2(AsXs−)>K dZs

]

+ E

[∫ T

t

(
−γ2

2
d[Zc, Zc]s − σs d[Zc,W ]s + σ2

sA22,s ds
)]

+ E

 ∑
t≤s<T

(
X>s AsXs −X>s−AsXs− − 2(AsXs−)>K∆Zs

)
+

∫
R3

x>Atxµt−(dx) + E

[∫ T

t

X>s ȦsXs ds

]
.

(4.2)

12



• Next, we consider the term µ̄>T−AT µ̄T−. In view of (2.10) the expected value µ follows the dynamics

dµs =
(

(H+H)µs + G
)
ds+K dE[Zs]. (4.3)

Applying the chain rule to µ>Aµ from t− to T−, it follows that

µ̄>T−AT µ̄T− =

∫ T−

t

2(Asµ̄s−)>dµs +
∑

t≤s<T

(
µ̄>s Asµ̄s − µ̄>s−Asµ̄s− − 2(Asµ̄s−)>∆µ̄s

)
+ µ̄T

t−Atµ̄t− +

∫ T

t

µ̄T
s Ȧsµ̄s ds.

Taking (4.3) into the expression of µ>T−ATµT− we arrive at

µ>T−ATµT− = µ̄>t−Atµ̄t− +

∫ T

t

2(Asµ̄s)
> (Hµs +Hµs + G

)
ds+

∫ T−

t

2(Asµ̄s−)>K dE[Zs]

+
∑

t≤s<T

(
µ̄>s Asµ̄s − µ̄>s−Asµ̄s− − 2(Asµ̄s−)>∆µs

)
+

∫ T

t

µ̄>s Ȧsµ̄s ds.

(4.4)

• Similarly to the last step it holds that

µ>T−BTµT− = µ̄>t−Btµ̄t− +

∫ T

t

2(Bsµ̄s)
> (Hµs +Hµs + G

)
ds+

∫ T−

t

2(Bsµ̄s−)>K dE[Zs]

+
∑

t≤s<T

(
µ̄>s Bsµ̄s − µ̄>s−Bsµ̄s− − 2(Bsµ̄s−)>∆µs

)
+

∫ T

t

µ̄>s Ḃsµ̄s ds.

(4.5)

• Applying the chain rule to D>µ, we see that

D>T µ̄T− = E
[ ∫ T

t

D>s
(
HXs +HE[Xs] + G

)
ds+

∫ T−

t

D>s K dZs

+
∑

t≤s<T

(
(D>s Xs −D>s Xs−)−D>s ∆Xs

) ]
+D>t µ̄t− +

∫ T

t

Ḋ>s µ̄s ds

= E

[∫ T

t

D>s
(
HXs +HE[Xs] + G

)
ds+

∫ T−

t

D>s K dZs +D>t µ̄t− +

∫ T

t

Ḋ>s µ̄s ds

]
.

(4.6)

Next, we collect all the terms in (4.2), (4.4), (4.5) and (4.6) involving jumps. Their sum equals

E
[ ∫ T−

t

2(AsXs−)>K dZs +
∑

t≤s<T

(
X>s AsXs −X>s−AsXs− − 2(AsXs−)>K∆Zs

) ]
− E

[ ∫ T−

t

2(Asµ̄s−)>K dZs +
∑

t≤s<T

(
µ̄>s Asµ̄s − µ̄>s−Asµ̄s− − 2(Asµ̄s−)>∆Xs

) ]
+ E

[ ∫ T−

t

2(Bsµ̄s−)>K dZs +
∑

t≤s<T

(
µ̄>s Bsµ̄s − µ̄>s−Bsµ̄s− − 2(Bsµ̄s−)>∆Xs

) ]

+ E

[∫ T−

t

D>s K dZs

]
.

(4.7)

Since

K>A =
(
−1 γ2 0

)
A =

(
0 − 1

2 0
)

= K>B, (4.8)
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we obtain that

−E
[ ∫ T−

t

2(Asµ̄s−)>K dZs
]

+ E
[ ∫ T−

t

2(Bsµ̄s−)>K dZs
]

= 0.

Since ∆µ̄ = E[K∆Z] we also obtain that

E
[
(µ̄>s Bsµ̄s − µ̄>s−Bsµ̄s−)− 2(Bsµ̄s−)>∆Xs

]
= ∆µ̄>s Bs∆µ̄s

= E[∆ZsK>Bs∆µ̄s]
= E[∆ZsK>As∆µ̄s]
= ∆µ̄>s As∆µ̄s

= E
[
(µ̄>s Asµ̄s − µ̄>s−Asµ̄s−)− 2(Asµ̄s−)>∆Xs

]
.

Using (4.8) again, we have that

2(AsXs−)>K dZs = 2K>AsXs− dZs
=
(
0 −1 0

)
Xs− dZs

= −Ys− dZs.

Moreover, the definition of K implies that

X>s AsXs −X>s−AsXs− − 2(AsXs−)>K∆Zs = ∆X>s As∆Xs
= ∆ZsK>As∆Xs

= −1

2
∆Zs∆Ys

= −γ2

2
(∆Zs)

2,

and that

D>K =
(
D1 D2 D3

)−1

γ2

0

 = −D1 + γ2D2 = 0.

As a result, the jump terms (4.7) together with the term E
[∫ T
t

(
−γ2

2 d[Zc, Zc]s − σs d[Zc,W ]s
)]

in (4.2)

cancel with the first three terms in (4.1). Hence, taking (4.2), (4.4), (4.5) and (4.6) into (4.1) yields that

J(t, Z)

= E

[∫ T

t

2(AsXs)>
(
HXs +HE[Xs] + G

)
ds+

∫ T

t

D>s AsDs ds+

∫ T

t

X>s ȦsXs ds+

∫ T

t

X>s QXs ds

]

− E

[∫ T

t

2(Asµ̄s)
> (HXs +HE[Xs] + G

)
ds

]
−
∫ T

t

µ̄>s Ȧsµ̄s ds

+ E

[∫ T

t

2(Bsµ̄s)
> (HXs +HE[Xs] + G

)
ds

]
+

∫ T

t

µ̄>s Ḃsµ̄s ds

+ E

[∫ T

t

D>s
(
HXs +HE[Xs] + G

)
ds

]
+

∫ T

t

Ḋ>s µ̄s ds+ E

[∫ T

t

Ḟs ds

]
+ Var(µt−)(At) + µ>t−Btµt− +D>t µt− + E[Ft],

where

Q :=

λ 0 0

0 0 0

0 0 0

 .
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Recalling that µ = E[X ] and collecting the terms X>(· · · )X , µ>(· · · )µ, (· · · )µ and other terms, we have

that

J(t, Z)

= E

[∫ T

t

X>s
(
Q+ 2H>As + Ȧs

)
Xs ds+

∫ T

t

µ̄>s

(
−Ȧs − 2H>As + Ḃs + 2H>Bs + 2H>Bs

)
µ̄s ds

+

∫ T

t

(
2G>Bs + Ḋ>s +D>s H+D>s H

)
µ̄s ds+

∫ T

t

(
D>s AsDs +D>s G + Ḟs

)
ds

]
+ Var(µt−)(At) + µ>t−Btµt− +D>t µt− + E[Ft]

= E

[∫ T

t

(Xs − µ̄s)>
(
Q+H>As +AsH+ Ȧs

)
(Xs − µ̄s) ds

+

∫ T

t

µ̄>s

(
Q+ Ḃs +H>Bs +BsH+H>Bs +BsH

)
µ̄s ds

+

∫ T

t

(
2G>Bs + Ḋ>s +D>s H+D>s H

)
µ̄s ds+

∫ T

t

(
D>s AsDs +D>s G + Ḟs

)
ds

]
+ Var(µt−)(At) + µ>t−Btµt− +D>t µt− + E[Ft].

By (A.15), (A.16), (A.17) and (A.18) in the appendix it holds that

(IA)>IA

ã
= Q+H>A+AH+ Ȧ

(IB)>IB

a
= Q+ Ḃ +H>B +BH+H>B +BH

2IDIB

a
= 2G>Bs + Ḋ>s +D>s H+D>s H

(ID)2

a
= D>AsD +D>G + Ḟ

which gives us the desired result.

Let X̃ be the state process driven by the strategy Z̃ given by (2.13) and (2.14). The next theorem shows

that X̃ satisfies the equality in Proposition 4.1 thereby concluding the verification argument.

Theorem 4.2. The state process X̃ driven by the strategy (2.13) and (2.14) satisfies

IA(X̃s − E[X̃s]) = 0, IBE[X̃s] + ID = 0, s ∈ [t, T ). (4.9)

Proof. We first prove that (4.9) holds at s = t. From the definition of ∆Z̃t in (2.13), we know that

E[∆Z̃t] = −I
B

a
E[X ]− ID

a
, ∆Z̃t = −I

A

ã
(X − E[X ]) + E[∆Z̃t],

where we recall that X := Xt−. Since IAK = ã and IBK = a, we have that

IBt E[X̃t] + IDt = IBt E[X +K∆Z̃t] + IDt = IBt E[X ] + aE[∆Z̃t] + IDt = 0

and

IAt (X̃t − E[X̃t]) = IAt (X +K∆Z̃t − E[X +K∆Z̃t]) = IAt (X − E[X ]) + ã(∆Z̃t − E[∆Z̃t]) = 0.
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Next, we prove that d
{
IAs (X̃s − E[X̃s])

}
= d

{
IBs E[X̃s] + IDs

}
= 0 for all s ∈ [t, T ) from which (4.9)

follows. In fact, the state dynamics gives us that

dE[X̃s] =

(
(H+H)E[X̃s] + G − K İ

B
s

a
E[X̃s]−K

İDs
a
−K I

B
s

a
(H+H)E[X̃s])−K

IBs
a
G

)
ds,

and

d(X̃s − E[X̃s]) =

(
H(X̃s − E[X̃s])−K

İAs
ã

(X̃s − E[X̃s])−K
IAs
ã
H(X̃s − E[X̃s])

)
ds−K I

A
s

ã
Ds dWs +Ds dWs.

Hence, the desired result follows from the following equalities:

d
{
IBs E[X̃s] + IDs

}
= İBs E[X̃s] ds+ İDs ds+ IBs dE[X̃s]

=

(
İBs + IBs

(
(H+H)−K İ

B
s

a
−K I

B
s

a
(H+H)

))
E[X̃s] ds

+ İDs ds+ IBs

(
G − K I

B
s

a
G − K İ

D
s

a

)
ds

=
(
İBs + IBs (H+H)− İBs − IBs (H+H)

)
E[X̃s] ds

+ (İDs + IBs G − IBs G − İDs ) ds

= 0,

and

d
{
IAs (X̃s − E[X̃s])

}
= dIAs (X̃s − E[X̃s]) + IAs d(X̃s − E[X̃s])

=

(
İAs + IAs

(
H−K İ

A
s

ã
−K I

A
s

ã
H

))
(X̃s − E[X̃s]) ds+ IAs

(
−K I

A
s

ã
Ds +Ds

)
dWs

=
(
İAs + IAs H− İAs − IAs H

)
(X̃s − E[X̃s]) ds+

(
−IAs Ds + IAs Ds

)
dWs

= 0.

5 Numerical simulations

This section provides numerical simulations that illustrate the dependence of the optimal inventory

process on various model parameters. In all cases x = 1, c = y = 0, σ = 0.8 and T = 1. All trajectories

were generated from the same Brownian path to guarantee that the trajectories are comparable. In

addition to our optimal solution we display the optimal solution in the Obizhaeva-Wang model [34],

which is the canonical reference point for our model. Setting α = β = σ = 0 our model reduces to the

Obizhaeva-Wang model.

Figure 1 displays the optimal position for two extreme choice of the market risk parameter. When

the investor is highly risk averse the optimal holding in our models is relatively close to the one in

the Obizhaeva-Wang model with added twist that in our model the investor may take short positions

generating additional sell child order flow and buy the stock back while benefitting from the additional

sell order flow. Overselling own positions should not be viewed as a fraudulent attempt to manipulate

prices. Instead, the large investor rationally anticipates his/her impact on future order flow when making
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Figure 1: Dependence of the optimal position on the risk parameter λ for λ = 1.5 (left) and λ = 0(right).

Other parameters are chosen as ρ = 0.7, γ1 = 0.1, γ2 = 0.5, α = 0.5, β = 1.1.

trading decisions and uses it to his/her advantage. Similar effects have previously been observed in the

literature; see [23] and references therein for a more detailed discussion of different manipulation strategies

in portfolio liquidation models.

When the investor is risk-neutral, then the variations in the optimal inventory process are much larger;

portfolio holdings range from about −0.4 to 1.2. This, too is very intuitive. Large portfolio holdings are

much “cheaper” for a risk-neutral than a risk-averse trader.

Figure 2: Dependence of the optimal position on the impact parameter α for α = 0 (left) and α = 1.8

(right). Other parameters are chosen as ρ = 0.4, λ = 0, γ1 = 0.1, γ2 = 0.5, β = 3.

Figure 2 displays the optimal position for varying degrees of child order flow. Even in the absence of

any feedback effect (α = 0) we see that it may be optimal to take short positions, that is, to drive the

benchmark price down and then to close the position submitting a large order at a favorable price at

the end of the trading period. This effect is much stronger in the presence of child order flow where the

price decrease due to own selling may be very strong and may well outweigh the cost of block trade at

the end of the trading period. Optimal positions for different transient market impact parameters are

shown in Figure 3.

6 Conclusion

We considered a novel mean-field control problem with semimartingale strategies. We obtained a

candidate value function by passing to the limit from a sequence of discrete time models. The value

function can be described in terms of the solution to a fully coupled system of Riccati equations. A

17



Figure 3: Dependence of the optimal position on the impact parameter γ2 for γ2 = 2 (left) and γ2 = 0.3

(right). Other parameters are chosen as ρ = 0.7, λ = 0, γ1 = 0.1, α = 0.5, β = 1.1.

sophisticated transformation shows that the system has a unique solution and that the candidate optimal

strategy is indeed optimal.

Several avenues are open for future research. Let us just mention two. First, except the volatility of the

spread all cost coefficients in our model are deterministic constants. Although there are many liquidation

models where similar assumptions are made, these assumptions seem restrictive from a mathematical

perspective. However, as far as we can tell there is no obvious way to extend the heuristics outlined

in the appendix to the case of random coefficients. Second, we only considered a single-player model.

While there is a substantial literature on N -player games and, more so on mean-field games (MFGs)

with singular controls (see e.g. [9, 10, 11, 18, 20, 22, 26]), MFGs with semimartingale strategies have

not yet been considered in the literature to the best of our knowledge.

A Heuristic derivation of the optimal solution

In this appendix we consider a discrete time model from which we heuristically derive the Riccati

equations in terms of which we can represent both the value function and the optimal strategy in our

continuous time model. The idea is to derive a recursive dynamics in a discrete-time setting and then to

take formal limits as the time between two consecutive trading times tends to zero.

A.1 The discrete time model

Let us assume that there are N + 1 trading times 0,∆, 2∆, · · · , N∆. Let the volume traded at time i∆

be denoted by ξi. The state immediately before this control is implemented is denoted by

Xi∆− := (Xi∆−, Yi∆−, Ci∆−).

Let (εn) be a sequence of i.i.d. N(0,∆)-distributed random variables. In terms of the quantities

L =
(
0 1 0

)>
, R =

γ2

2
, Q∆ =

∆λ 0 0

0 0 0

0 0 0


the discrete-time cost functional is given by

J(ξ) = E

[
N∑
i=0

L>Xi∆−ξi +Rξ2
i + X>i∆−Q∆Xi∆−

]
,
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and the discrete time state dynamics in matrix form reads

X(n+1)∆− = AXn∆− +AE[Xn∆−] + Bξn + BE[ξn] + C +Dεn+1, (A.1)

where

A =

1 0 0

0 1−∆ρ −∆γ1(β − α)

0 0 1− (β − α)∆

 , A =

 0 0 0

−α∆γ1 0 0

−α∆ 0 0

 ,

B =
(
−1 (1−∆ρ)γ2 0

)>
, B =

(
0 α∆γ1 α∆

)>
,

C =
(
0 α∆γ1E[x0] α∆E[x0]

)>
, D =

(
0 σ 0

)>
.

(A.2)

A.1.1 The value function

To derive a representation of the value function in discrete time we denote by µ the law of the random

variable X := Xn∆− and set

Vn(µ) := inf
(ξi)Ni=n

E

[
N∑
i=n

L>Xi∆−ξi +Rξ2
i + X>i∆−Q∆Xi∆−

]
.

By the dynamic programming principle given in [16, Corollary 4.1] we have that

Vn(µ) = inf
ξ

{
E
[
L>Xξ +Rξ2 + X>Q∆X

]
+ Vn+1

(
P ◦ X (ξ),−1

(n+1)∆−

)}
, (A.3)

where X (ξ) denotes the state corresponding to the control ξ. Let

ξ = ξ̂ + δ, X̂ = (X̂n∆−, Ŷn∆−, Ĉn∆−)> = (Xn∆− − δ, Yn∆− + γ2δ, Cn∆−)> = X + (−δ, γ2δ, 0)>.

A straightforward calculation shows that

Vn(µ) = inf
ξ̂

{
E
[
L>X̂ξ̂ +Rξ̂2 + X̂>Q∆X̂ + Vn+1(P ◦ X̂ (ξ̂),−1

(n+1)∆−)
]}

+ E
[
δYn∆− +

γ2

2
δ2 + λ∆δ2 + 2λ∆δX̂n∆−

]
= Vn(µ̂) + E

[
δYn∆− +

γ2

2
δ2 + λ∆δ2 + 2λ∆δX̂n∆−

]
= Vn(µ̂) + E [(2λ∆δ, δ, 0)X ] +

γ2

2
δ2 − λ∆δ2

= Vn(µ̂) + (2λ∆δ, δ, 0)µ+
γ2

2
δ2 − λ∆δ2,

(A.4)

where X̂ follows the distribution µ̂. Let us now make the ansatz

Vn(µ) = Var(µ)(An) + µ>Bnµ+D>n µ+ Fn, (A.5)

where for each n, An, Bn ∈ S3, Dn ∈ R3 and Fn ∈ R are to be determined. Along with equation (A.4)

the ansatz yields that

E
[
X>AnX

]
− E[X>]AnE[X ] + E[X>]BnE[X ] +D>n E[X ] + Fn

= E
[
X̂>AnX̂

]
− E[X̂>]AnE[X̂ ] + E[X̂>]BnE[X̂ ] +D>n E[X̂ ] + Fn

+ (2λ∆δ, δ, 0)µ+
γ2

2
δ2 − λ∆δ2.
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Dividing by δ on both sides and letting δ → 0, we get that

(−1, γ2, 0)Bnµ+
1

2
D>n (−1, γ2, 0)> + (λ∆,

1

2
, 0)µ = 0.

The fact that this equation needs to hold for all µ̄ suggests that the coefficients multiplying the entries

of the vector µ are all equal to zero and so are the entries of the second summand. This yields that

−Bn,11 + γ2Bn,21 + λ∆ = 0

−Bn,12 + γ2Bn,22 +
1

2
= 0

−Bn,13 + γ2Bn,23 = 0

−Dn,1 + γ2Dn,2 = 0.

(A.6)

We conjecture that the entries of the matrix An satisfy the same equations as those of Bn, i.e.
−An,11 + γ2An,21 + λ∆ = 0

−An,12 + γ2An,22 +
1

2
= 0

−An,13 + γ2An,23 = 0.

(A.7)

From the equations (A.3) and (A.5), we will derive recursive equations for the coefficients An, Bn, Dn

and Fn from which we will then derive the candidate continuous time dynamics.

A.1.2 The optimal strategy for the discrete time model

To derive the desired recursion, we first need to determine the candidate optimal strategy for the discrete

time model. To this end, we first use (A.1) and (A.2) to conclude that

X(n+1)∆− − E
[
X(n+1)∆−

]
= A (Xn∆− − E[Xn∆−]) + B (ξn − E[ξn]) +Dεn+1. (A.8)

Hence,

Var
(
P ◦ X (ξ),−1

(n+1)∆−

)
(An+1)

= E
[(
X (ξ)

(n+1)∆− − E
[
X (ξ)

(n+1)∆−

])>
An+1

(
X(n+1)∆− − E

[
X (ξ)

(n+1)∆−

])]
= E

[{
A (Xn∆− − E[Xn∆−]) + B (ξn − E[ξn]) +Dεn+1

}>
An+1

·
{
A (Xn∆− − E[Xn∆−]) + B (ξn − E[ξn]) +Dεn+1

}]
= E

[{
A (Xn∆− − E[Xn∆−]) + B (ξn − E[ξn])

}>
An+1

{
A (Xn∆− − E[Xn∆−]) + B (ξn − E[ξn])

}]
+ ∆D>An+1D.

Moreover,

P ◦ X (ξ),−1
(n+1)∆− = E

[
X (ξ)

(n+1)∆−

]
= (A +A)µ+ (B + B)E[ξ] + C.

From the ansatz (A.5) we get that

Vn+1

(
P ◦ X (ξ),−1

(n+1)∆−

)
= E

[{
A (Xn∆− − µ) + B (ξ − E[ξ])

}>
An+1

{
A (Xn∆− − µ) + B (ξ − E[ξ])

}]
+ ∆D>An+1D +

{
(A +A)µ+ (B + B)E[ξ] + C

}>
Bn+1

{
(A +A)µ+ (B + B)E[ξ] + C

}
+D>n+1

{
(A +A)µ+ (B + B)E[ξ] + C

}
+ Fn+1.
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Thus, the DPP (A.3) implies that

Vn(µ) = inf
ξ

{
E
[
L>Xn∆−ξ +Rξ2 + X>n∆−Q∆Xn∆−

]
+ E

[{
A (Xn∆− − µ) + B (ξ − E[ξ])

}>
An+1

{
A (Xn∆− − µ) + B (ξ − E[ξ])

}]
+ ∆D>An+1D

+
{

(A +A)µ+ (B + B)E[ξ] + C
}>

Bn+1

{
(A +A)µ+ (B + B)E[ξ] + C

}
+D>n+1

{
(A +A)µ+ (B + B)E[ξ] + C

}
+ Fn+1

}
:= inf

ξ
J (ξ).

Let ξ∗ be the candidate optimal strategy and let ξ̃ be an arbitrary strategy. Then

J (ξ∗ + εξ̃)− J (ξ∗) = εE
{
L>Xn∆−ξ̃ + 2Rξ∗ξ̃

+ 2
(
A(Xn∆− − µ) + B(ξ∗ − E[ξ∗])

)>
An+1B(ξ̃ − E[ξ̃])

+ 2
(

(A +A)µ+ (B + B)E[ξ∗] + C
)>
Bn+1(B + B)E[ξ̃]

+D>n+1(B + B)E[ξ̃]

}
+O(ε2)

= εE
{[
L>Xn∆− + 2Rξ∗ + 2

(
A(Xn∆− − µ) + B(ξ∗ − E[ξ∗])

)>
An+1B

+ 2
(

(A +A)µ+ (B + B)E[ξ∗] + C
)>
Bn+1(B + B) +Dn+1(B + B)

]
ξ̃

}
+O(ε2).

Since lim infε→0
J (ξ∗+εξ̃)−J (ξ∗)

ε ≥ 0 for any ξ̃, we conclude that

L>Xn∆− + 2Rξ∗ + 2
(
A(Xn∆− − µ) + B(ξ∗ − E[ξ∗])

)>
An+1B

+ 2
(

(A +A)µ+ (B + B)E[ξ∗] + C
)>
Bn+1(B + B)

+D>n+1(B + B)

= 0.

(A.9)

Taking expectations on both sides of (A.9), we get that

E[ξ∗] = −
{

2R + 2(B + B)>Bn+1(B + B)

}−1{
L> + 2(B + B)>Bn+1(A +A)

}
µ

−
{

2R + 2(B + B)>Bn+1(B + B)

}−1{
2C>Bn+1(B + B) +D>n+1(B + B)

}
.

(A.10)

Combining (A.9) and (A.10) yields that

ξ∗ − E[ξ∗] = −
{

2R + 2B>An+1B
}−1 (

L> + 2B>An+1A
)

(Xn∆− − µ), (A.11)
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and from (A.10) and (A.11) we have that

ξ∗ = −
{

2R + 2B>An+1B
}−1 (

L> + 2B>An+1A
)

(Xn∆− − µ)

−
{

2R + 2(B + B)>Bn+1(B + B)

}−1{
L> + 2(B + B)>Bn+1(A +A)

}
µ

−
{

2R + 2(B + B)>Bn+1(B + B)

}−1{
2C>Bn+1(B + B) +D>n+1(B + B)

}
.

In terms of the notation

ãn = R + B>An+1B, an = R + (B + B)>Bn+1(B + B),

IAn =
1

2
L> + B>An+1A, IBn =

1

2
L> + (B + B)>Bn+1(A +A),

IDn = C>Bn+1(B + B) +
1

2
D>n+1(B + B),

(A.12)

the optimal strategy at time n∆ as a function of the initial state Xn∆− can be written as

ξ∗n = ξ∗n(Xn∆−) = − IAn
ãn

(Xn∆− − µ)− IBn
an
µ− IDn

an
. (A.13)

A.2 Heuristic derivation of (At, Bt, Dt, Ft)

To obtain the continuous time dynamics of the coefficient processes (A,B,D, F ) we are now going to

derive a recursive dynamics for the processes An, Bn, Dn and Fn and then formal derivatives.

Taking the equation (A.13) back into the cost function J (·) we get that

J (ξ∗n) = E
{
L>(Xn∆− − µ)ξ∗n + L>µξ∗n +R(ξ∗n)2 + (Xn∆− − µ)>Q∆(Xn∆− − µ) + µ>Q∆µ

}
+ E

{
(Xn∆− − µ)>A>An+1A(Xn∆− − µ) + 2(Xn∆− − µ)>A>An+1B(ξ∗n − E[ξ∗n])

+ B>An+1B(ξ∗n − E[ξ∗n])2 + ∆D>An+1D
}

+ µ>(A +A)>Bn+1(A +A)µ+ 2µ>(A +A)>Bn+1(B + B)E[ξ∗n]

+ 2(B + B)>Bn+1CE[ξ∗n] + (B + B)>Bn+1(B + B)E[ξ∗n]2

+ 2µ>(A +A)>Bn+1C + C>Bn+1C
+D>n+1(A +A)µ+D>n+1(B + B)E[ξ∗n] +D>n+1C + Fn+1

= Var(µ)
(
Q∆ +A>An+1A− (IAn )>ã−1

n IAn

)
+ µ>

(
Q∆ + (A+A)>Bn+1(A+A)− (IBn )>a−1

n IBn

)
µ

+
(
− 2a−1

n IDn I
B
n + (2C>Bn+1 +D>n+1)(A+A)

)
µ

− (IDn )2

4an
+ ∆D>An+1D + C>Bn+1C +D>n+1C + Fn+1.

Comparing the coefficients of Var(µ)(· · · ), µ>(· · · )µ, (· · · )µ and the remaining terms respectively, we see

that An, Bn, Dn and Fn satisfy the following recursive equations:

An = Q∆ +A>An+1A − (IAn )>ã−1
n IAn ,

Bn = Q∆ + (A+A)>Bn+1(A+A)− (IBn )>a−1
n IBn ,

D>n = − 2a−1
n IDn I

B
n + (2C>Bn+1 +D>n+1)(A+A),

Fn = − (IDn )2

4an
+ ∆D>An+1D + C>Bn+1C +D>n+1C + Fn+1.

(A.14)
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Let (A,B,D, F ) be the formal limit of (An, Bn, Dn, Fn) as ∆→ 0. Using (A.6) and (A.7), the driver of

(A,B,D, F ) is formally obtained by taking the limit

lim
∆→0

Φn+1 − Φn
∆

, Φ = A,B,D, F.

In terms of the notation

JA = γ1A11 + γ2A13, J̃A = γ1A13 + γ2A33, ĴA = −ρA13 +
γ1(β − α)

2
,

JB = γ1B11 + γ2B13, J̃B = γ1B13 + γ2B33, ĴB = −ρB13 +
γ1(β − α)

2
, J̆B = −ρB11 +

αγ1

2
,

JD = γ1D1 + γ2D3, J̆D = −ρD1 − αγ1E[x0],

we obtain

• the following matrix-valued ODE for A:

−dAt
dt

=


0 −ρA11,t

γ2
−β−α

γ2
JAt

−ρA11,t

γ2
−ρ 2A11,t−γ2

γ2
2

−β−α
γ2
2
JAt +

ĴA
t
γ2

−β−α
γ2

JAt −β−α
γ2
2
JAt +

ĴA
t
γ2

− 2(β−α)
γ2

J̃At



− 1

λ+ γ2ρ

 −ρA11,t − λ

−ρA11,t

γ2
+ ρ

γ1(β−α)
2

− ρA13,t


 −ρA11,t − λ

−ρA11,t

γ2
+ ρ

γ1(β−α)
2

− ρA13,t


>

+

λ 0 0

0 0 0

0 0 0


AT =

 γ2
2

1
2

0
1
2

0 0

0 0 0

 ,

(A.15)

• the following matrix-valued Riccati equation for B:

− dBt
dt

=


− 2α
γ2
JBt − α

γ2
2
JBt + 1

γ2
J̆Bt −β−α

γ2
JBt − α

γ2
J̃Bt

− α
γ2
2
JBt + 1

γ2
J̆Bt −ρ 2B11,t−γ2

γ2
2

− (β−α)
γ2
2
JBt + 1

γ2
ĴBt

−β−α
γ2

JBt − α
γ2
J̃Bt − (β−α)

γ2
2
JBt + 1

γ2
ĴBt − 2(β−α)

γ2
J̃Bt



− 1

λ+ γ2ρ− αγ1


α
γ2
JBt − J̆Bt − λ

α
γ2
2
JBt + 1

γ2
J̆Bt + ργ2−αγ1

γ2

ĴBt + α
γ2
J̃Bt




α
γ2
JBt − J̆Bt − λ

α
γ2
2
JBt + 1

γ2
J̆Bt + ργ2−αγ1

γ2

ĴBt + α
γ2
J̃Bt


>

+

λ 0 0

0 0 0

0 0 0


BT =

 γ2
2

1
2

0
1
2

0 0

0 0 0

 ,

(A.16)
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• the following vector-valued ODE for D:

−dDt

dt
=


2αE[x0]
γ2

JBt − α
γ2
JDt

2αE[x0]
γ2

2
JBt + 1

γ2
J̆Dt

2αE[x0]
γ2

J̃Bt −
β−α
γ2

JDt



− 1

λ+ γ2ρ− αγ1

(
α

γ2
JDt + J̆Dt

)
α
γ2
JBt + J̆Bt − λ

α
γ2

2
JBt + 1

γ2
J̆Bt + ρ

α
γ2
J̃Bt + J̆Bt


DT =

0

0

0

 ,

(A.17)

• and the following BSDE for F :

−dFt =

{
σ2
t

2A11,t − γ2

2γ2
2

+ αγ1E[x0]
D1,t

γ2
+ αE[x0]D3,t

− 1

4(λ+ γ2ρ− αγ1)

(
−αγ1E[x0] + (γ1α− γ2ρ)

D1,t

γ2
+ αD3,t

)2}
dt− ZFt dWt

FT =0.

(A.18)

In view of (A.6) and (A.7) the above systems reduce to (2.6)-(2.9).

A.3 Heuristic derivation of the optimal strategy in continuous time

In this section, we construct a continuous-time candidate optimal strategy by taking limits of the discrete

time model. Intuitively, and in view of the results established in [28, 29] we expect the optimal strategy

to jump only at the initial and the terminal time, and to follow an SDE on the open interval (0, T ).

A.3.1 The jumps

The final jump size is XT− in order to close the open position at T . To determine the initial jump we

first deduce from (A.12) that

ãn = ∆(λ+ γ2ρ) +O(∆2),

an = ∆(λ+ ργ2 − αγ1) +O(∆2),

IAn = ∆

(
−(ρA11,n∆ + λ) +O(∆), (ρ− A11,n∆

γ2
) +O(∆), (

γ1(β − α)

2
− ρA13,n∆) +O(∆)

)
,

IBn = ∆

 (αγ1

γ2
− ρ)B11,n∆ + αB13,n∆ − λ+ αγ1

2 +O(∆)
αγ1−γ2ρ

γ2
2

B11,n∆ + α
B13,n∆

γ2
+ ρ− αγ1

2γ2
+O(∆)

γ1(β−α)
2 + (γ1α− γ2ρ)

B13,n∆

γ2
+ αB33,n∆ +O(∆)


>

,

IDn = −∆

(
αγ1

2
E[x0] +

(αγ1 − ργ2)

2γ2
D1,n∆ +

α∆D3,n∆

2
+O(∆)

)
.

Thus, letting n∆ = t and n→∞ in (A.13), we see that

ξ∗n = − IAn
ãn

(Xn∆− − µ)− IBn
an
µ− IDn

an

→ − IAt
ã

(Xt− − µ)− IBt
a
µ− IDt

a
:= ∆Zt,

(A.19)
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where

ã =γ2ρ+ λ, a = γ2ρ− γ1α+ λ,

IA =

 −ρA11 − λ
−ρA11

γ2
+ ρ

γ1(β−α)
2 − ρA13


>

, IB =


αγ1−γ2ρ

γ2
B11 + αB13 − λ+ αγ1

2
αγ1−γ2ρ

γ2
2

B11 + αB13

γ2
+ ρ− αγ1

2γ2

γ1(β−α)
2 + (γ1α− γ2ρ)B13

γ2
+ αB33


>

,

ID =− αγ1

2
E[x0] + (γ1α− γ2ρ)

D1

2γ2
+
α

2
D3.

(A.20)

The limit ∆Zt in (A.19) is the candidate initial jump when starting with a position Xt− at time t ∈ [0, T ).

A.3.2 The candidate strategy on (t, T ).

Next, we derive recursive dynamics for the discrete-time optimal strategy from which we deduce a

candidate optimal continuous-time strategy. The strategy at time (n+ 1)∆ satisfies

ξ∗n+1

(
X(n+1)∆−

)
= −

IAn+1

ãn+1

(
X(n+1)∆− − E[X(n+1)∆−]

)
−
IBn+1

an+1
E[X(n+1)∆−]−

IDn+1

an+1

= −
IAn+1

ãn+1

{
A (Xn∆− − E[Xn∆−]) + B (ξ∗n − E[ξ∗n]) +Dεn+1

}
−
IBn+1

an+1

{
(A +A)E[Xn∆−] + (B + B)E[ξ∗n] + C

}
−
IDn+1

an+1

= −
IAn+1

ãn+1
(Xn∆− − E[Xn∆−])−

IBn+1

an+1
E[Xn∆−]−

IDn+1

an+1

−
IAn+1

ãn+1
K (ξ∗n − E[ξ∗n])−

IBn+1

an+1
KE[ξ∗n]−

IAn+1

ãn+1
Dεn+1 −

IBn+1

an+1
C

−
IAn+1

ãn+1
(A − I3×3) (Xn∆− − E[Xn∆−])−

IBn+1

an+1
(A +A − I3×3)E[Xn∆−]

−
IAn+1

ãn+1
(B − K) (ξ∗n − E[ξ∗n])−

IBn+1

an+1
(B + B − K)E[ξ∗n],

where I3×3 is the identity matrix of order 3. In view of (A.13) the first line in the third equality equals

ξ∗n+1(Xn∆−). Thus,

ξ∗n+1(X(n+1)∆−)

= ξ∗n+1(Xn∆−)−
IAn+1

ãn+1
K (ξ∗n − E[ξ∗n])−

IBn+1

an+1
KE[ξ∗n]−

IAn+1

ãn+1
Dεn+1 −

IBn+1

an+1
C

−
IAn+1

ãn+1
(A − I3×3) (Xn∆− +Kξ∗n − E[Xn∆− +Kξ∗n])−

IBn+1

an+1
(A +A − I3×3)E[Xn∆− +Kξ∗n]

−
IAn+1

ãn+1
(B − K − (A − I3×3)K) (ξ∗n − E[ξ∗n])

−
IBn+1

an+1
(B + B − K − (A +A − I3×3)K)E[ξ∗n].

Direct computations show that
IAn+1K = ãn+1, IBn+1K = an+1,

IAn+1K = ãn+1, IBn+1K = an+1,

B − K − (A − I3×3)K = 03×1,

B + B − K − (A +A − I3×3)K = 03×1,

(A.21)
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where 03×1 is 3× 1 vector with zero entries. Hence we have that

ξ∗n+1

(
X(n+1)∆−

)
= ξ∗n+1(Xn∆+ −Kξ∗n)− ξ∗n(Xn∆+ −Kξ∗n) +O(∆2)

−
IAn+1

ãn+1
(A − I3×3) (Xn∆+ − E[Xn∆+])−

IBn+1

an+1
(A +A − I3×3)E[Xn∆+]−

IBn+1

an+1
C

−
IAn+1

ãn+1
Dεn+1

:= I + II + III,

(A.22)

where we use Xn∆+ to denote the state at n∆ after ξ∗n is implemented. Let Z̃ be the candidate optimal

strategy, and let δZ̃(n+1)∆ := ξ∗n+1(X(n+1)∆−). (A.22) can be written as

δZ̃(n+1)∆ =
( I + II

∆

)
∆−

IAn+1

ãn+1
Dεn+1.

This suggests to study the limit of I
∆ and limit of II

∆ as ∆→ 0. By (A.13), we have that

I
∆

=
ξ∗n+1(Xn∆+ −Kξ∗n)− ξ∗n(Xn∆+ −Kξ∗n)

∆
+
O(∆2)

∆

=−
IAn+1 − IAn

∆ãn+1
(Xn∆+ −Kξ∗n − E[Xn∆+ −Kξ∗n])

− IAn
∆

(
1

ãn+1
− 1

ãn

)
(Xn∆+ −Kξ∗n − E[Xn∆+ −Kξ∗n])

−
IBn+1 − IBn

∆an+1
E[Xn∆+ −Kξ∗n]− IBn

∆

(
1

an+1
− 1

an

)
E[Xn∆+ −Kξ∗n]

−
IDn+1 − IDn

∆an+1
− IDn

∆

(
1

an+1
− 1

an

)
+
O(∆2)

∆
.

(A.23)

Since ãn+1, ãn, an+1, an = O(∆), we get that

ãn+1 − ãn
∆3

= ρ2A11,n+1 −A11,n

∆
→ ρ2 Ȧ11,t

dt
an+1 − an

∆3
=

(γ1α− γ2ρ)2

γ2
2

B11,n+1 −B11,n

∆
+

2α(γ1α− γ2ρ)

γ2

B13,n+1 −B13,n

∆
+ α2B33,n+1 −B33,n

∆

→ (γ1α− γ2ρ)2

γ2
2

Ḃ11,t +
2α(γ1α− γ2ρ)

γ2
Ḃ13,t + α2Ḃ33,t,

from which we deduce that

1

ãn+1
− 1

ãn
= − ãn+1 − ãn

ãn+1ãn
= − ∆2

ãn+1ãn
· ãn+1 − ãn

∆3
∆→ 0,

1

an+1
− 1

an
= −an+1 − an

an+1an
= − ∆2

an+1an
· an+1 − an

∆3
∆→ 0.

Furthermore, we have that

(IAn+1 − IAn )K
∆3

= ρ2A11,n+1 −A11,n

∆
→ ρ2Ȧ11,t

(IBn+1 − IBn )K
∆3

=
(γ1α− γ2ρ)2

γ2
2

B11,n+1 −B11,n

∆
+

2α(γ1α− γ2ρ)

γ2

B13,n+1 −B13,n

∆
+ α2B33,n+1 −B33,n

∆

→ (γ1α− γ2ρ)2

γ2
2

Ḃ11,t +
2α(γ1α− γ2ρ)

γ2
Ḃ13,t + α2Ḃ33,t.
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Altogether, we conclude that

I
∆
→ − İAt

ã
(Xt − E[Xt])−

İBt
a
E[Xt]−

İDt
a
.

The limit of II
∆ as ∆→ 0 reads

II
∆

=
1

∆

(
−
IAn+1

ãn+1
(A − I3×3) (Xn∆+ − E[Xn∆+])

−
IBn+1

an+1
(A +A − I3×3)E[Xn∆+]−

IBn+1

an+1
C
)

→− IAt
ã
H(Xt − E[Xt])−

IBt
a

(
(H+H)E[Xt] + G

)
.

Moreover, heuristically,

III =−
IAn+1

ãn+1
Dεn+1 → −

IAt
ã
Dt dWt.

Combining the above limits we obtain the candidate trading strategy on (t, T ):

−dXs = dZ̃s =

(
− İ

A
s

ã
(Xs − E[Xs])−

İBs
a
E[Xs]−

İDs
a
− IAs

ã
H(Xs − E[Xs])

−I
B
s

a
((H+H)E[Xs] + G)

)
ds− IAs

ã
Ds dWs.
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[24] N. Gârleanu and L.H. Pedersen. Dynamic portfolio choice with frictions. Journal of Economic

Theory, 165:487–516, 2016.
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