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On derivatives with illiquid underlying and market
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In illiquid markets, option traders may have an incentive to increase their portfolio value by
using their impact on the dynamics of the underlying. We provide a mathematical framework
to construct optimal trading strategies under market impact in a multi-player framework by
introducing strategic interactions into the model of Almgren [Appl. Math. Finance, 2003,
10(1), 1–18]. Specifically, we consider a financial market model with several strategically
interacting players who hold European contingent claims and whose trading decisions have an
impact on the price evolution of the underlying. We establish the existence and uniqueness of
equilibrium results for risk-neutral and CARA investors and show that the equilibrium
dynamics can be characterized in terms of a coupled system of possibly nonlinear PDEs. For
the linear cost function used by Almgren, we obtain a (semi) closed-form solution. Analysing
this solution, we show how market manipulation can be reduced.

Keywords: Liquidity modelling; Derivatives pricing; Stochastic models; Game theory; Market
manipulation

1. Introduction

Standard financial market models assume that asset

prices follow an exogenous stochastic process and that

all transactions can be settled at the prevailing price

without any impact on market dynamics. The assumption

that all trades can be carried out at exogenously given

prices is appropriate for small investors who trade only a

negligible proportion of the overall daily trading volume;

it is not appropriate for institutional investors trading

large blocks of shares over a short time span. Trading

large amounts of shares is likely to move stock prices in

an unfavorable direction. This is a clear disadvantage for

traders who need to liquidate or acquire large portfolios.

In derivative markets the situation is more ambiguous.

A trader who holds a large number of options may have

an incentive to utilize his impact on the dynamics of the

underlying and to move the option value in a favorable

direction if the increase in the option value outweighs the

trading costs in the underlying.y Kumar and Seppi (1992)

call such trading behavior ‘punching the close’. The

present paper provides a continuous-time framework to

model the interaction between several investors who have

an incentive to punch the close. We set this up as a

stochastic differential game and establish the existence

and uniqueness of Markov equilibria for risk-neutral and

CARA investors. For certain cases we have explicit

solutions that allow us to discuss some ideas concerning

how manipulation in the sense of ‘punching the close’

could potentially be reduced.
Our work builds on previous research in at least three

different fields. The first is the mathematical modeling of

illiquid financial markets. The role of liquidity as a source

of financial risk has been extensively investigated in both

the mathematical finance and financial economics litera-

ture over the last couple of years. Much of the literature

focusses on either optimal hedging and portfolio liquida-

tion strategies for a single large investor under market

impact (Çetin et al. 2004, Alfonsi et al. 2010, Rogers and

Singh 2010), predatory trading (Brunnermeier and

Pedersen 2005, Carlin et al. 2007, Schied and

Schöneborn 2007) or the role of derivative securities,

including the problem of market manipulation using

options (Kumar and Seppi 1992, Jarrow 1994). It has

been shown by Jarrow (1994), for instance, that by

introducing derivatives into an otherwise complete and

*Corresponding author. Email: naujokat@mathematik.
hu-berlin.de
yGallmeyer and Seppi (2000) provide some evidence that, in
illiquid markets, option traders are in fact able to increase a
derivative’s value by moving the price of the underlying.
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arbitrage-free market, certain manipulation strategies for
a large trader may appear, such as market corners and
front runs. Schönbucher and Wilmott (2000) discuss an
illiquid market model where a large trader can influence
the stock price with vanishing costs and risk. They argue
that the risk of manipulation on the part of the large
trader makes the small traders unwilling to trade deriv-
atives any longer. In particular, they predict that the
option market breaks down. Our analysis indicates that
markets do not necessarily break down when stock price
manipulation is costly as it is in our model. Kraft and
Kühn (2009) analyse the behavior of an investor in a
Black–Scholes-type market, where trading has a linear
permanent impact on the stock’s drift. They construct the
hedging strategy and the indifference price of a European
payoff for a CARA investor, and show that the optimal
strategy is a combination of hedging and manipulation.
In order to exploit her market impact, the investor over-
or under-hedges the option, depending on his endowment
and the sign of the impact term.

The second line of research our paper is connected to is
stochastic differential games (see, e.g., Fleming and Soner
(1993, chapter XI) and Hamadène and Lepeltier (1995)
for zero sum games, Friedman (1972) and Buckdahn et al.
(2004) for non-zero sum games or Nisio (1988) and
Buckdahn and Li (2008) for viscosity solutions of
Hamilton–Jacobi–Bellman (henceforth HJB) equations).
The strategic interaction between large investors and its
implications for market microstructure are discussed by
Kyle (1985), Foster and Viswanathan (1996), Back et al.
(2000), and Chau and Vayanos (2008), for instance.
Brunnermeier and Pedersen (2005), Carlin et al. (2007)
and Schied and Schöneborn (2007) consider predatory
trading, where liquidity providers try to benefit from the
liquidity demand that comes from some ‘large’ investor.
Vanden (2005) considers a pricing game in continuous
time where the option issuer controls the volatility of the
underlying but does not incur liquidity costs. He derives a
Nash equilibrium in the two-player, risk-neutral case and
shows that ‘‘seemingly harmless derivatives, such as
ordinary bull spreads, offer incentives for manipulation
that are identical to those offered by digital options’’
(p. 1892). Closest to our setup is the paper of
Gallmeyer and Seppi (2000). They consider a binomial
model with three periods and finitely many risk-neutral
agents holding Call options on an illiquid underlying.
Assuming a linear permanent price impact and
linear transaction costs, and assuming that all agents
are initially endowed with the same derivative, they
prove the existence of a Nash equilibrium trading
strategy and indicate how market manipulation can be
reduced.

A third line of research we build on is market
manipulation. Different notions of market manipulations
have been discussed in the literature, including short
squeezes, the use of private information or false rumors
(Kyle 1985, Allen and Gale 1992, Back 1992, Jarrow
1994, Pirrong 2001, Dutt and Harris 2005, Kyle and
Viswanathan 2008). Most of these articles are set up in
discrete time. We suggest a general mathematical

framework in continuous time within which to value
derivative securities in illiquid markets under strategic
interactions. Specifically, we consider a stochastic differ-
ential game between a finite number of large investors
(‘players’) holding European claims written on an illiquid
stock. Their goal is to maximize the expected portfolio
value at maturity, composed of trading costs and the
option payoff, which depends on the trading strategies of
all the other players through their impact on the dynamics
of the underlying. Following Almgren and Chriss (2001)
we assume that the players have a permanent impact on
stock prices and that all trades are settled at the prevailing
market price plus a liquidity premium. The liquidity
premium can be viewed as an instantaneous price impact
that affects transaction prices but not the value of the
players’ inventory. This form of market impact modeling
is analytically more tractable than that of Obizhaeva and
Wang (2005), which also allows for temporary price
impacts and resilience effects. It has also been adopted by,
for example, Carlin et al. (2007) and Schied and
Schöneborn (2007) and some practitioners from the
financial industry, as pointed out by Schied and
Schöneborn (2008).

Our framework is flexible enough to allow for rather
general liquidity costs, including the linear cost function
of Almgren and Chriss (2001) and some form of bid–ask
spread (see example 2.2). We show that when the market
participants are risk neutral or have CARA utility
functions, the pricing game has a unique Nash equilib-
rium. We solve the problem of equilibrium pricing using
techniques from the theory of stochastic optimal control
and stochastic differential games. We show that the
family of the players’ value functions can be characterized
as the solution to a coupled system of nonlinear PDEs.
Coupled systems of nonlinear PDEs arise naturally in
differential stochastic games. Since general existence and
uniqueness of solution results for systems of nonlinear
PDEs on unbounded state spaces are hard to prove, much
of the literature on stochastic differential games is
confined to bounded state spaces (see, e.g., the seminal
paper of Friedman (1972)). We prove an a priori estimate
for Nash equilibria. More precisely, we prove that, under
rather mild conditions, any equilibrium trading strategy is
uniformly bounded. This allows us to prove that the PDE
system that describes the equilibrium dynamics has a
unique classical solution. The equilibrium problem can be
solved in closed form for a specific market environment,
namely the linear cost structure and risk-neutral agents.

It is important to know which measures may reduce
market manipulation. For instance, Dutt and Harris
(2005) propose position limits and Pirrong (2001) suggests
efficient contract designs. We use the explicit solution for
risk-neutral investors to show when ‘punching the close’ is
not beneficial. For instance, no manipulation occurs in
zero-sum games, i.e. in a game between an option writer
and an option issuer. In our model, manipulation
decreases with the number of informed liquidity providers
and with the number of competitors, if the product is split
between them. Furthermore, we find that the bid–ask
spread is an important determinant of market
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manipulation. It turns out that the higher the spread, the
less beneficial is market manipulation: high spread
crossing costs make trading more costly and hence
discourage frequent re-balancing of portfolio positions.

The paper is organized as follows. We present the
market model as well as the optimization problem and
some a priori estimates in section 2. The solutions for risk-
neutral and CARA investors are given in sections 3 and 4,
respectively. We use the explicit solution for the risk-
neutral case in section 5 to show how market manipula-
tion can be reduced.

2. The model

We adopt the market impact model of Schied and
Schöneborn (2007) with a finite set of agents or players
trading a single stock whose price process depends on the
agents’ trading strategies. Following Almgren and Chriss
(2001) we shall assume that the players have a permanent
impact on asset prices. All trades are settled at prevailing
market prices plus a liquidity premium which depends on
the change in the players’ portfolios. In order to be able to
capture changes in portfolio positions in an analytically
tractable way, we assume that the stock holdings of player
j2 {1, . . . ,N} are governed by the SDE

dXj ðsÞ ¼ u j ðsÞ ds, Xj ð0Þ ¼ 0,

where the trading speed u j ¼ _Xj is chosen from the
following set of admissible controls, for t2 [0,T ]:

U t¼
4
fu : ½t,T � ��! R progressively measurableg:

There is an array of large investor models that assume
that stock holdings are absolutely continuous and that the
price dynamics depend on the change of the investors’
positions (e.g., Almgren et al. (2005), Almgren and
Lorenz (2007), Carlin et al. (2007), Schied and
Schöneborn (2007, 2008) and Rogers and Singh (2010)).
In all the latter papers the assumption of absolute
continuity is made merely for analytical convenience.

2.1. Price dynamics and the liquidity premium

Our focus is on optimal manipulation strategies (in the
sense of ‘punching the close’) for derivatives with short
maturities under strategic market interactions. For short
trading periods we deem it appropriate to model the
fundamental stock price, i.e. the value of the stock in the
absence of any market impact, as a Brownian Motion
with volatility �40. Market impact is accounted for by
assuming that the investors’ accumulated stock holdingsPN

i¼1 X
i have a linear permanent impact on the stock

process P so that, for s2 [0,T ],

PðsÞ ¼ Pð0Þ þ �BðsÞ þ �
XN
i¼1

XiðsÞ, ð2:1Þ

with an impact parameter �40. The linear permanent
impact is consistent with the work of Huberman and

Stanzl (2004), who argue that linearity of the permanent
price impact is important to exclude quasi-arbitrage.

A trade at time s2 [0,T ] is settled at a transaction price
~PðsÞ that includes an additional instantaneous price
impact, or liquidity premium. Specifically,

~PðsÞ ¼ PðsÞ þ g
XN
i¼1

uiðsÞ

 !
, ð2:2Þ

with a cost function g that depends on the instantaneous
change

PN
i¼1 u

i in the agents’ position in a possibly
nonlinear manner. The liquidity premium accounts for
limited available liquidity, transaction costs, fees or
spread crossing costs (see example 2.2).

Remark 1 : In our model the liquidity costs are the same
for all traders and depend only on the aggregate demand
throughout the entire set of agents. This captures situa-
tions where the agents trade through a market maker or
clearing house that reduces the trading costs by collecting
all orders and matching incoming demand and supply
prior to settling the outstanding balance

PN
i¼1 u

iðsÞ at
market prices.

We assume that g is normalized, g(0)¼ 0 and smooth.
The following additional mild assumptions on g will
guarantee that the equilibrium pricing problem has a
solution for risk-neutral and CARA investors.

Assumption 2.1 :

. The derivative g0 is bounded away from zero, that
is g04"40.

. The mapping z} g(z)þ zg0(z) is strictly
increasing.

The first assumption is a technical condition needed in
the proof of proposition 2.5. It appears to be not too
restrictive for a cost function. Since the liquidity costs
associated with a net change in the overall position z is
given by zg(z), the second assumption states that the
agents face increasing marginal costs of trading.

Example 2.2: Among the cost functions that satisfy
assumption 2.1 are the linear cost function g(z)¼ �z with
�40 and cost functions of the form

gðzÞ ¼ �zþ c
2

p
arctanðCzÞ, with c,C4 0:

The former is the cost function associated with a block-
shaped limit order book. The latter can be viewed as a
smooth approximation of the map z} �zþ c � sign(z),
which is the cost function associated with a block-shaped
limit order book and bid–ask spread c40.

2.2. The optimization problem

Each agent is initially endowed with a contingent claim
H j
¼H j(P(T )), whose payoff depends on the stock price

at maturity. Our focus is on optimal trading strategies in
the stock, given an initial endowment. As in Gallmeyer
and Seppi (2000) and Kraft and Kühn (2009), we assume
that the agents do not trade the option in [0,T ].
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To the best of our knowledge, a consistent model for

trading an illiquid option with an illiquid underlying in a

multi-player framework in continuous time is not avail-

able. Our work might be considered a step in this

direction. We assume that the functions H j are smooth

and bounded with bounded derivatives Hj
p. This is needed

in the a priori estimates as well as in the proof of existence

of a smooth solution to the HJB equation.

Remark 2: We only consider options with cash settle-

ment. This assumption is key. While cash settlement is

susceptible to market manipulation, we show in propo-

sition 5.5 below that when deals are settled physically, i.e.

when the option issuer delivers the underlying, market

manipulation is not beneficial: Any price increase is

outweighed by the liquidity costs of subsequent liquida-

tion. We note that this only applies to ‘punching the

close’. There are other types of market manipulation, such

as corners and short squeezes, which might be beneficial

when deals are settled physically, but which are not

captured by our model (see Jarrow (1994) or Kyle and

Viswanathan (2008)).

We shall now give a heuristic derivation of the

optimization problem. Consider a single risk-neutral

investor who builds up a position in stock holdings

X(T ) using the trading strategy u in [0,T ] and afterwards

liquidates his stock holdings using a constant rate of

liquidation �, so that, at time T 0XTþ jX(T )/�j, the

portfolio is liquidated. In view of (2.2), the proceeds from

such a round trip strategy are

Z T

0

�uðsÞ ~PðsÞ dsþ

Z T 0

T

� ~PðsÞds

¼

Z T 0

0

�BðsÞdXðsÞ � �

Z T 0

0

XðsÞ dXðsÞ

�

Z T

0

uðsÞ gðuðsÞÞds� XðT Þ gð�Þ:

Using integration by parts and X(0)¼X(T 0)¼ 0 we see

that the first term on the second line has zero expectationy

and the second term also vanishes. The last term describes

the liquidity costs of the constant liquidation rate � and

goes to zero if � goes to zero since g(0)¼ 0. In this sense,

infinitely slow liquidation incurs no costs. It follows that

the round trip strategy described above incurs expected

liquidity costs of �
R T
0 uðsÞ gðuðsÞÞds. Taking into account

the option payoff, the optimization problem for a single

risk-neutral investor becomes

sup
u2U0

E �

Z T

0

uðsÞ gðuðsÞÞdsþHðPðT ÞÞ

� �
: ð2:3Þ

This reflects the trade-off between liquidity costs (the
costs of ‘punching the close’) and an increasedz option
payoff. Unfortunately, this heuristic derivation has no
direct counterpart in the multi-player case. As one
prerequisite, one would need the optimal liquidation
strategies (and corresponding liquidation value) of several
agents in a market with general liquidity structure.
Defining a notion of liquidation value under strategic
interaction is still an open question (Carlin et al. (2007)
and Schied and Schöneborn (2007) derived solutions in
special cases) and it is not the focus of this paper. Our
focus is on the trade-off between increased option payoff
and liquidity costs in a multi-player framework.
Specifically, we assume that the preferences of player j
at time t2 [0,T ] are described by a preference functional
� j

t (conditional expected value or conditional entropic
risk measure) and that his goal at time t¼ 0 is to maximize
the utility from the option payoff minus the cost of
trading (given the other players’ strategies). We hence
consider the following optimization problem.

Problem 2.3: Given the strategies ui2U0 for all the
players i 6¼ j, the optimization problem of player j�N is

sup
u j2U0

� j
0 �

Z T

0

u j ðsÞ g
XN
i¼1

uiðsÞ

 !
dsþHj ðPðT ÞÞ

 !
:

The case where all investors are risk neutral,
� j

t ðZÞ ¼ E½Z j FT�, is studied in section 3. The case of
conditional expected exponential utility maximizing
investors is studied in section 4. In that case we may
choose � j

t ðZÞ ¼ �ð1=�
j Þ logE½expð�� jZÞ j FT�, where

�j40 denotes the risk aversion of player j. Both prefer-
ence functionals are translation invariant.x This means
that � j

t ðZþ Y Þ ¼ � j
t ðZÞ þ Y for any random variable Y

that is measurable with respect to the information
available at time t2 [0,T ]. As a result, the trading costs
incurred up to time t do not affect the optimal trading
strategy at later times. This property is key and will allow
us to establish the existence of Nash equilibria in our
financial market model.

Definition 2.4: We say that a vector of strategies
(u1, . . . , uN) is a Nash equilibrium if, for each agent j�N,
his trading strategy uj is a best response against the behav-
ior of all the other players, i.e. if uj solves problem 2.3,
given the other players’ aggregate trading u�jX

P
i 6¼j u

i.

Remark 3: Our results hinge on two key assumptions:
the restriction to absolutely continuous trading strategies
and the focus on the trade-off between trading costs and
market manipulation. Both restrictions may be consid-
ered undesirable. On the other hand, strategies with
absolutely continuous and jump parts in continuous time

yWe will prove an a priori estimate in proposition 2.5 and then only consider bounded strategies, so that the stochastic integralR T
0 XðtÞ dBðtÞ is indeed a martingale.
zThe only purpose of trading is an increased option payoff and not, for instance, hedging. For a study of the interplay of hedging
and manipulation we refer the reader to Kraft and Kühn (2009).
xTranslation invariant preferences have recently attracted much attention in the mathematical finance literature in the context of
optimal risk sharing and equilibrium pricing in dynamically incomplete markets. We refer to Cheridito et al. (2009) for further
details.
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would call for methods of singular or impulse control,
viscosity solutions, and (systems of) quasi-variational
inequalities. This, as well as introducing a notion of a
liquidation value under strategic interaction, is well
beyond the scope of this article. Our model should
instead be viewed as a first benchmark to more sophis-
ticated models. Despite its many simplifications it yields
some insight into the qualitative behavior of optimal
manipulation strategies as well as ‘rules of thumb’ for
traders or regulators. Moreover, our approach allows for
explicit solutions, which will be used in section 5 to
indicate how manipulation can be reduced.

2.3. A priori estimate

In the sequel we show that problem 2.3 admits a unique
solution for risk-neutral and CARA investors. The proof
uses the following a priori estimates for the optimal
trading strategies. It states that, if an equilibrium exists,
then each player’s trading speed is bounded. The reason is
that the derivatives Hj

p of the payoff functions H j are
assumed to be bounded, so each investor benefits at most
linearly from fast trading. However, trading costs grow
more than linearly, and thus very fast trading is not
beneficial. Note that this result does not depend on the
preference functional.

Proposition 2.5: Let (u1, . . . , uN) be a Nash equilibrium
for problem 2.3. Then each strategy uj satisfies dt� dP a.e.

ju j ðsÞj � N
�

"
max
i�N
kHi

pk1 þ 1

� �
,

where " is taken from assumption 2.1.

Proof: Let j�N, h¼
4
maxi kH

i
pk1 and

A¼
4
ðs,!Þ 2 ½0,T � �� :

XN
i¼1

uiðs,!Þ � 0

( )

be the set where the aggregate trading speed is non-
negative. Let us fix the sum of the competitors’ strategies
u�j. On the set A the best response uj(s) is bounded from
above by KX (�/")(hþ 1). Otherwise, the truncated
strategy �u j ðsÞ ¼

4
u j ðsÞ ^ K1A þ u j ðsÞ1Ac would outperform

uj(s). To see this, let us compare the payoffs associated
with uj and �u j. We denote by P �u j

ðT Þ and Puj

ðT Þ the stock
price under the strategies �u j and uj, respectively. The
payoff associated with �u j minus the payoff associated
with uj can be estimated from below as

�

Z T

0

�u j ðsÞ gð �u j ðsÞ þ u�jðsÞÞdsþHj ðP �u j

ðT ÞÞ

þ

Z T

0

u j ðsÞ gðu j ðsÞ þ u�jðsÞÞds�Hj ðPuj

ðT ÞÞ

�

Z T

0

�u j ðsÞð gðu j ðsÞ þ u�jðsÞÞ � gð �u j ðsÞ þ u�jðsÞÞÞ ds

þ

Z T

0

ðu j ðsÞ � �u j ðsÞÞ gðu j ðsÞ þ u�jðsÞÞds� �ðXj ðT Þ

� Yj ðT ÞÞkHpk1:

Note that uj(s)þ u�j(s)� 0 on A and thus

g(uj(s)þ u�j(s))� 0 due to assumption 2.1. Furthermore,

g(uj(s)þ u�j(s))� g( �u j(s)þ u�j(s))� "(uj(s)� �u j(s)), again

by assumption 2.1. The difference in the payoffs is

therefore larger thanZ T

0

�u j ðsÞ"ðu j ðsÞ � �u j ðsÞÞ ds� �h

Z T

0

ðu j ðsÞ � �u j ðsÞÞds

¼

Z
u j ðsÞ4 �u j ðsÞ

ð" �u j ðsÞ � �hÞðu j ðsÞ � �u j ðsÞÞds:

On the set {uj(s)4 �u j(s)} we have �u j(s)¼K¼ (�/")(hþ 1)

and the above expression is strictly positive, a contradic-

tion. This shows that uj(s) is bounded above by K on the

set A for each j�N. Still on the set A, we obtain the

following lower bound:

u j ðsÞ ¼
XN
i¼1

uiðsÞ þ
X
i6¼j

�uiðsÞ � 0� ðN� 1ÞK: ð2:4Þ

A symmetric argument on the set B¼
4
fðs,!Þ 2

½0,T� �� :
PN

i¼1 u
iðs,!Þ � 0g completes the proof. œ

3. Solution for risk-neutral investors

In this section we use dynamic programming to show that

problem 2.3 admits a unique solution (in a certain class)

for risk-neutral agents. Here the preference functional is

� j
t ðZÞ ¼ E½Z j FT� for each j�N. We also show that the

solution can be given in closed form for the special case of

a linear cost function.
The idea is to consider the value function associated

with problem 2.3 for player j, where his competitors’

strategies are fixed, and to characterize it as the solution

of the HJB PDE. Solving the resulting coupled system of

PDEs for all players simultaneously then provides an

equilibrium point of the stochastic differential game

(Friedman 1972). To begin with, we fix the strategies

(ui)i6¼j and define the value function for player j�N as

Vj ðt,pÞ ¼ sup
uj2U t

Et,p �

Z T

t

uj ðsÞg
XN
i¼1

uiðsÞ

 !
dsþHj ðPðTÞÞ

" #
,

subject to the state dynamics

dPðsÞ ¼ � dBðsÞ þ �
XN
i¼1

uiðsÞ ds, PðtÞ ¼ p:

Here we use the notation Et,p[�]XE[� | Pt¼ p]. Given time

t2 [0,T ] and stock price p2R the value function repre-

sents the conditional expected portfolio value at maturity

that player j can achieve by trading optimally, given the

other players’ strategies. The associated HJB equation is

(Fleming and Soner 1993, theorem IV.3.1)

0 ¼ v jt þ
1

2
�2v jpp þ sup

c j2R

½�ðc j þ u�jÞv jp � c jgðc j þ u�jÞ�,

ð3:1Þ
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with terminal condition v j(T, p)¼H j(p), where vt and vp
denote time and spatial derivatives, respectively. The HJB

equation is formulated in terms of the candidate value

functions v1, . . . , vN instead of the actual value functions

V1, . . . ,VN. We first need to show existence and unique-

ness of a smooth solution to (3.1) before we can identify vi

with Vi. Given the aggregate trading strategy u�j of all the

other agents, a candidate for the maximizer cj¼ uj in (3.1)

should satisfy

0 ¼ �v jp � gðc j þ u�jÞ � c jg 0ðc j þ u�jÞ: ð3:2Þ

We have one equation of this type for each player j�N.

Summing them up and defining the aggregate trading

speed as

u� ¼
4
XN
i¼1

ui

yields the following condition:

0 ¼ �
XN
i¼1

vip �Ng
XN
i¼1

uiðsÞ

 !
�

XN
i¼1

uiðsÞ

 !
g 0

XN
i¼1

uiðsÞ

 !

¼ �
XN
i¼1

vip �Ngðu�ðsÞÞ � u�ðsÞ g 0ðu�ðsÞÞ: ð3:3Þ

In view of assumption 2.1 the map z}N g(z)þ zg0(z) is

strictly increasing. Hence condition (3.3) admits a unique

solution u� that depends on
PN

i¼1 v
i
p. Plugging u

� back into

(3.2) allows us to compute the candidate optimal control

for player j�N as

c j ¼ u j ¼
�v jp � gðu�Þ

g 0ðu�Þ
: ð3:4Þ

This expression is well defined since g040, again by

assumption 2.1. Plugging this candidate optimal control

into the HJB equation, we see that the system of HJB

PDEs now takes the form

0 ¼ v jt þ
1

2
�2v jpp þ � u� �

gðu�Þ

g 0ðu�Þ

� �
v jp þ

gðu�Þ2

g 0ðu�Þ
, ð3:5Þ

with terminal condition v j(T, p)¼H j(p) for j�N. Note

that the coupling stems from the aggregate trading speed

u� via condition (3.3).

Remark 4: Looking back, we have turned the individual

HJB equations (3.1) into the system of coupled PDEs

(3.5). Systems of this form appear naturally in the theory

of differential games, but we did not find a reference that

covers this particular case. Theorem 1 of Friedman

(1972), for instance, is valid only on a bounded state

space. We shall use our a priori estimate of proposition

2.5 in order to prove the existence of a unique solution

to (3.5).

The following theorem, the proof of which is given in

appendix A, shows that the system of PDEs (3.5) has a

unique classical solution if Hj2 C
2
b, i.e. H j is twice

continuously differentiable and its derivatives up to

order 2 are bounded, for each j. Similarly, C1,2 is the

space of functions that are continuously differentiable in

time and twice continuously differentiable in space.

Theorem 3.1: Let H2 C2b. Then the Cauchy problem (3.5)

admits a unique classical solution in C1,2, which is the vector

of value functions.

Remark 5 : An alternative way of solving the system

(3.5) is the following: If we sum up the N equations, we

obtain a Cauchy problem for the aggregate value function

v¼
4 PN

i¼1 v
i, namely

0 ¼ vt þ
1

2
�2vpp þ u�½�vp � gðu�Þ�, ð3:6Þ

with terminal condition vðT, pÞ ¼
PN

i¼1 H
ið pÞ. The exis-

tence and uniqueness of a solution to this one-dimen-

sional problem can be shown using theorem V.8.1 of

Ladyzenskaja et al. (1968). Once the solution is known,

we can plug it back into (3.5) and obtain N decoupled

equations. This technique is applied in the following

section where we construct an explicit solution for linear

cost functions.

It is hard to find a closed-form solution for the coupled

PDE (3.5). However, for the particular choice g(z)¼ �z
with a liquidity parameter �40 the solution to (3.5) can

be given explicitly. Here and throughout, we denote by

f�,�2 ðzÞ ¼
4 1ffiffiffiffiffiffiffiffiffiffi

2p�2
p exp �

ðz� �Þ2

2�2

� �

the normal density with mean � and variance �2.

Proposition 3.2: Let g(z)¼ �z. Then the solution of (3.5)

can be given in closed form as the solution to a non-

homogeneous heat equation.

Proof: The optimal trading speed from (3.4) and the

aggregate trading speed from (3.3) are

u j ¼
�

�
v jp �

1

Nþ 1

XN
i¼1

vip

 !
, ð3:7Þ

u� ¼
XN
i¼1

ui ¼
�

�ðNþ 1Þ

XN
i¼1

vip ¼
�

�ðNþ 1Þ
vp: ð3:8Þ

Equation (3.5) for player j ’s value function now becomes

0 ¼ v jt þ
1

2
�2v jpp þ �ðu

�Þ
2:

Combining this with (3.8) and summing up for

j¼ 1, . . . ,N yields the following PDE for the aggregate

value function v ¼
PN

i¼1 v
i:

0 ¼ vt þ
1

2
�2vpp þ

�2N

�ðNþ 1Þ2
v2p, ð3:9Þ

with terminal condition vðT, pÞ ¼
PN

i¼1 H
ið pÞ. This PDE is

a variant of Burgers’ equation (Rosencrans 1972).

It allows for an explicit solution, which we cite in

lemma C.1 in appendix C. With this solution at hand,

we can solve for each single investor’s value function. We

plug the solution v back into equations (3.7) and (3.8) for
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the trading speeds, and those into the PDE (3.5). This
yields

0 ¼ v jt þ
1

2
�2v jpp þ

�2

�ðNþ 1Þ2
v2p,

with terminal condition vj(T, p)¼H j(p). This is now a
PDE in the unknown function v j with known function vp.
We see that it is a non-homogeneous heat equation with
solution given by

v j ðT� t, pÞ ¼

Z
R

Hj ðzÞ fp,�2tðzÞ dz

þ
�2

�ðNþ 1Þ2

Z t

0

Z
R

v2pðs, zÞ fp,�2ðt�sÞðzÞ dz ds,

where v is known from lemma C.1 (in particular, it is
bounded and integrable). œ

Let us conclude this section with some numerical
illustrations. For risk-neutral players and a linear cost
structure, we reduced the system of PDEs to the one-
dimensional PDE (3.9) for the aggregate value function.
This can be interpreted as the value function of the
representative agent. Such reduction to a representative
agent is not always possible for more general utility
functions. In the sequel we illustrate the optimal trading
speed u(s, p) and surplus of a representative agent as
functions of time and spot prices for a European call
option H(P(T))¼ (P(T )�K)þ and digital option
HðPðT ÞÞ ¼ 1fPðT Þ�Kg, respectively.y By surplus, we mean
the difference between the representative agent’s optimal
expected portfolio value v(t, p) and the conditional
expected payoff Et,p[H(P(T ))] in the absence of any
market impact. It represents the expected net benefit
due to price manipulation.

We choose a linear cost function, strike K¼ 100,
maturity T¼ 1, volatility �¼ 1 and liquidity parameters

�¼ �¼ 0.01. We see from figure 1 that, for the case of a

Call option, both the optimal trading speed and the

surplus increase with the spot; the latter also increases

with the time to maturity. Furthermore, the increase in

the trading speed is maximal when the option is at the

money. For digital options (figure 2) the trading speed is

highest for at-the-money options close to maturity as the

trader tries to push the spot above the strike. If the spot is

far away from the strike, the trading speed is very small as

it is unlikely that the trader can push the spot above the

strike before expiry. For both option types, a high spread

renders manipulation unattractive. Figures 3 and 4 show

the optimal trading speed and the surplus at time t¼ 0 for

the Call and Digital option for a representative agent.

We use the cost function

gðzÞ ¼ �zþ c � signðzÞ, for different spreads

c 2 f0, 0:001, 0:002, 0:003, 0:004g, ð3:10Þ

with the remaining parameters as above. We see that the

higher the spread, the smaller the trading speed and the

surplus. This is intuitive, as frequent trading, in particular

when the option is at the money, incurs high spread

crossing costs. The same is true for fixed transaction

costs, which also discourage frequent trading.

4. Solution for CARA investors

In the preceding section we considered risk-neutral

investors. We shall now extend the analysis of problem

2.3 to the class of entropic preference functionals with

risk-aversion coefficient �j40, given by

� j
t ðZÞ ¼ �

1

� j
logE½expð�� jZÞ j FT�:

Trading speed

0.0

0.5

1.0
Time 90

95

100

105

110

SPOT

0.0

0.2

0.4

Surplus

0.0

0.5

1.0
Time 90

95

100

105

110

SPOT
0.000

0.001

0.002

Figure 1. Trading speed and surplus for one risk-neutral investor holding a European Call option.

yNote that the cost function in (3.10) is not smooth, and the Call and Digital options are not smooth and bounded, so theorem 3.1
does not apply directly. There are two ways to overcome this difficulty: We could either approximate g and H by smooth and
bounded functions, or we could interpret v not as a classical, but only as a viscosity solution of (3.1) (Fleming and Soner 1993,
chapter V).
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As pointed out by Cheridito et al. (2009, p. 9), these

mappings induce the same preferences as conditional

expected exponential utility functions. Due to the trans-

lation invariance of � j
t , the trading costs RðtÞ ¼

4 R t
0 u

j

ðsÞ gð
PN

i¼1 u
iðsÞÞds that player j incurred in [0, t] do not

affect the player’s optimal strategy in the time interval

[t,T ] (they affect only the utility). As a result, we may

consider the cost-adjusted preference functional

98 100 102 104

SPOT

0.1

0.2

0.3

0.4

0.5

Trading speed at t = 0 Surplus at t = 0

98 100 102 104

SPOT

0.0005

0.0010

0.0015

0.0020

0.0025

Figure 3. Trading speed and surplus for a risk-neutral investor holding a European Call option for different spread sizes s¼ 0
(black), 0.001 (blue), 0.002 (red), 0.003 (green) and 0.004 (brown). The higher the spread, the smaller the trading speed and the
surplus.

Trading speed

0.0

0.5

1.0Time 90

95

100

105

110

SPOT

0.0

0.2

0.4

Surplus

0.0

0.5

1.0
Time 90

95

100

105

110

SPOT

0.0000

0.0005

0.0010

Figure 2. Trading speed and surplus for one risk-neutral investor holding a Digital option.

98 100 102 104

SPOT

0.02

0.04

0.06

0.08

Trading speed at t = 0 Surplus at t = 0

98 100 102 104

SPOT

0.0002

0.0004

0.0006

0.0008

0.0010

Figure 4. Trading speed and surplus for a risk-neutral investor holding a Digital option for different spread sizes s¼ 0 (black), 0.001
(blue), 0.002 (red), 0.003 (green) and 0.004 (brown). The higher the spread, the smaller the trading speed and the surplus.
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� j
t þ RðtÞ. So, given the strategies (ui)i6¼j of the other

players, the value function for player j�N is

Vj ðt, pÞ ¼
4

sup
u j2U t

(
�

1

� j
logEt,p

"
exp

 
� � j

 
�

Z T

t

u j ðsÞ g

 XN
i¼1

uiðsÞ

!
dsþHj ðPðT ÞÞ

!!#)
:

As a result, the HJB equationy for player j is now given by

0 ¼ ~v jt þ
1

2
�2 ~v jpp �

1

2
�2� j ð ~v jpÞ

2
þ sup

c j2R

½�ðc j þ u�jÞ ~v jp

� c jgðc j þ u�jÞ�, ð4:1Þ

with terminal condition ~v j ðT, pÞ ¼ Hj ð pÞ. Note that this

equation equals the HJB equation (3.1) in the risk-neutral

setting, up to the quadratic term � 1
2 �

2� j ð ~v jpÞ
2. Applying

the same arguments as in section 3, the candidate optimal

trading speeds are, for j�N,

c j ¼ u j ¼ �
1

g 0ðu�Þ
½�� ~v jp þ gðu�Þ�,

where the aggregate trading speed u� is the unique

solution to

0 ¼ �
XN
i¼1

~vip �Ng
XN
i¼1

uiðsÞ

 !
�

XN
i¼1

uiðsÞ

 !
g 0

XN
i¼1

uiðsÞ

 !
:

ð4:2Þ

If we plug u� and uj back into (4.1), we obtain

0¼ ~vjt þ
1

2
�2 ~v jpp�

1

2
�2� j ð ~vjpÞ

2
þ � u� �

gðu�Þ

g 0ðu�Þ

� �
~vjpþ

gðu�Þ2

g 0ðu�Þ
:

ð4:3Þ

We can show existence and uniqueness of a solution.

Theorem 4.1 : Let Hj 2 C
2
b for each j�N. The Cauchy

problem (4.1) admits a unique solution, which is the vector

of value functions.

Proof: See appendix A. œ

For the one-player case with linear cost structure, we

have an explicit solution.

Corollary 4.2: Let N¼ 1 and g(z)¼ �z. Then the Cauchy

problem (4.1) admits a unique solution that can be given in

closed form.

Proof: The maximizer in (4.1) is now

c ¼ u ¼
�

2�
~vp,

and the Cauchy problem (4.3) turns into

0 ¼ ~vt þ
1

2
�2 ~vpp þ

�2

4�
�
1

2
�2�

� �
~v2p,

with terminal condition ~vðT, pÞ ¼ Hð pÞ. This is Burgers’

equation. Its explicit solution is given in lemma C.1 in

appendix C. œ

Let us conclude this section with numerical illustrations

for the two-player case. Figure 5 shows the aggregate

optimal trading speed and the surpluses v j ð0, pÞ�

� j
0ðH

j ðPðT ÞÞÞ for time t¼ 0 and different spot prices

p2 [90, 100] for the European Call option H(P(T ))¼

(P(T )�K )þ. We assume that player 1 (blue) is the option

writer and player 2 (red) the option issuer. We chose the

strike K¼ 100, maturity T¼ 1, volatility �¼ 1 and

liquidity parameters �¼ 0.1, �¼ 0.01 and risk-aversion

parameters �1¼ 0.01, �2¼ 0.01 (solid) and �1¼ 0.1,

�2¼ 0.001 (dashed). Since player 1 has a long position

in the option, he has an incentive to buy the underlying;

for the same reason, player 2 has an incentive to sell it

(panel (b)). Our simulations suggest that the option issuer

is slightly more active than the option writer, in particular

near the strike. Furthermore, we see from panel (d) that

the issuer benefits more from reducing his loss than the

writer benefits from increasing his gains; this effect is due

to the concavity of the utility function. If the option issuer

is less risk averse than the option writer, he trades and

benefits slightly more (dashed).
Figure 6 shows the same plots for the Digital option.

Now the option writer trades faster and benefits more if

the option is in the money, while the issuer trades faster

and gains more if the option is out of the money

(panels (c) and (d)).

5. How to reduce manipulation

In this section, we use the results for risk-neutral agents

derived in section 3 to illustrate how an option issuer may

preventz other market participants from trading against

him by using their impact on the dynamics of the

underlying. Some of our observations have already been

reported by Kumar and Seppi (1992) for Futures in a two-

period model and by Gallmeyer and Seppi (2000) for Call

options in a three-period binomial model. Note that the

results of this section only hold for risk-neutral investors.
As a first step, we show that market manipulation is

not beneficial if traders have no permanent impact on the

price of the underlying.

Proposition 5.1: If �¼ 0, then uj	 0 for each j�N.

yThis PDE can be derived by considering the exponential utility function first and then applying a logarithmic transformation.
In this approach, it is necessary to introduce new state variables that keep track of each agent’s trading costs. Due to translation
invariance, these variables factor out and can be dropped again.
zLet us emphasize again that our results only apply to the practice of ‘punching the close’, i.e. manipulating the stock price in order
to increase a given option payoff. There are other types of market manipulation not covered by our setup, such as market corners,
short squeezes, the use of private information or false rumors. We refer the interested reader to Jarrow (1994) and Kyle and
Viswanathan (2008).
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Trading speed at t = 0

(b)
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–0.07

–0.06

–0.05

–0.04

–0.03

–0.02
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Cumulated trading speed at t = 0
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–0.002

–0.001
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0.002

Surplus at t = 0

(d)

Figure 5. Value function, trading speed, aggregate trading speed and surplus for the writer (blue) and issuer (red) of a European
Call option when both agents are risk averse. The solid (dashed) curves display the case where the issuer is about as (less) risk averse
as (than) the option writer.
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Figure 6. Value function, trading speed, aggregate trading speed and surplus for the writer (blue) and issuer (red) of a European
Digital option when both agents are risk averse. The solid (dashed) curves display the case where the issuer is about as (less) risk
averse as (than) the option writer.
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Proof: First note that u� ¼
PN

i¼1 u
i ¼ 0 is the unique

solution to (3.3). Now (3.4) implies that uj	 0 for
each j�N. œ

Let us now consider the more interesting case of �40.

We show next that, in the case of offsetting payoffs, the
aggregate trading speed is zero. Put differently, in a
zero-sum game of risk-neutral investors willing to move
the market in their favor, their combined effect

cancels. We note that this is no longer true for general
utility functions, as illustrated in figure 5 for the
CARA case.

Proposition 5.2: If
PN

i¼1 H
i ¼ 0, then

PN
i¼1 u

i 	 0.

Proof: Consider the PDE (3.6) for the aggregate value
function with terminal condition zero and the character-
ization (3.3) of the aggregate trading speed. u� ¼PN

i¼1 u
i 	 0 and v ¼

PN
i¼1 v

i 	 0 is the unique solution
to this coupled system. œ

In reality, some (or all) of the investors might not want
to manipulate, e.g. for legal reasons.y This is why we now

look at the following asymmetric situation: The option
issuer, player 0, does not trade the underlying; his
competitor, player 1, owns the payoff H1

6¼ 0 and intends
to move the stock price in his favor. In addition, there are

N� 1 informed investors without option endowment in
the market. They are ‘predators’ that may supply liquidity
and thus reduce the first player’s market impact (Carlin et
al. 2007, Schied and Schöneborn 2007). The following

result states that the aggregate trading speed is decreasing
in the number of players. More liquidity suppliers lead to
more competition for profit and less (cumulated) market
manipulation. If the number of players goes to infinity,

manipulation vanishes. Note that propositions 5.3 and 5.4
are only valid for the linear cost function, as the proofs
hinge on the closed-form solution obtained in proposition
3.2, and for non-decreasing payoff functions.

Proposition 5.3: Let g(z)¼ �z. Let H1 2 C
2
b be non-

decreasing and Hi
¼ 0 for i¼ 2, . . . ,N. Then for s2 [0,T ]

the aggregate trading speed
PN

i¼1 u
iðsÞ is decreasing

in N and

lim
N!1

XN
i¼1

uiðsÞ ¼ 0:

Proof: See appendix B. œ

Let us modify the preceding setting a little. Again,
player 0 issues a product H and does not intend to
manipulate the underlying, while his competitors do.
More precisely, assume that player 0 splits the product H
into pieces and sells them to N risk-neutral competitors,
such that each of them gets (1/N)H. We find that their
aggregate trading speed

PN
i¼1 u

i is decreasing in the
number of competitors N. Consequently, the option
issuer should sell his product to as many investors as
possible in order not to be susceptible to manipulation.
We illustrate this result in figure 7, which shows the
aggregate trading speed at time t¼ 0 of N players each
holding 1/N option shares.

Proposition 5.4: Let g(z)¼ �z. Let H 2 C2b be non-
decreasing and Hi

¼ (1/N)H for i¼ 1, . . . ,N. Then for
s2 [0,T ] the aggregate trading speed

PN
i¼1 u

iðsÞ is decreas-
ing in N and

lim
N!1

XN
i¼1

uiðsÞ ¼ 0:

Proof: See appendix B. œ

The preceding results indicate how an option issuer can
prevent his competitors from manipulation. One strategy
is public announcement of the transaction: the more
informed liquidity suppliers that are on the market, the
smaller the impact on the underlying. A second strategy is
splitting the product into pieces—the more option writers,
the less manipulation. Let us conclude this section with a
surprisingly simple way to avoid manipulation: using
options with physical settlement. In contrast to cash

98 100 102 104

SPOT

0.1

0.2

0.3

0.4

0.5

Cumulated trading speed at t = 0(a)

98 100 102 104

SPOT

0.05

0.10

0.15

0.20

Cumulated trading speed at t = 0(b)

Figure 7. Aggregate trading speed u� at time t¼ 0 for N¼ 1 (black), 10 (blue) and 100 (red) players each holding 1/N shares of a Call
(left) and Digital (right) option with strike K¼ 100. The more agents, the less aggregate manipulation.

yA discussion of legal issues is beyond the scope of this paper, but see the discussion of Kyle and Viswanathan (2008).
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settlement, the option holder does not receive (pay) the

current price of the underlying, but receives (delivers)

stock shares. In the case of Call options, for instance, let

us denote by cj the number of Calls player j decides to

execute at maturity; he then holds Xj(T)þ cj stock shares

whose liquidation value under infinitely slow liquidation

in [T,1) is now defined as

ðXj ðT Þ þ c j Þ PðT Þ �
1

2
�ðXj ðT Þ þ c j Þ

� �
:

The following proposition shows that, in a framework of

several risk-neutral players holding physically settled

Calls, Puts and Forwards, it is optimal not to manipulate

the underlying.

Proposition 5.5: Consider N risk-neutral agents holding

European Call, Put or Forward options with physical

settlement. Then uj	 0 for each j�N is a Nash equilibrium.

Proof: We only prove the assertion for Call options. The

case of Puts and Forwards (or combinations thereof)

follows by the same arguments. Suppose that agent j�N

is endowed with C j
� 0 Call options with physical

settlement and strike Kj. At maturity, the agent decides

how many options he exercises. The agent’s strategy is

now a pair (u j, c j), where uj2U0 denotes his trading speed

in the underlying and c j
2 [0, C j] the number of Call

options exercised. At maturity, the agent receives c j stock

shares for the price c j K j. Suppose that ui	 0 for each

i 6¼ j, i.e. none of player j ’s competitors trades. His

optimization problem is then

sup
u j,c j

E

� Z T

0

�u j ðsÞ ~PðsÞ ds� c jK j þ ðXj ðT Þ þ c j Þ

�

�
PðT Þ �

1

2
�ðXj ðT Þ þ c j Þ

��
:

Here the first term represents the expected trading costs in

[0,T ] and the second term is the cost of exercising the

options. The last term describes the liquidation value of

Xj(T )þ cj stock shares under infinitely slow liquidation in

[T, 1). Using the stock price dynamics (2.1), (2.2) and

Xj(0)¼ 0, it can be shown that this equals

sup
u j,c j

E

� Z T

0

�u j ðsÞ gðu j ðsÞÞ ds� c jK j

þ c j
�
Pð0Þ þ �BðT Þ �

1

2
�c j
��
:

The cost term
R T
0 u j ðsÞ gðu j ðsÞÞ ds is non-negative and the

remaining terms do not depend on uj, so the optimal

trading strategy in the stock is uj	 0. This shows that

uj	 0 for each j�N is a Nash equilibrium. œ

At first glance, proposition 5.5 appears that it might

contradict Pirrong (2001, p. 221). He states that ‘‘replace-

ment of delivery settlement of futures contracts with cash

settlement is frequently proposed to reduce the frequency

of market manipulation’’. While his notion of market

manipulation refers to market corners and short squeezes

(see also Garbade and Silber (1983)), proposition 5.5

shows that this is not always true for manipulation
strategies in the sense of ‘punching the close’. It is not
beneficial to drive up the stock price at maturity if the
option is settled physically and the investor needs to
liquidate the stocks he receives at maturity. Any price
increase is outweighed by subsequent liquidation and has
no positive effect, but it is costly. This confirms a claim
made by Kumar and Seppi (1992, p. 1497), who argue
that whether ‘‘futures contracts with a ‘physical delivery’
option [are] also susceptible to liquidity-driven manipu-
lation [. . .] depends on whether ‘offsetting’ trades can be
used to unwind a futures position with little price
impact’’.
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Schied, A. and Schöneborn, T., Risk aversion and the dynamics
of optimal liquidation strategies in illiquid markets. Finance
Stochast., 2008, 13(2), 181–204.
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Appendix A: An existence result

In this appendix, we prove theorems 3.1 and 4.1 where the
PDE (3.5) in the risk-neutral setting is a special case of the
system (4.1) for risk-averse agents, with �j¼ 0 for each j.
In order to establish our existence and uniqueness of
equilibrium result, we adopt the proof of proposition
15.1.1 of Taylor (1997) to our framework. After time
inversion from t to T� t, both systems of PDEs are of
the form

vt ¼ Lvþ FðvpÞ, ðA1Þ

for vX (v1, . . . , vN), where L is the Laplace operator

L ¼
1

2
�2
@2

@p2
,

and F¼ (F1, . . . ,FN) is of the form

Fj ðvpÞ ¼ �
1

2
�2� j ðv jpÞ

2
þ � u� �

gðu�Þ

g 0ðu�Þ

� �
v jp þ

gðu�Þ2

g 0ðu�Þ
:

Here u�¼ u�(vp) is given implicitly by (3.3). The initial
condition is

vð0, pÞ ¼ Hð pÞ ¼ ðH1, . . . ,HNÞ: ðA2Þ

We rewrite (A1) in terms of an integral equation as

vðtÞ ¼ etL þ

Z t

0

eðt�sÞLFðvpðsÞÞ ds¼
4

�vðtÞ, ðA3Þ

and seek a fixed point of the operator � on the following
set of functions:

X ¼ C
1
bðR,RN

Þ¼
4
fv 2 C1ðR,RN

Þ j v, vp boundedg,

equipped with the norm

kvkX¼
4
kvk1 þ kvpk1:

We set YX Cb. Note that X and Y are Banach spaces

and the semi-group etL associated with the Laplace

operator is strongly continuous on X, sends Y on X

and satisfies

ketLkLðY,XÞ � Ct�� ,

for some C40, �51 and t� 1. Furthermore, the

nonlinearity F is locally Lipschitz and belongs to C1.

Indeed, if we apply the implicit function theorem to u�

given by (3.3), we see that the map a} u�(a) is C1 with

first derivative

@

@vp
u�ðvpÞ ¼

�

ðNþ 1Þ g 0ðu�ðvpÞÞ þ u�ðvpÞ g00ðu�ðvpÞÞ
,

where the denominator is positive due to assumption 2.1.

The cost function g is C1 by assumption. In particular,

the assumptions of proposition 15.1.1 of Taylor (1997)

are satisfied.
Before we proceed, we need the following lemma.

It states that the value function satisfies kVj
kX�K for

each j�N and some constant K, so it suffices to construct

a solution in the following set:

XK¼
4
fv 2 X j kvkX � Kg:

Lemma A.1: There is a constant K such that kVj
kX�K

for each j�N.

Proof: We prove the assertion for risk-neutral agents,

and the CARA case follows by the same arguments. Our

a priori estimates of proposition 2.5 yield that the

trading strategy uj is bounded for each j�N, and hence

the aggregate trading strategy u� is also bounded.

By definition, the value function Vj(t, p) is then also
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bounded. Finally, equation (3.4) implies that v jp is

bounded. œ

We are now ready to prove existence and uniqueness of

a solution to (A3). In a nutshell, the argument is the

following. Using proposition 15.1.1 of Taylor (1997), we

construct a solution to (A1)–(A2) for a small time horizon

[0, 	], with 	40 specified below. The vector v is the vector

of value functions by theorem IV.3.1 of Fleming and

Soner (1993), so by lemma A.1 the constructed solution is

in XK. We apply this argument recursively to extend the

solution to [0,T ].

Proposition A.2: There is 	40 such that, for each n2N0,

the PDE (A3) with initial condition (A2) admits a unique

classical, bounded solution in XK on the time horizon

[0, n	6T ]. This solution is the value function.

Proof:

(1) For n¼ 0, there is nothing to prove. Pick n2N

such that n	5T. By induction, we can assume that

there is a solution v(n)2XK on the time horizon

[0, n	]. In particular, the initial condition for the

next recursion step h(n)X v(n)(n	) is in XK.
(2) Fix 
40. We construct a short time solution on the

following set of functions:

Zðnþ1Þ ¼
4
fv 2 Cð½n	, ðnþ 1Þ	�,XÞ j vðn	Þ

¼ hðnÞ, kvðtÞ � hðnÞkX � 
 8t 2 ½n	, ðnþ 1Þ	�g:

We first show that �: Z(nþ1)
!Z(nþ1) is a contrac-

tion, if 	40 is chosen small enough. For this, let 	1
be small enough such that, for t� 	1 and any

v2XK, we have

ketLv� vkX �
1

2

:

Here we have used that etL is a continuous

semigroup and kvkX�K. In particular, for v¼ h(n),

ketLhðnÞ � hðnÞkX �
1

2

:

For v2Z(nþ1), the derivative vp is uniformly

bounded in the sense kvpk1�kh
(n)
kXþ
�Kþ 
.

Hence, we only evaluate F on compact sets. By

assumption, F is locally Lipschitz. In particular, F

is Lipschitz on compact sets. In other words, there

is a constant K1 such that, for any v, w2Z(nþ1), we

have

kFðvpÞ � FðwpÞkY � K1kv� wkX:

This implies, for w¼ h(n),

kFðvpÞkY � kFðh
ðnÞ
p ÞkY þ K1kv� hðnÞkX

� Kþ K1
¼
4
K2:

This, together with the boundedness assumption on

etL, yieldsZ t

n	

eðt�yÞLFðvpð yÞÞdy

����
����

X

� tketLk sup
n	�y�t
kFðvpð yÞÞkY

� t1��CK2:

This quantity is � 1
2 
 if t� 	2X (
/2CK2)

1/(1��).

Finally, it follows that, for v2Z(nþ1), we have

k�v� hðnÞkX � ke
tLhðnÞ � hðnÞkX þ

Z t

n	

eðt�yÞLFðvpð yÞÞ dy

����
����

X

�
1

2

þ

1

2

 ¼ 
:

This shows that � maps Z(nþ1) into itself.
It remains to show that � is a contraction. Let v,

w2Z(nþ1). Then

k�vðtÞ � �wðtÞkX ¼

Z t

n	

eðt�yÞL½F ðvpð yÞÞ � F ðwpð yÞÞ�dy

����
����

X

� tketLk sup
n	�y�t

kF ðvpðyÞÞ � F ðwpð yÞÞkY

� t1��CK2 sup
n	�y�t

kvð yÞ �wðyÞkX:

The quantity t1��CK2 is � 1
2 if t� 	3X

(1/2CK2)
1/(1��). This proves that � is a contraction

in Z(nþ1), if 	 is small in the sense

05 	¼
4
minf	1, 	2, 	3g:

Note that the time step 	 does not depend on n. It is

the same in every recursion step.

(3) It follows that � has a unique fix point v in Z(nþ1).

In other words, we constructed a function v2C([n	,
(nþ 1)	], X)¼C0,1 [n	, (nþ 1)	] that solves the

PDE (A3) with initial condition v(s)¼ h(n)¼ v(n)(n	)
on the time interval [n	, (nþ 1)	]. This solution is

actually in C1,2((n	, (nþ 1)	]�R, R
N), due to

proposition 15.1.2 of Taylor (1997). Furthermore,

v is bounded by construction. Indeed, kvk1�

kh(n)kXþ 
�Kþ 
. We define the new solution as

vðnþ1Þ ¼
4
vðnÞ1f0�t�n	g þ v1fn	5 t�ðnþ1Þ	g:

By construction, v(nþ1) solves (A3) on the time horizon

[0, (nþ 1)	] and is bounded and in C1,2. Hence, we can

apply the Verification Theorem IV.3.1 from Fleming and

Soner (1993), which yields that v(nþ1) is the vector of value

functions (up to time reversal). Due to lemma A.1 we

have v(nþ1)2XK. In particular, kv(nþ1)((nþ 1)	)kX�K,

which is necessary for the next recursion step.

This completes the proof. œ

Appendix B: Proof of propositions 5.3 and 5.4

The argument is the same for both propositions. Fix

N2N. The aggregate trading speed for N players is given

from equation (3.8) as

u� ¼
XN
i¼1

ui ¼
�

�

1

Nþ 1
vp,
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where the aggregate value function v ¼
PN

i¼1 vi from (3.9)

solves Burgers’ equation

0 ¼ vt þ
1

2
�2vpp þ

�2

�

N

ðNþ 1Þ2
v2p, ðB1Þ

with terminal condition vðT, pÞ ¼
PN

i¼1 H
ið pÞ ¼

H1ð pÞ ¼
4
Hð pÞ. On the other hand, the aggregate trading

speed for Nþ 1 players is

�u� ¼
XNþ1
i¼1

�ui ¼
�

�

1

Nþ 2
wp,

where the aggregate value function w ¼
PNþ1

i¼1 wi solves

0 ¼ wt þ
1

2
�2wpp þ

�2

�

Nþ 1

ðNþ 2Þ2
w2
p,

with terminal condition w(T, p)¼H(p). We have to show

that u�� �u �. To this end, let us define

~w¼
4 Nþ 1

ðNþ 2Þ2
ðNþ 1Þ2

N
w:

It is sufficient to show that vp � ~wp, since then

1

Nþ 1
vp �

1

Nþ 1
~wp,

and, by definition,

1

Nþ 1
~wp �

1

Nþ 2
wp:

This implies u�� �u �.
To show vp � ~wp, first note that ~w is chosen such that it

satisfies the same PDE (B1) as v, namely

0 ¼ ~wt þ
1

2
�2 ~wpp þ

�2

�

N

ðNþ 1Þ2
~w2
p, ðB2Þ

with a smaller terminal condition:

~wðT, pÞ ¼
Nþ 1

ðNþ 2Þ2
ðNþ 1Þ2

N
Hð pÞ¼

4
ð1� 
ÞHð pÞ:

The solutions to (B1) and (B2) are given in lemma C.1 as

vðt, pÞ ¼ c1 log

Z
R

expðc2Hðc3zÞÞ fc4p,T�tðzÞdz

and

~wðt, pÞ ¼ c1 log

Z
R

expðc2ð1� 
ÞHðc3zÞÞ fc4p,T�tðzÞ dz,

with constants c1, c2, c3, c42R and 
2 (0, 1). To verify

vp � ~wp, it is sufficient to show

@

@p
log

Z
R

expðGÞ fp,1ðzÞdz�
@

@p
log

Z
R

expðð1� 
ÞGÞ fp,1ðzÞdz,

for an increasing function G 2 C2b. This is equivalent toR
R
ðz� pÞeGfp,1ðzÞ dzR

R
eGfp,1ðzÞdz

�

R
R
ðz� pÞeð1�
ÞGfp,1ðzÞ dzR

R
eð1�
ÞGfp,1ðzÞ dz

or Z
R

ze
G
eð1�
ÞGfp,1ðzÞ dzR
R
eð1�
ÞGfp,1ðzÞ dz

�

Z
R

z
eð1�
ÞGfp,1ðzÞ dzR
R
eð1�
ÞGfp,1ðzÞ dz

�

Z
R

e
G
eð1�
ÞGfp,1ðzÞ dzR
R
eð1�
ÞGfp,1ðzÞ dz

or

covQðid, e

GÞ � 0,

under the measure Q with

dQ¼
4 eð1�
ÞGfp,1ðzÞ dzR

R
eð1�
ÞGfp,1ðzÞ dz

:

The covariance of two increasing functions is surely non-
negative. This finally proves the assertion u�� �u �.

It remains to show limN!1

PN
i¼1 u

iðtÞ ¼ 0. We have

u�ðt,pÞ¼
XN
i¼1

uiðtÞ ¼
�

�

1

Nþ1
vpðt,pÞ

¼
@

@p

�

�

1

Nþ1

�2�ðNþ1Þ2

2�2N

� log

Z
R

exp
2�2N

�2�ðNþ1Þ2
Hð�zÞ

� �
fp=�,T�tðzÞdz

¼
@

@p

�

�

1

Nþ1

�2�ðNþ1Þ2

2�2N

� log

Z
R

exp
2�2N

�2�ðNþ1Þ2
H �zþ

p

�

� 	� �
f0,T�tðzÞdz

¼
�

�

1

Nþ1

1

�

�

R
R
Hpð�zþðp=�ÞÞexpð½2�

2N=�2�ðNþ1Þ2�

Hð�zþðp=�ÞÞÞf0,T�tðzÞdz

( )
R
R
expð½2�2N=�2�ðNþ1Þ2�Hð�z

þðp=�ÞÞÞ f0,T�tðzÞdz

( ) ,

where we have used lemma C.1 in the second line.
This expression is non-negative, since Hp� 0.
Furthermore, we have kHpk151 by assumption. It
follows that

0 �
XN
i¼1

uiðtÞ �
�

�

1

Nþ 1

1

�
kHpk1 �!

N!1
0:

This completes the proof.

Appendix C: Burgers’ equation

In the proofs of proposition 3.2 and corollary 4.2 we need
the solution to a variant of Burgers’ equation. Recall our
notation

f�,�2ðzÞ¼
4 1ffiffiffiffiffiffiffiffiffiffi

2p�2
p exp �

ðz� �Þ2

2�2

� �
:

Lemma C.1: Let A2R40, B2Rn{0} and G : R!R be
smooth and bounded. The PDE

0 ¼ 2vt þ Avpp þ Bv2p,
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with terminal condition v(T, p)¼G(p) is solved by

vðt, pÞ ¼
A

B
log

Z
R

exp
B

A
G

ffiffiffiffi
A
p

z
� 	� �

fp=
ffiffiffi
A
p

,T�tðzÞ dz

� �
:

ðC1Þ

Proof: We use the linear transformation vðt, pÞ ¼
4
ðA=BÞ

wðt, p=
ffiffiffiffi
A
p
Þ and note that

vt ¼
A

B
wt, vp ¼

ffiffiffiffi
A
p

B
wp, vpp ¼

1

B
wpp:

The PDE under consideration is then equivalent to (after

canceling the factor A/B)

0 ¼ 2wt þ wpp þ w2
p,

with terminal condition wðT, pÞ ¼ ðB=AÞGð
ffiffiffiffi
A
p

pÞ. Next we

apply the transformation w(t, p)X log h(t, p), which turns

the above PDE into

0 ¼ ht þ
1

2
hpp,

with terminal condition hðT, pÞ ¼ expððB=AÞGð
ffiffiffiffi
A
p

pÞÞ. The

solution to this heat equation is

hðt, pÞ ¼

Z
R

exp
B

A
G

ffiffiffiffi
A
p

z
� 	� �

fp,T�tðzÞ dz:

This function is well defined since G is assumed to be

bounded. Now it becomes clear that vðt, pÞ ¼ ðA=BÞ
log hðt, p=

ffiffiffiffi
A
p
Þ is given by (C1). See also Rosencrans

(1972). œ
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