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Abstract

We investigate the asset prices dynamics and the long-run market shares of

two competing financial mediators who are selected by consumers. We demon-

strate that the social interaction among consumers constitutes an endogenous

path-depending source of risk in a financial market. Depending on consumers’

evaluation of the mediator’s investment, asset prices may behave in a non-ergodic

manner: the price process converges in distribution but the limiting distribution

is not necessarily uniquely determined, its multiplicity being characterized by the

multiplicity of possible long-run market shares. The convergence of the process

is sensitive to initial conditions and depends on the history of noise trader trans-

actions. Long-run portfolio holdings may be in-efficient since investors holding

mean-variance efficient portfolios may not be identified.
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1 Introduction

In recent years financial market models with interacting agents have increasingly at-

tracted attention in focusing on trader heterogeneity as a main pillar of a descriptive

theory of financial markets. A central issue for these markets is to model the invest-

ment strategies of agents. It is a common approach to attach some kind of technical

trading strategy to an agent and to allow for switching between different strategies as

time passes by. At the same time, an old conjecture which dates back to Alchian (1950)

and Friedman (1953) states that agents that do not learn to make accurate predictions

about the future will be driven out of the market. This conjecture is a main pillar of

the rational-expectations paradigm, but has been repeatedly questioned in the recent

literature.

In the context of a dynamic CAPM with interacting investors, Alchian and Fried-

man’s conjecture suggests that only those investors who hold mean-variance efficient

portfolios will survive in the long run. In a series of papers, e.g., De Long, Shleifer,

Summers & Waldmann (1990, 1991) the capability of noise traders to survive in fi-

nancial markets has been analyzed. However, these results only cover the static case

with noisy errors. In the case of a dynamic CAPM with fully heterogeneous expecta-

tions, Wenzelburger (2004) introduces a reference portfolio which is (mean-variance)

efficient in the classical sense of CAPM theory regardless of the diversity of beliefs.

The reference portfolio generalizes the market portfolio as it coincides with the market

portfolio if beliefs are homogeneous. Under Alchian and Friedman’s conjecture, the

returns realized with an efficient portfolio should empirically outperform those of any

non-efficient portfolio. A simulation study in Böhm & Wenzelburger (2005) indicates

that this is not always the case. Their example suggests that in the long run market

shares of investors holding in-efficient portfolios may be larger than those of investors

holding efficient portfolios.

This paper now provides a rigorous analysis of the long-run behavior of market

shares and asset prices in a dynamic CAPM in which the demand for multiple risky

assets comes from a large set of consumers. Rather than investing directly in the

financial market, consumers select between two professional financial mediators who

are characterized by their ability to forecast future asset prices. Following up on the

seminal approach by Frankel & Froot (1986), we summarize their beliefs as ‘chartist’
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and ‘expert-trader’ views. Chartists base their trading strategies upon observed his-

torical price patterns such as trends. As in Wenzelburger (2004), we assume that an

expert trader is able to correctly predict the first two moments of the price process.

She has rational expectations along any price path and hence holds efficient portfolios.

Consumers evaluate the mediators’ performance before choosing the mediator to carry

out their investment decision.

We analyze the question to what extent boundedly rational consumers are able to

identify the mediator holding efficient portfolios by means of simple empirical perfor-

mance measures which is either the empirical return or the Sharpe ratio associated

with her trading strategy. We prove that the financial market dynamics is ergodic if

the dependence of consumer investment decisions on the mediators’ performances is

sufficiently weak, so that market shares settle down to a unique equilibrium. Ergod-

icity breaks down if interactive complementarities become too powerful. In this case,

“history matters” and the long-run market shares of competing mediators are path

dependent. While market shares and asset prices still converge, their asymptotics is

random and depends on noise trader transactions. We show that convergence of mar-

ket shares implies that the price process converges in law to some random equilibrium

distribution. This extends a recent result by Föllmer, Horst & Kirman (2005) beyond

ergodicity. They give sufficient conditions for the convergence in distribution of asset

prices in a model with interacting agents to a unique limit. In our model the long-run

distribution of asset prices is path dependent if the interaction between agents is strong

enough.

This result is consistent with many findings in the social interaction literature

(Blume 1993, Horst & Scheinkman 2005) which establish uniqueness of equilibria if

interactions are weak and which show that powerful interactive complementarities of-

ten generate non-ergodic dynamics. Our approach may also be viewed as a first step

to bridge the gap between the deterministic approach initiated by Brock & Hommes

(1997, 1998) with its rich dynamics but inherent inaccessibility to analytical solutions,

and the probabilistic approach of Föllmer & Schweizer (1993) and Föllmer, Horst &

Kirman (2005). They obtain rigorous mathematical results but their assumptions rule

out many interesting phenomena including a non-ergodic dynamics. The dynamics of

our model can be described by a deterministic recursion in a random environment.

The environment is generated by an exogenous stochastic process that models the ef-
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fects of noise trading and by an endogenous process that describes the fluctuations

of mediators’ market shares. The mediators’ market shares depend on their relative

performance and hence on asset prices. This generates a feedback from prices into the

random environment. It is this feedback effect that distinguishes our model from the

work of Estigneev, Hens & Schenk-Hoppé (2005) and the seminal papers of Blume &

Easley (1992, 2005) and Sandroni (2000) in which investors never change their portfo-

lio strategies. Föllmer and Schweizer (1993) and Horst (2005) allow agents to switch

randomly between different portfolio rules but do not allow for a dependence of the

transition dynamics on asset prices. Under the assumption that the impact of trend

chaser is not too strong, we prove convergence of the model dynamics to a random

limit using a stochastic approximation algorithm and a uniform moderate deviations

principle for a class of linear recursions in random media. The approximation result

allows for an analysis of the asymptotics of the market shares by means of the long-run

behavior of a deterministic dynamical system.

The paper is organized as follows. The model is introduced in Section 2. The

convergence results are stated in Section 3 and illustrated by numerical simulations in

Section 4. All proofs are carried out in the appendix.

2 The Model

We investigate a dynamic financial market model in which the demand for multiple

risky assets comes from many boundedly rational consumers. Instead of making direct

investments in the financial markets, consumers invest through financial mediators.

Mediators are characterized by mean variance preferences and heterogenous beliefs for

future asset prices. Based on these beliefs they form their demand functions; the actual

asset price is determined by market clearing conditions. Asset prices are influenced by

an exogenous stochastic process describing noise trader activities and by an endogenous

process that specifies the evolution of the mediators’ market shares.

2.1 Interacting investors

We consider a large number of consumers who transfer wealth into the future by in-

vesting a fixed amount e > 0 of their exogenously given endowment into K risky assets
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and a bond in each period. Consumers are boundedly rational in the sense of Simon

(1982). They delegate their portfolio transactions to one of two mediators i = 1, 2 who

carry out portfolio transactions on their behalf. In terms of her respective market share

η
(i)
t ∈ [0, 1], mediator i receives W

(i)
t = η

(i)
t e units of per capita resources from investing

consumers in period t. The bond pays the risk-less rate r > 0. Aggregate per-capita re-

payment obligations from investing in a portfolio x
(i)
t−1 ∈ R

K of risky assets and y
(i)
t−1 ∈ R

risk-less bonds to consumers in period t amount to (1 − δ(i))
[

p⊤t x
(i)
t−1 + (1 + r)y

(i)
t−1

]

,

where 0 ≤ δ(i) ≤ 1 stipulates the income share of mediator i. Here, pt ∈ R
K
+ denotes

the vector of current asset prices. Thus, given a vector p of proposed asset prices,

mediator i’s budget constraints read

W
(i)
t = p⊤x(i) + y(i).

Following a standard approach in the behavioral finance literature, we assume that

the mediators are myopic mean-variance optimizers, e.g., see Böhm & Chiarella (2005).

Their demand for the risky assets is thus solely based on their coefficient of risk aver-

sion α(i) along with their subjective assessments (q
(i)
t , V

(i)
t ) of the mean value and the

covariance matrix of the asset prices in the subsequent period t+ 1. Abstracting from

short-sell constraints, the per-capita aggregate demand function for risky assets of all

consumers who employ i is

x(i)(p) =
η

(i)
t

α(i)
V

(i)−1
t [q

(i)
t − (1 + r)p].

Let x̄ ∈ R
K
+ denote the number of tradeable risky assets in per capita terms and εt

the (per-capita) portfolio holdings of noise traders after trading in period t. Given the

mediators’ beliefs (q
(i)
t , V

(i)
t ), the market-clearing condition in period t takes the form

η
(1)
t

α(1)
V

(1)−1
t [q

(1)
t − (1 + r)pt] +

η
(2)
t

α(2)
V

(2)−1
t [q

(i)
t − (1 + r)pt] + εt

!
= x̄.

Solving for the market-clearing price pt, we obtain a temporary equilibrium map

pt := Γ
(1)
t q

(1)
t + Γ

(2)
t q

(2)
t − Γt(x̄− εt), (1)

where, for i = 1, 2, we put

Γ
(i)
t :=

η
(i)
t

α(i) ΓtV
(i)−1
t with Γt := 1

(1+r)

(

η
(1)
t

α(1)V
(1)−1
t +

η
(2)
t

α(2)V
(2)−1
t

)−1

.
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If all covariance matrices V
(i)
t are positive definite, then Γt is well defined, symmetric,

and positive definite. As a result, we obtain a sequence of price equilibria driven by the

evolution of the mediators’ beliefs, their market shares, and noise trader transactions.

2.2 The feedback of subjective beliefs on asset prices

The mediators are assumed to be boundedly rational in sense of Sargent and use fore-

casting rules for first and second moments to update their subjective beliefs. Mediator

1 is assumed to be a trend chasing chartist. She bases her forecasts for the future asset

prices on past observations and applies a simple technical trading rule of the form

q
(1)
t :=

J
∑

l=1

D(l) pt−l (2)

where D(1), . . . , D(L) denote her expected impact of the past prices pt−1, . . . , pt−L on

pt+1. For simplicity, we assume that mediator 1 never updates second moment beliefs

and uses constant subjective variance-covariance matrices, denoted by V (1). While the

beliefs of mediator 1 may well be incorrect, suppose now that mediator 2 is able to

correctly predict the first two moments of the price process, conditional on all available

information. As a short hand, we will use the term rational expectations to describe

the situation in which the first two moments of mediator 2’s subjective distributions of

asset prices, i.e., the conditional mean values and the conditional covariance matrices

coincide with the respective moments of the true distributions. Assuming that the first

moment beliefs q
(2)
t of mediator 2 are unbiased, it is shown in Wenzelburger (2004) that

they are determined by an unbiased forecasting rule which takes the form

q
(2)
t := Γ

(2)−1
t

[

q
(2)
t−1 − Γ

(1)
t q

(1)
t + Γt

(

x̄− Et−1[εt]
)

]

, (3)

where Et−1 denotes the conditional expectation with respect to all the information

available in period t− 1. The forecasting rule (3) provides unbiased forecasts of asset

prices for mediator 2 in the sense that q
(2)
t−1 is the best least-squares prediction for pt,

given the available information. Indeed, it is straightforward to verify that almost

surely Et−1[pt − q
(2)
t−1] = 0 for all times t when the forecast q

(2)
t is given by (3).

To focus on the effects of heterogeneity in the mediators’ beliefs about expected fu-

ture asset prices and on the interplay between rational expectations and trend chasing,
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we assume from now on that the mediators’ beliefs for second moments coincide and are

correct and that they share a common coefficient of risk aversion, i.e., α(1) = α(2) = α;

all results carry over to the case with differing risk aversions. If the covariance matrix

Vε of the noise trader transactions is assumed to be constant over time, the correct

second moments beliefs take the form

V
(i)
t ≡

(

1+r
α

)2
V

−1
ε . (4)

We put ηt = η
(1)
t and η

(2)
t = 1 − ηt for the remainder of the paper and insert the

forecasts (2)-(4) into (1). The resulting process of asset prices and forecasts is given

by a list of stochastic difference equations



















pt = q
(2)
t−1 + 1+r

α
V

−1
ε

(

εt − Et−1[εt]
)

,

q
(1)
t =

∑J
j=1 D

(j)pt−j ,

q
(2)
t = 1+r

1−ηt
q
(2)
t−1 − ηt

1−ηt
q
(1)
t + (1+r)2

(1−ηt)α
V

−1
ε

(

x̄− Et−1[εt]
)

,

(5)

where the last equation corresponds to the unbiased forecasting rule (3). Observe that

the difference equations (5) are linear if the market shares ηt were constant over time.

However, the consumers’ decisions determine the market share of a mediator as they

will evaluate a mediator’s performance before making their investment decision. This

generates a feedback effect from the sequence of asset prices and forecasts into the

evolution of market shares. The underlying performance measures will be introduced

in the following section.

Remark 2.1 This model can easily be imbedded into an OLG framework with multi-

period planning horizons without changing the key equations, cf. Hillebrand & Wenzel-

burger (2006)

2.3 Performance measures and choice rules

In the spirit of De Long, Shleifer, Summers & Waldmann (1990) we assume through-

out that the noise trader portfolios {εt}t∈N are an exogenous i.i.d. process with mean

ε̄ and a non-degenerate variance matrix Vε. We can then represent the joint dynam-

ics of asset prices and forecasts in terms of a linear difference equation in a random

environment which is generated by two underlying stochastic processes {εt}t∈N and
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{ηt}t∈N, respectively. To this end, we put Xt := (q
(2)
t , q

(2)
t−1, pt, . . . , pt−J−1) ∈ R

d with

d = K(J + 4) as well as

a0(η) := 1+r
1−η

, aj(η) := η
1−η

D(j), j = 1, . . . , J,

b0(η) := (1+r)2

(1−η)α
V

−1
ε

(

x̄− ε̄
)

, b1(ε) := 1+r
α

V
−1
ε (ε− ε̄).

The process X = {Xt}t∈N as defined by (5) then takes the linear form

Xt = A(ηt)Xt−1 +B(ηt, εt) (t ∈ N) (6)

where the d× d matrix A(ηt) and the vector B(ηt, εt) ∈ R
d are given by

A(ηt) :=































a0(ηt) 0 a1(ηt) · · · aJ(ηt) 0 0

I 0 · · · · · · · · · · · · 0

I 0
. . .

...

0 0 I
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...

0 · · · · · · · · · 0 I 0































and B(ηt, εt) :=





























b0(ηt)

0

b1(εt)

0
...
...

0





























,

respectively. We will now specify a probabilistic framework for the analysis of the long-

run market behavior when consumers’ decisions are based on the perceived performance

of mediators. To this end, let {̺t}t∈N be the sequence of empirical distributions asso-

ciated to the process {Xt}t∈N, i.e.,

̺t :=
1

t

t−1
∑

i=0

δXi
so that ̺t(f) :=

∫

fd̺t =
1

t

t−1
∑

i=0

f(Xi) (7)

for any bounded map f : R
d → R where δx denotes the Dirac measure that puts all

mass on x. A consumer’s propensity to invest through a specific mediator will depend

on the performance associated to the mediator’s investment strategy.

Definition 2.2 Let f l : R
d → R (l = 1, 2, . . . , L) be a given list of bounded measurable

functions. A performance measure is a Lipschitz continuous function ψ : R
L → R

2.

The list of performances in period t is given by

πt = ψ
(

̺t(f
1), · · · , ̺t(f

L)
)

.
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Notice that the performance of a mediator at time t depends on the entire history

of empirical distribution of asset prices and forecasts. This dependence generates a

rich dynamics, while still being amenable to analytic solutions. Since the functions f i

are fixed, it is convenient to interpret the performance measure as a map on the set of

probability distributions on R
d so that πt ≡ ψ(̺t).

Example 2.3 Suppose that the performance of mediator i = 1, 2 is measured by histor-

ically realized returns {R(i)
s }t

s=0 on investment. Having invested the amount W
(i)
t = ηte,

her return from selling the portfolio x
(i)
t :=

η
(i)
t

α
V

(i)−1
t [q

(i)
t − (1 + r)pt] in period t+ 1 is

R
(i)
t+1 = r +

1

αe
[pt+1 − (1 + r)pt]

⊤V
(i)−1
t [q

(i)
t − (1 + r)pt]. (8)

Since second moment beliefs are constant, realized returns at time t take the form

R
(i)
t = f i(Xt) for suitably defined functions f i : R

2d → R, i = 1, 2. The specific case

where ψ denotes the identity matrix yields the performance measure1

πt =
(

̺t(f
1), ̺t(f

2)
)⊤
.

Empirical Sharpe ratios also fit into our framework.

Example 2.4 Based on Example 2.3, an alternative performance measure is the differ-

ences in empirical Sharpe ratios associated with the two times series {R(i)
s }t

s=0, i = 1, 2.

Define to this end two continuous functions f i+2 : R
2d → R, i = 1, 2 by

(

R
(i)
t

)2

= f i+2(Xt), i = 1, 2.

The empirical Sharpe ratios associated with the each of the mediators i = 1, 2 is

̺t(f
i+2) − r

√

̺t(f i+2) −
[

̺t(f i)
]2
, i = 1, 2,

respectively. With f 1 and f 2 as in Example 2.3 a performance measure based on me-

diators’ empirical Sharpe ratios is given by

πt =





̺t(f
1) − r

√

̺t(f 3) −
[

̺t(f 1)
]2
,

̺t(f
2) − r

√

̺t(f 4) −
[

̺t(f 2)
]2





⊤

. (9)

1There is no a-priori reason to assume that returns can be represented by bounded functions which

we assume for mathematical convenience. This can be justified when consumers do not trust unusually

high earnings to prevail. Similar considerations apply to Example 2.4.
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Following a standard assumption in the social interaction literature, we assume that

a consumer employs a mediator at random. The probabilities depend on the current

performances πt. Specifically, let consumers act conditionally independent of each other

given πt so that an individual consumer employs mediator 1 with probability

Φ(π, β) :=
[

η − η
] exp(βπ1)

exp(βπ1) + exp(βπ2)
+ η =

η − η

exp(β(π2 − π1)) + 1
+ η. (10)

Here β > 0 specifies the dependence of the agents’ choices on the mediators’ perfor-

mances, and 0 ≤ η ≤ η ≤ 1 are upper and lower bounds for the realized market share

η. In the limit of an infinite number of consumers the law of large numbers implies that

the chartist’s market share at time t is deterministic. Hence there exists a uniformly

continuous “choice function” F : R
L → R such that

ηt = F
(

̺t(f
1), . . . , ̺t(f

L)
)

:= Φ
(

ψ
(

̺t(f
1), . . . , ̺t(f

L)
)

, β
)

. (11)

It follows from a generalized security market line result (Wenzelburger 2004, Thm.

3.1) that the portfolios of investors with rational expectations are mean-variance ef-

ficient in the ex-ante sense of classical CAPM theory. Transposed into the present

setting, this theorem implies that the conditional Sharpe ratio of mediator 2 will al-

ways be greater than the conditional Sharpe ratio of mediator 1. From this result one

might expect that at least in the scenario of Example 2.4 the mean-variance efficient

portfolios of mediator 2 will always empirically outperform the inefficient portfolios

of mediator 1. A first simulation analysis in Böhm & Wenzelburger (2005), however,

suggests that mediators holding efficient portfolios may not be identified.

We will provide a rigorous analysis of this phenomenon. It will turn out that the

dynamics of asset prices and beliefs can be described by path-dependent stochastic

difference equation. Its dynamics will be analyzed in the following section.

3 Convergence to equilibrium

In this section we state conditions on the behavior of consumers and mediators which

guarantee that asset prices converge in distribution to some limit which is possibly

random. To this end, we shall first give sufficient conditions for convergence of the

market shares. Numerical simulations suggest that the distribution of long-run market
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shares depends on the initial condition as well as on the strength of interactions. If

consumers choose the mediators more or less independently of their respective per-

formance, the market shares settle down to a deterministic limit. If the interaction

is strong enough, the limit is random. This may be viewed as an endogenous source

of randomness originating from interaction and imitation effects. While the chartists’

forecasts may be rather inaccurate, the feedback effects from consumer behavior into

the dynamics of asset prices and forecasts may prevent chartists from being driven

out of the market. In fact, if the interaction effects are strong, chartists and ‘rational’

mediators typically coexist. It is this coexistence that distinguishes our model from,

for instance, Sandroni’s where ‘markets favor agents that make accurate predictions’.

3.1 Benchmark models driven by independent noise

Chartists may have a destabilizing affect on asset prices. Without any bound on their

impact there is no reason to believe that prices and forecasts are stable in the long run.

In order to guarantee long-run stability, we assume that consumers employ mediators

1, the chartist, at least with some probability η and at most with probability η. This

means that the choice function F in (11) is such that

ηt ∈ [η, η]. (12)

In order specify the interval [η, η] we introduce, for any market share η the process

Xη = {Xη
t } defined by the linear recursive relation

Xη
t = A(η)Xη

t−1 +B(η, εt) (t ∈ N). (13)

The process Xη describes the evolution of asset prices and forecasts in a benchmark

model with market shares “frozen” at the level η. The long-run behavior of such

sequences has been extensively investigated under a contraction condition on A(η).

We need a slightly stronger condition.

Assumption 3.1 (i) The map η 7→ A(η) is Lipschitz continuous:

‖A(η) − A(η̂)‖ ≤ a|η − η̂|.

(ii) The interval [η, η] is chosen such that the eigenvalues of all the matrices A(η)

with η ∈ [η, η] lie uniformly within the unit circle.
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(iii) The function B(·, ·) is bounded, |B(η, ε)| ≤ B, and uniformly Lipschitz continuous

in its first argument, i.e.,

sup
ε

|B(η, ε) −B(η̂, ε)| ≤ b|η − η̂|. (14)

When Assumption 3.1 (i) and (ii) are satisfied, the difference equation (13) has

unique stationary solution, i.e., there exists a unique stationary and ergodic process

xη = {xη
t }t∈N that satisfies (13). For any starting point x, the distribution µη

t of

Xη
t converges weakly to the distribution µη of xη

0. Furthermore Xη is bounded. The

following proposition, whose proof is also given in Section A, shows that Assumption

3.1 also guarantees boundedness of the sequence X. It is in this sense that (12) prevents

prices from exploding by limiting the impact of chartists.

Proposition 3.2 Under Assumption 3.1 the sequence {Xt} is almost surely bounded.

Specifically, for any initial state x there is a constant Mx such that

Px

[

sup
t

|Xt| ≤Mx

]

= 1. (15)

Here Px denotes the probability measure on the canonical path space induced by the

process X with initial state x.

It will be convenient to write µη(f) for the integral of a bounded function f with

respect to the unique stationary distribution µη of the process Xη defined by (13).

3.2 Characterization of equilibria

As a first step towards a general convergence result, we are now going to characterize

all possible long-run distributions of the sequence {Xt}t∈N by a fixed point property.

The key assumption is that the empirical process {ηt}t∈N converges almost surely as

t→ ∞. The proof requires some preparation and will be carried out in Section A.

Theorem 3.3 Suppose that Assumption 3.1 is satisfied and that the empirical process

{ηt}t∈N converges almost surely to some random variable η∗. Then the sequence of em-

pirical averages {̺t}t∈N converges almost surely weakly to the random limiting measure

µη∗. More precisely, for all bounded continuous functions f ,

P

[

lim
t→∞

̺t(f) = µη∗(f)
]

= 1.
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The previous theorem states that the distribution of Xt converges weakly to a

random limiting measure if the sequence of market shares settles down to a random

limit in the long run. The result imposes a consistency condition on limiting market

shares and thus allows us to characterize the class of asymptotic market shares. The

limiting market shares have to be consistent with the market shares induced by the

limiting empirical distributions of X through the choice function F in (11). In order

to make this more precise, we define a map ζ : [η, η] → R
L by

ζ(η) :=
(

µη(f 1), . . . , µη(fL)
)

∈ R
L. (16)

This map assigns the long-run empirical averages of the Markov processXη with fixed η

to the market shares η. The question of existence and uniqueness of long-run equilibria

of the process X can now be reduced to a fixed point condition.

Corollary 3.4 Under the assumptions of Theorem 3.3, the random variable η∗ takes

values in the set

E :=
{

η ∈ [η, η] : η = F ◦ ζ(η)
}

, (17)

i.e., it almost surely satisfies the fixed point condition η = F ◦ ζ(η). The long-run

empirical averages of the process X are given by ζ(η∗) and take values in the set

S :=
{

z ∈ R
L : z = ζ ◦ F (z)

}

. (18)

It is well known (Brandt 1986) that the map ζ : [η, η] → R
L is continuous. Typically,

however, no analytical expression will be available. The map requires knowledge about

the structure of the stationary distributions µη for the Markov processes Xη for which,

in general, no closed form representation will be available. However, it can easily

be simulated. A purely numerical analysis of the sequence of market shares, on the

other hand, is not always appropriate because the speed of convergence of the sequence

{ηt}t∈N is very slow. In fact, consider

ηt = F
(

̺t(f
1), . . . , ̺t(f

L)
)

for bounded Lipschitz continuous functions f l and F . For all t, T ∈ N we have that

|ηT+t − ηT | ≤ C
t

T + t
(19)
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for some C <∞. A numerical analysis may thus become extremely time consuming and

could easily be misleading. Comparing the numerical analysis in Böhm & Wenzelburger

(2005) with our results, we will see below that market shares after a short period of

say t = 1000 periods may be a poor predictor for an asymptotic asset price dynamics.

3.3 Convergence of market shares

In view of our characterization result of long-run market shares, it remains to state

conditions which guarantee convergence of the sequence {ηt}t∈N. It turns out that the

long-run behavior of empirical averages and hence the asymptotics of market shares

can be analyzed by means of a differential equation. To this end, we recall that zt =
(

̺t(f
1), . . . , ̺t(f

L)
)

, rewrite our stochastic difference equation (6) and (11) as

Xt = A
(

F (zt)
)

Xt−1 +B
(

F (zt), εt

)

,

zt =
t− 1

t
zt−1 +

1

t

(

f 1(Xt−1), . . . , f
L(Xt−1)

)

,
(20)

and define a map g : R
L → R

L by setting

g(z) := ζ ◦ F (z) − z. (21)

The zeros of the map g are given by the set S defined in (18). Continuity of F and ζ

implies continuity of g. With this we are now in position to state our main convergence

result. The proof will be given in Section B below.

Theorem 3.5 Suppose that the map g is Lipschitz continuous such that the ODE

ż = g(z) (22)

admits a unique solution. Let

S∗ := {s1, . . . , sN} ⊂ S := {z ∈ R
L : g(z) = 0}

be set of asymptotically stable steady states with corresponding basins of attraction

DA(si). If the sequence {zt}t∈N of empirical averages visits a compact subset of some

DA(si) infinitely often with probability p > 0, then the following holds:

(i) The sequence {zt}t∈N converges to si with at least probability p, i.e.,

lim
t→∞

|zt − si| = 0 with at least probability p.

13



(ii) The discrete-time stochastic process {ηt}t∈N of market shares converges with at

least probability p to a stationary value F (si) ∈ E.

The problem of convergence of market shares and hence of asset prices can thus

be reduced to establishing convergence of ordinary differential equations on the level

of empirical averages. In particular, market shares converge almost surely to some

constant if the ODE (21) has a unique, globally asymptotically stable steady state.

This will be the case if, for instance, performances are measured by empirical returns

and the dependence of consumer choices on performances is sufficiently weak. If, on

the contrary, the interactive effects are too strong, ergodicity breaks down and market

shares converge to a random limit as we will illustrate in the following section.

4 Convergence for returns and Sharpe ratios

We apply Theorem 3.5 to investigate whether the rational mediator who holds efficient

portfolios will attain larger market shares than the chartist. Since trading of assets

takes place before consumers can observe the relevant returns, the empirical perfor-

mance of a portfolio has to rely on estimates. These estimates are reflected by the

performance measure. The superiority of an efficient portfolio will only show if the

estimators used for the performance measure are consistent. It is intuitively clear that

for inconsistent estimators portfolios other than the efficient portfolio could appear

to perform better. In fact, we find that chartists and ‘rational’ expert traders often

coexist although we bound the probability that consumers follow the chartist.

Remark 4.1 We assume throughout that the risk-less rate is r = 1%. In this case the

stability condition for our model is satisfied if the market share η is ranging in η ∈ [η, η]

with η = .06 and η = .36. In order to prevent prices from exploding we allow for no

more than 36% chartists. All empirical densities displayed below are calculated using a

sample of 100.000 independent repetitions.

4.1 Empirical returns as performance measures

When the mediators’ performance is measured in average returns as in Example 2.3

the difference in the performances is of the form zt = ̺t(f
1 − f 2) for suitable bounded

14



continuous functions f i on R.

4.1.1 Analytical results

A numerical approximation of the function g defining the ODE (22) is depicted in

Figure 1(a). It indicates that g has at least three steady states, two asymptotically

stable ones and one unstable in the middle. To see if additional steady states exist,

notice that in the present case ηt = F (zt) is a diffeomorphism, i.e., an invertible map

with differentiable inverse F−1. In this case the ODE (22) is topological conjugate

(Arrowsmith & Place 1994) to the ODE for market shares

η̇ = h(η) (23)

where h := (F ′ ◦ F−1)(g ◦ F−1) = (F ′ ◦ F−1)
(

ζ − F−1
)

. The conjugacy implies that

taking empirical averages as performance measures the behavior of (22) and (23) is

qualitatively the same. In particular, the long-run behavior of empirical averages is

precisely described by the long-run behavior of market shares. We infer from

h(η) = h(η) = 0 because (F ′ ◦ F−1)(η) = −β(η − η)(η − η), (24)

the conjugacy of the two ODEs and Figure 1 that h has five steady states when β = 2;

the three steady states corresponding to g along with η and η. Four equilibria are

clearly visible; the fifth lies close to η. The solution to (22) exists for all times, and

standard monotonicity arguments show that all solutions converge to one of the two

asymptotically stable fixed points. The respective basins of attraction are simply sepa-

rated by the unstable fixed point. Now Theorems 3.3 and 3.5 guarantee convergence of

both market shares and asset prices. The respective limits, however, are not necessarily

unique. They may depend on the random noise trader transactions. Furthermore, the

lowest and highest possible market share of chartists are always unstable under the

dynamics of the ODE. This implies that the long-run market share of the chartists will

always be strictly above η and strictly smaller than η.

Remark 4.2 The ODE (23) has a unique globally asymptotically stable steady if the

map η 7→ ζ(η) − F−1(η) has a unique zero. Thus, our financial market dynamics are

ergodic if the dependence of consumers’ choices on performances is sufficiently weak;

for small β the inverse choice function F−1 is essentially a vertical line. Ergodicity
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breaks down if the dependence of consumers’ choices on the mediators’ performance is

too strong. In this case the limiting behavior of market shares and price distributions

is random.

40

27.5

15

2.5

−10

−20 −2.5 15 32.5 50

η0

(a) ODE ż = g(z)

0.3

0.15

0

−0.15

−0.3

0.06 0.135 0.21 0.285 0.36

η0

(b) ODE η̇ = h(η)

Figure 1: Approximated ODEs for T = 10000, β = 2

4.1.2 Numerical results

To further illustrate the result of Theorem 3.5 we simulate the non-linear model

(20) with empirical averages as the performance measure using the program package

. We find that the long-run market shares are in fact random. The prob-

ability with which they converge to the possible steady states depends both on the

initial condition η0 and the intensity of choice. Figure 2 shows the empirical density

of market shares after T = 10.000 periods for N = 100.000 independent samples of

ηT when chartists initially have a market share of 6.5% and 15%, respectively. The

densities are roughly concentrated at the left- and rightmost steady state of the ODE

in Figure 1(b), respectively.

4.2 Empirical Sharpe ratios as performance measures

The analysis of asymptotic market shares becomes more involved if the mediators’

performance is measured by historical Sharpe ratios rather than average returns: in

this case the consumers’ choice function as given by (11) is no longer invertible.
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(a) Initial market share η0 = 0.065
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0.5935

0.3957
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0
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(b) Initial market share η0 = 0.15

Figure 2: Empirical distributions of market shares for β = 2.

4.2.1 Analytical results

If the mediators’ performance is measured in historical Sharpe ratios as in Example

2.4, then zt = (̺t(f
1), . . . , ̺t(f

4)) is a 4-dimensional vector. Contrary to the previous

Example 4.1, the dynamics of the corresponding ODE cannot be described in terms of

market shares alone because the choice function F is no longer invertible. The set of

asymptotic market shares as given in Corollary 3.4 allows the representation

E =
{

η ∈ [η, η] : Φ−1(η, β) = Ψ ◦ ζ(η)
}

, (25)

where Φ−1(·, β) is the inverse of the logit function (10) and Ψ ◦ ζ describes the station-

ary difference in Sharpe ratios of the two mediators. While Φ−1(·, β) is analytically

available, the map Ψ ◦ ζ can only be obtained by simulating the benchmark models

(13). Figure 3 indicates that the two functions in (25) have three intersection points,

provided that the intensity of choice β is sufficiently large, whereas the leftmost inter-

section point (β = 2) is hardly visible but exists; Φ−1(·, β) has vertical asymptotes at

η and η. These intersection points characterize the possible long-run market shares of

the chartist. In particular, market shares and hence asset prices converge to a unique

limit if the dependence of consumer decisions on the mediators’ performance is weak.

4.2.2 Numerical results

When simulating the non-linear model (20) we find again that the asymptotics of

market shares are random and depend on the initial condition and the intensity of

choice. Figure 4 shows the empirical density for N=100.000 independent samples of
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5.25

1.625

−2

0.05 0.1275 0.205 0.2825 0.36

η

Figure 3: Long-run Sharpe ratios versus logit function; β = 0.5 (red) and β = 2 (blue).

market shares after T = 10.000 periods for β = 1 and η0 = 6.5% and η0 = 35.5%,

respectively. Its support roughly coincide with the right- and leftmost intersection

point of the two functions depicted in Figure 3, respectively. We infer that the long-

run market shares are sensitive to initial conditions. Similar observations are made

0.082

0.0615

0.041

0.0205

0

0.05 0.13 0.21 0.29 0.37

ηT

(a) Initial market share η0 = 0.065

0.1148

0.0861

0.0574

0.0287

0

0.05 0.13 0.21 0.29 0.37

ηT

(b) Initial market share η0 = 0.355

Figure 4: Empirical distributions of market shares for β = 1.

for β = 2. In this case, however, the distribution of market shares is either unimodal

or bimodal depending on the initial market shares. Figure 5(a) shows the empirical

distribution for η0 = 6.5%. In this case the chartists almost die out while for η0 = 35.5%

the empirical distribution of asymptotic market shares is bimodal with two peaks which

are approximately located at the outer intersection points of the two functions depicted

in Figure 3. If the chartists initially have a sufficiently high market share, they ‘survive’

with high probability. If the interaction between consumer is strong, the long-run

market shares not only depend on the initial market share, but also on the specific

history of noise trader transactions which is determined by the exogenous noise. It
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Figure 5: Empirical distributions of market shares for β = 2.

should also be pointed out that the empirical distribution often converges only very

slowly. This is witnessed in Figure 6 which displays the empirical densities of market

shares after T = 500 and T = 1000 periods, respectively.

0.0136

0.0102

0.0068

0.0034

0

0.06 0.135 0.21 0.285 0.36

ηT

(a) Distribution after 500 periods.

0.0253

0.0189

0.0126

0.0063

0

0.06 0.135 0.21 0.285 0.36

ηT

(b) Distribution after 1000 periods.

Figure 6: Empirical distribution of market shares for β = 2 and η0 = 0.355.

5 Conclusions

We investigated the long-run behavior of asset prices in a financial market with inter-

acting agents demonstrating that the price process looses the property of ergodicity

if interactive complementarities of agents become too strong. Asset prices may be-

have in a non-ergodic manner as the price processes converge in distribution, but the

limiting distribution is path dependent. Possible long-run market shares along with

their limiting distributions were characterized by steady states of a limiting ordinary

differential equation. It was shown that the long-run market shares of two competing
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financial mediators depend strongly on the random environment of the market which is

created by the historic behavior of consumers. Taking either empirical average returns

or Sharpe ratios as a performance measure, it was shown that efficient portfolios may

fail to empirically outperform inefficient portfolios. Chartists may attain higher market

shares than mediators holding efficient portfolios, so that rational mediators may not

be identified or even be driven out of the market. Economically, this result implies

that social interaction constitutes an endogenously generated source of risk which may

lead to inefficient long-run portfolio holdings as empirical performance measures may

be highly misleading. The result also implies that instead of looking for efficient port-

folios, it may be more profitable for professional financial mediators to look for larger

market shares.

A Proof of Theorem 3.3

We denote by P
η
µ and Pµ the law of the Markov processes Xη and X with initial distri-

bution µ, respectively, and put P
η
x := P

η
δx

and Px := Pδx
. The respective expectations

are denoted E
η
µ and E

η
x. The empirical distributions associated with Xη and X are

denoted {̺η
t }t∈N and {̺t}t∈N.

Extending {εt}t∈N, to a sequence of i.i.d. random variables on Z, the stationary

solution {xη
t }t∈N of (13) may be viewed as the Markov chain xη with initial value

xη
0 =

∞
∑

j=1

Aj(η)B(η, ε−j). (26)

Under Assumption 3.1 any solution of (13) converges to almost surely to the stationary

solution in the sense that limt→∞ |Xη
t − xη

t | = 0 almost surely. In particular Xη has

a unique stationary distribution µη. The distribution depends continuously on η and

under the assumptions of our main theorem

lim
t→∞

∫

fd̺η
t =

∫

fdµη
P

η
µ-a.s.

for any bounded continuous function f , each initial distribution µ, and each η ∈ [η, η].

We refer the reader to Brandt (1986) for a more detailed discussion of linear stochastic

recursive equations.
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A.1 Proof of Proposition 3.2

The process X admits the explicit representation

Xt+1 =

t
∑

j=0

(

t
∏

i=t−j+1

A(ηi)

)

B(ηt−j , εt−j) +

t
∏

i=0

A(ηi)X0. (27)

To prove thatX is bounded we need to show that the involved matrix products converge

fast enough to zero.

Proof of Proposition 3.2: To establish boundedness of (27), we first provide an

estimate for the random products of the matrices A(η). Since all the eigenvalues of the

matrices A(η) lie uniformly within the unit circle there exists an α < 1 and a constant

N(η) ∈ N which satisfies

‖AN(η)(η)‖ < α and so ‖AnN(η)(η)‖ < αn for all n ∈ N;

see Varga (1962), Theorem 3.2 for details. Thus, X 7→ A(η)X is a contraction of

order N(η). Since the entries of the matrices A(η) are uniformly bounded, we obtain

constants C(η) such that

‖An(η)‖ < C(η)α[ n
N(η) ] for all n ∈ N (28)

where [x] denotes the largest integer less than or equal to x ∈ R
+. Uniform continuity

of the map η 7→ ‖A(η)n‖ yields

N := sup
η∈[η,η]

N(η) <∞. (29)

From this and (19) we see that there exists a constant C̃ <∞ such that
∥

∥

∥

∥

∥

t
∏

i=0

A(ηi)‖
∥

∥

∥

∥

∥

≤ C̃α[ t
N ]. (30)

Since the random variables B(η, ε) are uniformly bounded this shows that

sup
t

t
∑

j=0

∥

∥

∥

∥

∥

t
∏

i=t−j+1

A(ηi)

∥

∥

∥

∥

∥

≤ C

for some C <∞. Hence the assertion follows from the explicit representation (27). 2

The same arguments as in the proof of Proposition 3.2 can also be applied to prove

that family of Markov chains {Xη}η∈[η,η] is uniformly bounded.
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Corollary A.1 (i) For any compact set D of initial values there exists a constant

MD such that

P

[

sup
t,η

|Xη
t | ≤MD | Xη

0 ∈ D

]

= 1.

(ii) For any two processes Xη and Y η with initial values x and y, respectively,

sup
η,t

|Xη
t − Y η

t | ≤ Cα[ t
N ]|x− y|.

The proof of Proposition 3.2 shows that all the stationary distributions µη are

concentrated on a common compact set K. Thus, for any compact set of initial values

D, the Markov chains may be viewed as Markov chains on a compact state space KD.

That is, we may assume that the transition kernels Πη of Xη satisfy

Πη(x;KD) = 1 for all x ∈ KD.

A.2 Proof of Theorem 3.3

In this section we show that almost sure convergence of market shares implies conver-

gence in distribution of asset prices and forecasting rules. From the proof of Proposi-

tion 3.2 we know that there exists a constant N ∈ N such that supη ‖AN (η)‖ < 1. To

ease some of the notational complexity, we prove Theorem 3.3 under the simplifying

assumption that N = 1, i.e., that

α := sup{‖A(η)‖ : η ≤ η ≤ η} < 1. (31)

The general case follows from straightforward modification of the arguments given

below. At this point it is also convenient to recall that the Vasserstein metric

d(µ, ν) := sup {|f(µ) − f(ν)| : ‖f‖∞ ≤ 1, f Lipschitz with constant 1} (32)

induces the weak topology on the class of all probability measures on R
d. In terms of

this metric, almost sure convergence of empirical distributions to their expected value

under the unique stationary measure translates into

lim
t→∞

d (̺η
t , µ

η) = 0 P
η
x-a.s.
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Proof of Theorem 3.3: Let us introduce, for any T ∈ N a benchmark processes X
T

by

X
T

t = Xt for t ≤ T and X
T

t+1 = A(ηT )X
T

t +B(ηT , εt) for t > T.

In view of our simplifying condition (31) and Assumption 3.1 we obtain

|XT+t −X
T

T+t| ≤ α|XT+t−1 −X
T

T+t−1| + C sup
t≥T

|ηt − ηT |

≤ C

1 − α
sup
t≥T

|ηt − ηT |.

Notice now that for any bounded Lipschitz continuous function g with constant 1,

sup
t≥T

|̺t(g) − ̺T
t (g)| ≤ sup

t≥T

1

t− T

t
∑

i=T+1

|Xi −X
T

i |.

This implies

lim
T→∞

Px

[

sup
t≥T

d(̺t, ̺
T
t ) ≥ ε

]

= 0. (33)

Moreover, almost sure convergence of the sequence of market shares {ηt}t∈N to η∗ yields

Px

[

lim
T→∞

d(µηT , µη∗) = 0
]

= 1. (34)

Since the random variables ηT and εT+1, εT+2, ... are independent and all the eigenval-

ues of A(ηT ) lie inside the unit circle, X
T

is an ergodic Markov chain with invariant

distribution µηT . The associated sequence of empirical distributions {̺T
t }t≥T converges

almost surely weakly to µηT :

Px

[

lim
t→∞

d(̺T
t , µ

ηT ) = 0
]

= 1. (35)

An application of the triangle inequality shows that the assertion follows from (33)-(35).

2

B Proof of the convergence result

This section proves our convergence result for market shares stated in Theorem 3.5. The

arguments will be based on a stochastic approximation result for stochastic difference

equations and a uniform large deviations principle for stable autoregressive processes.
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B.1 Stochastic approximation

Our goal is to apply a stochastic approximation result of Kushner & Yin (2003). To

this end we first rewrite the second equation in (20). For each T ∈ N, set

zt
T :=

1

t

T+t
∑

s=T+1

(

f 1(Xs−1), . . . , f
L(Xs−1)

)

,

such that empirical averages up to time T + t take the form

zT+t =
T

T + t
zT +

t

T + t
zt

T . (36)

Using (21), we obtain the following representation of zT+t:

zT+t = zT +
t

T + t

[

g(zT ) + βt
T

]

with βt
T = zt

T − ζ
(

F (zT )
)

. (37)

Let us also introduce a different time scale by defining {tn}n∈N and {Tn}n∈N by

tn := n4, Tn :=
n
∑

i=1

ti−1.

Setting θ̂n := zTn
and βn := βtn

Tn
the random sequence {θ̂n}n∈N satisfies

θ̂n+1 = θ̂n + εn

[

g(θ̂n) + βn

]

where εn :=
tn

Tn + tn
. (38)

Since Tn is of the order n5, the quantity εn is of the order n−1. This allows us to apply

a stochastic approximation algorithm to the sequence {θ̂n}n∈N defined in (38), if the

“error terms” βn converge to zero sufficiently fast. The ODE method for approximating

the dynamics of the discrete time process (38) uses a continuous time interpolation of

the sequence {θ̂n}n∈N. A natural time scale for the interpolation is defined in terms of

the step-size sequence {εn}n∈N. Specifically, let us define

τ0 = 0 and τn :=
n−1
∑

i=0

εi

and the continuous time interpolation θ0 = (θ0(t))t≥0 of the discrete time process

{θ̂n}n∈N by θ0(0) = θ̂0 and

θ0(t, ω) = θ̂n(ω) for τn ≤ t < τn+1.
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Furthermore, we introduce the left-shifts θn of θ0 by θn(t, ω) = θ0(τn + t, ω). If the

sequence {εn}n∈N satisfies

∑

n≥0

εn = ∞ and
∑

n≥0

ε2
n <∞ (39)

and if the “error terms” βn are asymptotically negligible in the sense that

∑

n≥0

εn|βn| <∞ almost surely (40)

then the functions θn(·, ω) are equicontinuous for almost every ω. If, in addition the

discrete time sequence {θ̂n}n∈N is bounded with probability one, then any limit θ(·, ω)

of some convergent subsequence {θnk(·, ω)}k∈N of {θn(·, ω)}n∈N is a trajectory of the

ordinary differential equation

θ̇ = g(θ). (41)

More precisely, the functions {θnk(·, ω)}k∈N converge to the unique solution of the ODE

(41) with initial condition θ(0, ω), given by

θ(t, ω) = θ(0, ω) +

∫ t

0

g(θ(s, ω)) ds,

uniformly on compact time intervals. For all T <∞ we have

lim
k→∞

sup
0≤t≤T

|θnk(t, ω) − θ(t, ω)| = 0. (42)

This approximation result allows us to analyze the asymptotics of the sequence {θ̂n}n∈N

by means of the long-run behavior of the ODE (41). Theorem 2.1 in Kushner & Yin

(2003, Chapter 5) states that if {θ̂n(ω)}n∈N visits some compact subset Ci of a basin of

attraction DA(si) of some asymptotically stable steady state si of the system θ̇ = g(θ)

infinitely often with probability p > 0, then

lim
n→∞

|θ̂n − si| = 0 with at least probability p.

Proof of Theorem 3.5: In order to apply the convergence result of Kushner & Yin

(2003) we only need to verify (40). This will be done in Lemma B.5 below. If (40) holds,

the discrete-time process {θ̂n}n∈N defined in (38) converges to some asymptotically
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stable fixed point si ∈ S∗ of the associated ODE with at least probability p. This

proves the assertion because (19) and uniform continuity of the choice functions yields

max {|zTn
− zt| : t = Tn + 1, Tn + 2, . . . , Tn+1} = O(n−1).

2

B.2 A uniform large deviations principle

For a given market share η the Markov chain Xη is ergodic. The large deviation

principle provides a measure for the speed of convergence of time averages to their

expected values under the stationary measure.

Definition B.1 A sequence {Mt}t∈N of random variables defined on some probability

space (Ω,F ,P) satisfies a large deviations principle with speed at ↑ ∞ (t → ∞) and

rate function I if

lim sup
t→∞

1

at

log P [|Mt| ∈ F ] ≤ − inf{I(u) : u ∈ F}

for any closed set F and

lim inf
t→∞

1

at

log P [|Mt| ∈ U ] ≥ − inf{I(u) : u ∈ U}

for any open set U . The sequence {Mt}t∈N satisfies a moderate deviations principle

with speed at = o(t) and rate function Î if the sequence
{√

t
at
Mt

}

t∈N

satisfies a large

deviations principle with speed at and rate function Î.

If the sequence of random variables {Mt}t∈N satisfy a moderate deviations principle

with speed at and rate function Î, then for all sufficiently large t ∈ N:

P

[

|Mt| ≥
√

at

t

]

= P

[
√

t

at
|Mt| ≥ 1

]

≤ e−at inf{Î(u):|u|≥1} (43)

B.2.1 A uniform moderate deviations principle for empirical averages

In the sequel we derive a uniform moderate deviations principle for the random variables

Mη
t := ̺η

t (f) − µη(f) for a bounded Lipschitz function f . (44)
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Proposition B.2 There exists c > 0 such that for any compact set D of initial values

lim sup
t→∞

1√
t
log sup

η,x∈D
P

η
x

[

|Mη
t | ≥ t−1/4

]

≤ − 1

2c
. (45)

As an immediate corollary we then obtain that uniformly in all the possible market

shares the random variable Mη
t4 exceeds the values t−1 only finitely often.

Corollary B.3 For any compact set of initial values D and all η ∈ [η, η], we have that

P
η
x

[

|Mη
t4 | ≥

1

t
infinitely often

]

= 0.

Proof: The assertion follows from the Borel-Cantelli Lemma because

sup
η,x∈D

P
η
x

[

|Mη
t4 | ≥

1

t

]

≤ e−
t2

2c for all sufficiently large t.

2

The proof of Proposition B.2 requires some preparation. From

Mη
t ≤

√
N

N−1
∑

j=0

|Mη,j
t | where Mη,j

t :=
1

√

[t/N ]

[t/N ]
∑

i=0

(

f(Xη
Ni+j) − µη(f)

)

we obtain

{

|Mη
t | ≤ t−1/4

}

⊃
{

|Mη,j
t | ≤ 1

N3/2
t−1/4 for j = 1, 2, . . . , N − 1

}

.

As a result, it suffices to prove Proposition B.2 for the Markov chain {Xη
Nt}t∈N. In view

of the discussion at the end of Section A.1 we may as well assume that the Markov

chains Xη are contractions uniformly in η ∈ [η, η], i.e., that supη ‖A(η)‖ < 1. It then

follows from Worms (1999, Thm. 2), that the sequence

{
√

t

at

Mη
t

}

t∈N

satisfies a large deviation principle with speed {at}t∈N if at = o(t). Furthermore, the

rate function Îη can be given in closed form:

Îη(u) = sup
θ

{

uθ − 1

2
θ2cη

}

=
1

2

u2

cη
. (46)
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The constant cη is given in terms of the solution Gη to the Poisson equation associated

to f and the transition operator Πη of the Markov chain Xη. More specifically, there

exist functions Gη which solve

f − µη(f) = Gη − ΠηGη, (47)

and Lipschitz continuity of f yields Lipschitz continuity of Gη and Gη − ΠηGη with

the same constant, cf. Duflo (1997, Chap. 6). The normalized functions Gη(x)−Gη(0)

also satisfy the Poisson equation (47) and share the same Lipschitz constant. Thus, we

may with no loss of generality assume that Gη(0) = 0. In this case, the functions Gη

are uniformly bounded and equicontinuous because, for any compact set D of initial

values, the processes Xη may be viewed as a Markov processes on a common compact

state space. In terms of Gη the constant cη and the random variable Mη
t are given by,

respectively,

cη =

∫

[

G2
η − (ΠηGη)

2
]

dµη = Eµη

[

G2
η − (ΠηGη)

2
]

(48)

and

Mη
t =

1

t

t
∑

s=1

[

Gη(X
η
s ) − ΠηGη(X

η
s−1)

]

+
1

t
Gη(X0) −

1

t
Gη(X

η
t ). (49)

Since all the functions Gη are uniformly bounded, the constants cη are uniformly

bounded by some constant c < ∞. Moreover, if {Fη
t }t∈N denotes the filtration gener-

ated by the Markov chain Xη, then

E
η
x

[

Gη(X
η
t ) − ΠηGη(X

η
t−1)|Fη

t−1

]

= 0.

Thus, the deviation of empirical averages from their expected values under the station-

ary measure can be described in terms of a martingale difference sequence; see Duflo

(1997, Theorem 6.3.20) for details.

Remark B.4 The Markov property of Xη implies that

E
η
x

[

Gη(X
η
t+j)ΠηGη(X

η
t+j−1)|Fη

j

]

= E
η
Xη

j

[

Gη(X
η
t )ΠηGη(X

η
t−1)

]

= E
η
Xη

j

[

E
η
Xη

j

[

G(Xη
t )ΠηGη(X

η
t−1)|Xη

t−1

]

]

= E
η
Xη

j

[

(ΠηGη)
2(Xη

t−1)
]

= E
η
x

[

(ΠηGη)
2(Xη

t+j−1)|Fη
j

]

.
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From this we obtain

E
η
x

[

G2
η(X

η
t+j) − (ΠηGη)

2(Xη
t+j−1)|Fη

t

]

= E
η
x

[

(

Gη(X
η
t+j) − ΠηGη(X

η
t+j−1)

)2 |Fη
t

]

.

Since µη is the stationary distribution for Xη, a similar argument shows that

cη = Eµη

[

G2
η(x

η
j ) − (ΠηGη)

2(xη
j−1)

]

= Eµη

[

Gη(x
η
j ) − (ΠηGη)(x

η
j−1)

]2
.

This allows us to estimate the speed of convergence by means of a uniform moderate

deviation principle for martingale difference sequences established in Gao (1996).

With the specific choice at =
√
t = o(t), it follows from the results in Worms (1999)

along with (43) and the fact that the constants cη are bounded by some c that

sup
x

P
η
x

[

|Mη
t | ≥

1

t1/4

]

≤ e−
1
2c

√
t for all t ≥ Tη. (50)

For our purposes we need the latter estimate to be uniform in all the possible market

shares. To this end, recall first that the stationary solution xη may be viewed as the

Markov chain Xη with initial value xη
0. The arguments given in the proof of Proposition

3.2 show that xη
0 is bounded uniformly in η ∈ [η, η]. In view of Corollary A.1 (ii) this

yields a constant C depending on D, but not on η such that

sup
x∈D

|Xη
t − xη

t | ≤ Cαt

almost surely. Since the functions Gη − ΠηGη are uniformly bounded and uniformly

Lipschitz continuous, so are G2
η and (ΠηGη)

2. Thus, in view of Remark B.4 there exists

a constant L <∞ such that

∣

∣

∣
E

η
x

[

(

Gη(X
η
t+j) − (ΠηGη)(X

η
t+j−1)

)2 |Fη
t

]

− cη

∣

∣

∣

=
∣

∣E
η
x

[

G2
η(X

η
t+j) − (ΠηGη)

2(Xη
t+j−1)|Fη

t

]

− Eµη

[

G2
η(x

η
j ) − (ΠηGη)

2(xη
j−1)

]∣

∣

≤ Lα−(j−1)

uniformly in all the possible market shares and in x ∈ D. This yields

lim
j→∞, j

T
→0

sup
η,x∈D

∥

∥

∥

∥

∥

1

T

T
∑

t=1

E
η
x

[

(

Gη(X
η
t+j) − ΠηGη(X

η
t+j−1)

)2 |Fη
t

]

− cη

∥

∥

∥

∥

∥

L∞(Pη
x)

= 0.
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Hence it follows from Theorem 1.1 in Gao (1996) that

lim sup
T→∞

1√
T

log sup
η,x∈D

P
η
x

[

1

T 3/4

∣

∣

∣

∣

∣

T
∑

t=1

Gη(X
η
t ) − ΠηGη(X

η
t−1)

∣

∣

∣

∣

∣

≥ 1

]

≤ − 1

2c
.

In view of (49) and because the functions Gη are uniformly bounded we obtain

lim sup
T→∞

1√
T

log sup
η,x∈D

P
η
x

[

|MT | ≥ T−1/4
]

≤ − 1

2c
.

This finishes the proof of Proposition B.2.

B.2.2 Bounding error terms by a uniform moderate deviations principle

Our uniform large deviations principle allows us to prove that the error terms βn in

the representation (38) of the sequence {θ̂n}n∈N vanish sufficiently fast.

Lemma B.5 We have that

P

[

∑

n≥0

tn
Tn + tn

|βn| <∞
]

= 1. (51)

Proof: Recall that {̺T
t }t≥T denotes the sequence of empirical distributions of a pro-

cess X
T

starting at time T inXT which evolves according to the linear recursive relation

(13) with fixed market shares ηT . Write

zT
t :=

(

̺T
t (f 1), . . . , ̺T

t (fL)
)

and recall (37) to get

βn =
(

ztn
Tn

− zTn

tn

)

+
(

zTn

tn − ζ(ηTn
)
)

.

With regards to the second term in the decomposition of βn note first that independence

of the random variables ηTn
and εTn+1, εTn+2, . . . yields

Px

[

∣

∣zTn

tn − ζ(ηTn
)
∣

∣ ≥ 1

n

]

= P
ηTn

XTn

[

∣

∣z
ηTn

tn − ζ(ηTn
)
∣

∣ ≥ 1

n

]

.

Given an initial value x, the process {Xt}t∈N is almost surely bounded, due to Propo-

sition 3.2. In particular, there exists a compact set D such that

Px [Xt ∈ D for all t ∈ N] = 1.
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Thus, Proposition B.2 applied to the Lipschitz continuous functions f i (i = 1, 2, . . . , L)

yields a constant N ∈ N such that

Px

[

∣

∣zTn

tn − ζ(ηTn
)
∣

∣ ≥ 1

n

]

≤ sup
x∈D

sup
η∈[η,η]

P
η
x

[

max
i=1,2,...,L

∣

∣̺η
tn(f i) − µη(f i)

∣

∣ ≥ 1

n

]

≤ Le−
1
2c

n

for all n ≥ N . Hence the lemma by Borel and Cantelli yields

∑

n≥1

tn
Tn + tn

∣

∣zTn

tn − ζ(ηTn
)
∣

∣ <∞ Px-a.s.

To study the first term of the decomposition we apply similar arguments as in the

second and third part of the proof of Theorem 1.4 to deduce that up to multiplicative

constants

∣

∣

∣
XTn+tn −X

Tn

Tn+tn

∣

∣

∣
≤ α

[ tn
N ]

0 sup
0≤k≤N

∣

∣

∣
XTn+k −X

Tn

Tn+k

∣

∣

∣
+ sup

Tn≤t≤Tn+tn

|ηt − ηTn
|

≤ α
[ tn

N ]
0 sup

0≤k≤N

∣

∣

∣
XTn+k −X

Tn

Tn+k

∣

∣

∣
+

tn
Tn + tn

.

The second inequality follows from (19). Since sup0≤k≤N

∣

∣

∣
XTn+k −X

T n

Tn+k

∣

∣

∣
is almost

surely bounded by some constant that depends only on the starting point of X, we see

that
∣

∣

∣
XTn+tn −X

Tn

Tn+tn

∣

∣

∣
= O

(

n−1
)

Px-a.s.

Hence uniform continuity of the maps f 1, . . . , f l and the choice function F yields

∣

∣zTn

tn − z
ηTn

tn

∣

∣ = O
(

n−1
)

Px-a.s.

and so
∑

n≥1

tn
Tn + tn

∣

∣zTn

tn − z
ηTn

tn

∣

∣ <∞ Px-a.s.

2
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Böhm, V. & J. Wenzelburger (2005): “On the Performance of Efficient Portfolios”,

Journal of Economic Dynamics and Control, 29(4), 721–740.

Brandt, A. (1986): “The Stochastic Equation Yt+1 = AtYt + Bt with Stationary Coeffi-

cients”, Journal of Applied Probability, 18, 211–220.

Brock, W. & C. Hommes (1997): “A Rational Route to Randomness,” Econometrica, 65

(5), 1059–1096.

(1998): “Heterogeneous Beliefs and Routes to Chaos in a Simple Asset Pricing

Model.”, Journal of Economic Dynamics and Control, 22, 1235–1274.

De Long, J.B., A. Shleifer, L.H. Summers & R. J. Waldmann (1990): “Noise Traders

Risk in Financial Markets”, Journal of Political Economy, 98, 703–738.

(1991): “The Survival of Noise Traders”, Journal of Business, 64, 1–19.

Duflo, M. (1997): Random Iterative Models. Springer, Berlin.

Estigneev, I., Hens, T. & K.R. Schenk-Hoppé (2005): “Evolutionary Stabile Stock
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