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Abstract

In this paper, we consider the stochastic sequence {Y;}:en defined recursively by the linear
relation Y;41 = A:Y; + B: in a random environment which is described by the non-stationary
process {(A¢, Bt)}ten. We formulate sufficient conditions on the environment which ensure that
the finite-dimensional distributions of {Y;}.cn converge weakly to the finite-dimensional distri-
bution of a unique stationary process. If the driving sequence {(A¢, B¢)}+en becomes stationary
in the long run, then we can establish a global convergence result. This extends results of Brandt

(1986) and Borovkov (1998) from the stationary to the non-stationary case.
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1 Introduction
In this paper, we consider the stochastic sequence {Y};}+en defined recursively by the linear relation
th+1 - AtYVt + Bt (t € N) (1)

in a random environment. The environment is described by the stochastic process {(A¢, Bt) }ten de-
fined on some probability space (2, F,P). We formulate sufficient conditions on the driving sequence
{(A¢, Bt) }ten which guarantee that the solution of (1) converges in distribution as t — oo.
Stochastic sequences of the form (1) have been extensively investigated under a mean contraction
condition and under the assumption that the driving sequence {(A, Bi)}ten is stationary. For
example, Vervaat (1979) considers the case where the environment consists of i.i.d. random variables.
Brandt (1986) assumes that the driving sequence is stationary and ergodic under the law P; see also
Borovkov (1998). However, in view of many applications it seems natural to consider the case where
the environment is given by a non-stationary sequence {(A, B:)}ten. For example, the process
{Yi}ten could be a sequence of temporary equilibrium prices of a risky asset generated by the
microeconomic interaction of many agents who are active on a financial market; see, e.g., Horst

“mood”

(2000). In such a model, the sequence {(A, B:)}ten is generated by the evolution of the
of the market. Given that the “mood” is out of equilibrium but settles down in the long run, it is
desirable to have sufficient conditions which ensure that the price process is driven into equilibrium.

We are going to formulate conditions on the non-stationary sequence {(A¢, Bt) }ten which guaran-
tee that the solution of (1) converges in law as t — oo. In a first step, we will analyse the dynamics of
the process {Y} }+en governed by (1) under the assumption that the driving sequence has a “nice” tail
structure. More precisely, we shall assume that there exists a probability measure P* on (2, F) such
that the driving sequence is stationary and ergodic under P* and which coincides with the original
measure P on the tail-field 7 generated by the process {(A¢, B:) }ten- In this case, we establish a
global convergence result under the measure P, namely convergence in law of the shifted sequence
{Yitr71}ien to the uniquely determined stationary solution of (1) under the measure P* as T' — oo.
The results of Brandt (1986) correspond to the case P = P*, and in this case one can prove almost
sure convergence. Borovkov (1998) considers a situation where the environment converges in the
sense of a coupling to a stationary process. This case is also covered by our method.

In a second step, we will weaken the regularity condition that the measures P* and P coincide
on the tail-field 7. Instead, we shall assume that the environment can be approximated in law by a
sequence of “nice” processes. In this case, we establish a local version of the convergence result, i.e.,
weak convergence of the finite-dimensional distributions of the process {Y;yr}ien under P to those
of the uniquely determined stationary solution of (1) under P* as T' — 0.

The paper is organized as follows. In Section 2, we formulate our main results. In Section 3, we
prove our convergence result for a non-stationary but “nice” sequences {(A¢, Bt) }ten. In Section 4,
we study the case where the environment can be approximated in law by “nice” processes. Section 5 is
devoted to a Markovian case study where the assumption that the environment can be approximated
by “nice” processes can indeed be verified.



2 Assumptions and the Main Results

Let ¢ := {(Ay, Bt) }ten be a sequence of R?-valued random variables defined on some probability
space (2, F,P), and let {Y;}:en be the sequence in (1) driven by the “input” . In this section,
we formulate conditions which ensure that the finite-dimensional distributions of the shifted process
{Yi+1}ten converge weakly to the finite-dimensional distributions of a uniquely determined station-
ary process as T — oo. In a first step, we shall assume that the environment ¢ is stationary and
ergodic under some law P* and that the asymptotic behaviour of the driving sequence 1 is the same
under the original measure P and under the law P*. In order to make this more precise, we introduce
the o-fields

Fuu=o0 ({(A¢, By) hi<s<t) and Fi=o ({(A¢, Bt) }s>t) (2)
where 0 < t <1 € N and denote by
% = ﬂ ﬁt (3)
teN

the tail-o-algebra generated by the sequence ¢. We let B(R) be the Borel-o-field on R and denote
by E and E* the expectation with respect to P and P*, respectively. Moreover, it will be convenient
to denote by Law(X,P) the law of a random variable X defined on (Q, F,P).

Definition 2.1 A driving sequence v is called “nice” if there exists a probability measure P* on

(Q, F) with the following properties:
(i) ¢ is stationary and ergodic under P* and satisfies one of the conditions
—00 <E*In|4p] <0 and E*(In|By|)" < o0 (4)
P*[4p = 0] > 0. (5)
(ii) The asymptotic behaviour of ¢ is the same under P and P*, i.e.,

P=P" on Ty. (6)

Remark 2.2 (i) Our first integrability condition in (4) may be viewed as a mean contraction
condition for the dynamics defined by (1). In the case P = P*, such a condition has also been
imposed by, e.g., Vervaat (1979) and Brandt (1986).

(ii) We denote by || -||¢ the total variation of a signed measure on a measurable space (E,E). Since
lim [P~ B 5, = IIP - B*|i7, ™

a driving sequence ¢ satisfies (6) if and only if it becomes stationary in the long run. This is

equivalent to the existence of a sequence {ci}ten satisfying limy_, oo ¢; = 0 and

sup [P —P*[| £, < e (8)
>t :

Here, both (7) and (8) follow from the continuity of the total variation distance along increasing
and decreasing o-algebras; a simple martingale proof can be found in, e.g., Follmer (1979),
Remark 2.1.



Before we formulate convergence results for the sequence {Y;}ien driven by a non-stationary
input ¢, let us first consider an example where the assumption that the driving sequence is “nice”

can indeed be verified.

Example 2.3 Let ({&}ien, (Pe)eenr) be a Markov chain on (Q,F) with state space M and with
transition operator II. We assume that the sequence {Law(&;,P¢) }ren converges in the total variation

norm to a unique stationary measure pu* as t — 0o and consider an environment of the form

Y= {(f (&), 9(&)) feen,

where f,g: M — R are measurable functions. Due to Theorem 7.16 in Breiman (1968), uniqueness

of the stationary probability measure p* implies that the sequence 1 is stationary and ergodic under
P = [ PeCon(de).
M

Since the mapping & — Pe[{t1,..., ¥} € B] (1 € N, B € B(R*)) is measurable and bounded above by
1 and because the sequence {Law(&;, Pe) }ien converges in the total variation norm to p*, we obtain
sup [P —P*||lz,, < sup I'F — p*(F)|o — 0 (t — 00).

€.l " |Flo<1

Thus, condition (8) holds for any initial distribution u of the chain {& }ien, and so the environment
¥ ={(f(&),9(&)) }en defined on (U, F,P,) is “nice” if, for example, the integrability conditions

—00 < / In|fldu* <0 and / (In|g))"du* <0
M M
are satisfied.

Let us now turn to the solution {Y;}ten of (1). For a fixed environment ¢ and for any initial

value Yy = y € R, we have the explicit representation

Y = yily, ) = i 1:[ Aj | Be—j_1 + (H Ai> y (t €N). 9)
i=0

j=0 \i=t—j

If the driving process v is already in equilibrium, i.e., if P = P*, then we find ourselves in the setting
analysed in Brandt (1986). In such a situation, we may as well assume that the environment is
defined for all ¢ € Z, due to Kolmogorov’s extension theorem. For notational convenience, we shall
assume that the probability space (2, F,P*) is rich enough to carry the sequence {(A¢, Bt) }iez-

In the stationary setting, our assumptions in Definition 2.1 (i) coincide with conditions (0.4) and
(0.5), respectively, in Brandt (1986). In this case, there exists a unique stationary process {Y;*}iez
which satisfies P*-a.s. the recursive relation (1) for all ¢ € Z, due to Theorem 1 in Brandt (1986).
The random variable Y;* is P*-a.s. finite and takes the form

0 t—1
Ve=> | II 4| Bi-jmr  (tem). (10)
=0 \i=t—j



In the sequel we will call the process {Y;* }ten the unique stationary solution of (1) under P* driven
by v. For any initial value y € R, the solution {y:(y,®)}ien of (1) converges almost surely to the

stationary solution in the sense that
Jim Jyi(y,0) ~ Y7 =0 Pras.

We denote by v the law of the process {Y;* }tcn under P*, and for any 0 < t; < t2 < -+ <ty €N,

we let vy, ¢, be the distribution of the vector (Yj%,..., Y ), ie.,
vi=Law({Y; }ten,P*) and vy, 4, = Law((Y,..., Y ), P). (11)

We are now going to formulate a convergence result for the process {Y;}:cn in a situation where
the driving sequence v is out of equilibrium but “nice” in the sense of Definition 2.1. The following

theorem will be proved in Section 3.

Theorem 2.4 Suppose that ¢ is “nice” in the sense of Definition 2.1. Then the process {y:(y, V) }ren
converges in law to the uniquely determined stationary solution {Y;*}ien of (1) defined on (Q, F,P*),

i-e., for any initial value y € R, we have

Law({ye+7(y, ) e, P) == v(-) (T — o0). (12)

w .y
Here, “—” denotes weak convergence of probability measures.

“nice” tail structure.

Let us now consider the case where the environment ) does not have a
Theorem 2.6 below states that the finite-dimensional distributions of the process {y:(y, ¥)}+en under
the law P converge weakly to the finite-dimensional distributions of the unique stationary solution
of (1) under P* as soon as ¢ can be approximated in law by a suitable sequence of “nice” processes
{Y"}nen. The approximating sequence {¢"}pen, " := {(A}, B') }ten, is defined as follows. Let

{et}ten and {n:}ien be sequences of bounded random variables defined on (92, F). We put
AP = Ay +onee and  Bp = B+ oy, (13)

where o, is of the form o, = £ for some ¢ > 0 which will be specified in Remark 2.5 (i) below.

Finally, we introduce a driving sequence J = {Jt}teN by
o= (|Ad] + clec], | Be| + i) (14)
Assumption 1 The environment v is stationary and ergodic under P* and satisfies

—00 <E*Iln|4p| <0 and E*(In|Bo|)" < oo.

The sequences 1;,1/J1,1/J2, ... are “nice” in the sense of Definition 2.1 and satisfy
E*(In|A§))" = E*(In|4o)*, E*(In|Bf|)* = E*(In|Bo|)* (n — o) (15)
—o0 < E'ln|Aj| = E"In|4p|, E"In|Bj| — E In|By| (n— o). (16)

In Section 5, we will consider a Markovian model where this assumption can indeed be verified.



Remark 2.5 (i) Under our Assumption 1 we can always choose ¢ > 0 such that
—00 < E* In[|4o| + cleo]] <0 and E*[In(|Bo| + c|no])]™ < oo.
In this case, it follows from (16) that the sequences {/;,1/11,1/12, ... satisfy (4).

(i5) In the stationary situation, i.e., for P = P* our assumptions (15) and (16) coincide with
conditions (0.11) and (0.10), respectively, in Brandt (1986).

Let us now state our main result which will be proved in Section 4 below.

Theorem 2.6 Suppose that Assumption 1 is satisfied. Then the finite dimensional distributions
of the process {y:(y,¥)ten (y € R) under the law P converge weakly to the finite dimensional
distributions of the unique stationary solution {Y*}ien of (1) under P*. More precisely, for any
m € N and for all t; < ... < t,,, we have

Law((yt1+T(y7 1/})7 s 7ytm+T(y7 ¢))v HD) — Vtiyeotm () (T - OO)

3 Stochastic Sequences Driven by “Nice” Processes

This section is devoted to the proof of Theorem 2.4, and so we assume that the driving sequence v

is “nice” in the sense of Definition 2.1. Let us start with the following result.

Lemma 3.1 For anyl € N, we have that

¢
lim H |A;| =0 P- and P*- a.s.
i=l

t—o0 -

t = =1
A;l = — In|A4; .
[T 141 = {o 2 S 0104)

t (o]
i | = D ;=
{tlgrolol_ll |As] o} 2 | J{4i=0}uc,

i=l

Proof: Observe that

Thus, we have

where

t—1
C = ﬂ U {limsupt_lm Zln|Ai| < 0}.

n m>n t—o00

It is therefore enough to verify

P =P =1

D{Ai =0juC
i=l

G{Ai e
=l

Let us first assume that P*[Ap = 0] > 0. Since ¢ is stationary under P* and because the event
{4; = 0 infinitely often} is a tail-event, it follows from (6) and from Theorem A.1.1.2 in Brandst,
Franken, and Lisek (1990) that

P[A; = 0 infinitely often] = P*[A; = 0 infinitely often] = 1.



This yields P [Jso, {4: = 0}] = P* [U;2,{4: =0}] = L.
Suppose now that P*[Ag = 0] = 0. In this case, we deduce form (4) and (6) that P[C] = P*[C] =1

because C' € T, and because v is stationary and ergodic under P*. O

We are now ready to verify weak convergence of the one-dimensional distributions of the process
{y:(y,v¥) }ten defined in (9) to the measure vy defined in (11).

Proposition 3.2 For each initial value y € R we have that
Law(y:(y, ), P) = w(-)  (t = o0). (17)

Proof: In order to verify (17) it is enough to show that

s [ Pty 0)ie = [ Favy

for any Lipschitz continuous function F' : R — R with compact support. To this end, we will first

approximate y;(y, ) by an F;-measurable random variable y!(y, 1) and show that

<e€

‘ [ Futtnae - [ Fa

whenever [,t € N are large enough. This estimate will then be extended to the case [ = 0.

1. For each [ € N and for all ¢ > [, let us consider the random variable y!(y, ) given by

t—

yi(ya 1/}) = Z

1—
j=0 \i=t—j

l t—1 t—1
H Al Bt—j—l + <H Al> Y. (18)

i=l

Note that y!(y, ) is Fi-measurable, where the o-field 7; is defined in (2). We have

t—1 t—1 t—1 t—1
lye(y,¥) = vi(y,9)| < Z H Ai | Bi—j +yHAi _yHAi
j=t—1 \i=t—j i=0 i=l
i—1 t—1 t—1
< YO UTT1AH ) 1Bl + 1yl TT 14l + lwl TT 144,
j=1 i=j i=0 i=l

and so it follows from Lemma 3.1 that

lim [y (y, ) —y;(y,4)| =0  P-and P*as. (19)

t—o0
2. Let us now fix € > 0. It follows from Theorem 1 in Brandt (1986) that there exists a constant
T, = T (¢) € N such that

[ Ftnae - [Fan < ez (20

Our aim is now to show that (20) holds true with P* replaced by P.



3. Since the environment 1 is “nice” and because the random variable y!(y, ) is F-measurable,

we deduce from (7) that there exist a sequence {¢; }1en satisfying lim;_, o, ¢ = 0 and

sup ‘ [ et @r-a)| < a

For the rest of the proof we fix I € N such that ¢; < {. Since the mapping F' : R — R is
Lipschitz continuous and has compact support it follows from (19) that there exists a constant

T2 = T2 (l) € N such that

‘/{F(yi(yﬂ/))) _F(yt(y,i/}))}d]}b‘ < i

and
[ (Pt - Fuwony | <
for all t > Ty. Thus, for all ¢ > max{T1,T>} we obtain
[ e~ [ Fan| < e

This implies weak convergence of the sequence {Law(y:(y, ), P)}en to vo.

We are now going to prove our global convergence result.

Proof of Theorem 2.4: From the proof of Proposition 3.2 we can easily deduce that the finite
dimensional distributions of the shifted process {y.+1(y, ¥) }ten under the measure P converge weakly
to the finite dimensional distributions of the unique stationary solution {Y;*};en of (1) under the law
P*as T — oo. Indeed, let m e Nand I <t; <ty < -+ <t €N be given. We put

yt1,---,tm(y7w) = (yt1(y)¢))"')ytm(y>¢)) and yih... tm(y)¢) = (yil (yadj)::yim(y:w))

)

As in the proof of Theorem 3.2 we have that

t}iinm |yt1,... (Y, ) — yih,,, ‘e (y,i/l)| =0 P- and P*-a.s.,

)

where |-| denotes the Euclidean distance. Since, for any Borel set B C R™, the event {yi1 . (U, 0) €
B} belongs to the o-algebra Fy, we can use the same arguments as in the proof of Proposition 3.2
in order to verify weak convergence of the finite-dimensional distributions.

Thus, it remains to show that the family of random variables ({yt+7(y, %) }ten)ren — viewed as a
family of random variables taking values in the space RY — is tight. For this, we have to prove that,
for any € > 0 and for all ¢ € N, there exists a compact set K; C R such that

sup Plysyr(y, ) € K] > 1 —¢

see, e.g., Ethier and Kurtz (1986), Theorem 3.7.2.
To this end, we fix € > 0. Since the random variable Y is P*-a.s. finite there exists £k € R
satisfying
PHYy| < k] >1— i



Let us now fix ¢t € N. Since the driving sequence v is “nice”, we can choose [ € N such that
% €
SBug |]P[yilﬁ+T(y7w) € B] -P [yi+T(y7w) € B]| < Z:
Due to (19), there exists Ty = Ty(€, k) such that, for all T > Tp, we obtain

Bllyerr(y, %) <k + 26 > Bllyl r(y,0)| < k+¢ = 7.

Moreover, the process {y}, (y,%)}ren converges P*-a.s. to the stationary sequence {Y; 1 }ren, due
to Theorem 1 in Brandt (1986) and (19). This yields

* * * € * *
P lyter(v, )| <k + e 2 P[Vp| < K] — 7 =PY5] < K]

€

(21)
for all T > Ty = To(e, k), and so we obtain

€
sup Pllyesr(y,9)| <k +2d > sup Pllyfr(y,9)] Sk +e = 5
t>T, t>To

<10

% €
> sup Py (u, )| <k el —
tZTO
> 1—e

Thus, we can choose a compact set K; = K;(e) C R which satisfies supr Plys+7(y, %) € Ki] > 1—2e.
This proves the theorem. O

Our techniques may also be used in order to analyse the following situation which is studied in,
e.g., Borovkov (1998), Chapter 3, Section 11: Let {(A¢, Bt)}ten and {(flt,fft)}teN be sequences of
R?-valued random variables defined on a common probability space (2, F,P*) and assume that the
process {(A;, B)}ien is stationary and ergodic under P*. Following Borovkov (1998), we say that
the sequence {(A¢, By) }en is coupling convergent to {(A¢, By) }en if

lim P*[(A¢, B;) = (A, By) for all t > T = 1.

T—o0
In such a situation, the process {(A, Bt)}ten is not necessarily “nice” in the sense of our Definition

2.1. However, it satisfies

lim  sup |P*[{(A¢, Be)}est € B — P*[{(As, By) }i>T € B]| = 0. (22)
T—o00 BeB(RY)

It is easy to see that (22) is sufficient to carry out the arguments in the proofs of Lemma 3.1,

Proposition 3.2 and Theorem 2.4. Thus, we have the following variant of Theorem 2.4.

Theorem 3.3 Let ¢y = {(A¢, Bi) }ten and 1/; = {(flt,Bt)}teN be sequences of R?-valued random
variables defined on some probability space (Q, F,P*) such that the environment 1/3 1s stationary and
ergodic under P*. If (22) and one of the two conditions

—00 <E*In|Adg| <0 and E(In|Bo|)*t < oo

are satisfied, then we have that

Law({ye+7(y, %) Hen, P*) — Law({fft}tENv]P*) (T — o0).

Here, {Y;}ien denotes the unique stationary solution of (1) driven by the input ).



4 Stochastic Sequences Driven by “Almost Nice” Processes

This subsection is devoted to the proof of Theorem 2.6, and so we will assume that our Assumption
1 is satisfied. In (13) we introduced a sequence of “nice” environments {1 },en defined on (Q, F)
such that Law(y)", P) -2 Law(t,P) as n — oo. Let {Y;*};en be the unique stationary solution of
(1) under P* driven by ¢" and put v} := Law(Yy*,P*). We have

Law(ye(y,v"),P) = vg  (t = o), (23)

due to Theorem 2.4. Qur aim is now to prove that the process {y:(y, ¥) }ten converges in law to the
unique weak limit v of the sequence {v{ }nen. To this end, we shall apply a continuity result which
follows immediately from Theorem 2 in Brandt (1986).

Lemma 4.1 Under the Assumptions of Theorem 2.6 we have that
vy -5 (n = 0).

We are now ready to prove a uniform approximation result which will turn out to be the key for

the proof of Theorem 2.6.

Proposition 4.2 For any Lipschitz continuous function F : R — R with compact support we have
lim sup E|F(y:(y, 1)) — F(y(y,¢"))| = 0.
n—oo ¢

Proof: Let F be a Lipschitz continuous function on R with compact support. With no loss of
generality we may assume that F' is Lipschitz with constant 1 and that diam(supp F)=1. In this
case, we obtain |F(z) — F(y)| < G(|z — y|), where G(z) := |z| A 1. It is therefore enough to show
that

Jim sup EG(ly: (v, %) — ye(y,¥™)]) = 0. (24)

Let us put Z; := {t — j,...,t — 1} and Zy := . The explicit representation (9) of y;(y, ) yields

t—1
e ¥) = wew vl < DS (AL TT Sl | 1Bejil

j=1ICZ; \i€T i€T\Z;

t—1
33 (TT1Ad I <lel | e

J=0ICI; \i€I i€T\I;
C
+> | Il I1 Sleil | 1yl
ICI, \i€Z i€ N\T
1 t—1
< n ZZ H|Al| H cleil | (|Be—j—1| + c|me—j—1])
jZOICIj 1€l iEI\Ij
+ > (TTHl I eleil ] 1ol
IcT, \i€Z i€T\T
1 ~
= Eyt(|y|71/})7



where 1) is defined in (14). Thus, it suffices to show that

imsupsup e |G (L. 9))| =0 (25)

n—o0

To this end, we proceed in several steps.

1. Let us first show that (25) holds true for P = P*. The unique stationary solution {¥;}sen of

(1) under P* driven by the “nice” environment ¢ satisfies

lim supE* {G (%ﬁ)} = lim E* :G <%%>} =G(0)=0 (26)

n—oo t n—o0

by Lebesgue’s theorem. This yields

n—o0

1 ~ 1 ~ 1~
hmsupsupIE G (—yt(|y|,¢)> < limsupsupE* |G <—yt(|y|,¢)> -G (—Yt> ‘
n n—oo t n n

Since the driving sequence J is “nice” in the sense of Definition 2.1, it follows from Theorem
1 in Brandt (1986) that
lim [ueyl, &) - Vi =0 Pras.
t— 00
Thus, for any € > 0, there exists T' € N such that
1 ~ 1~ It ~ 1=
6 (1l D) -6 (37)| < [ 2wl D) - 170
n n n n

for all t > T and all n € N. Hence, it follows from G(0) = 0 and from Lebesgue’s Theorem

that
6 (ol 9) -6 (37|
|

< limsupsupE* ‘G (%yt(|y|,¢v)> —G< >

n—oo t>T

+11msuptzT; {IE G ( ye(lyl, 1/1)) +E°G (%E)}

E*

/\l}ge

lim sup sup E*
n—oo

n—o0

< e

Since € > 0 is arbitrary, we obtain

i sup G (Luu(ul, 9)) =0 (27)

n—o0
Our aim is now to prove that (27) holds true not only for P* but also for P.

2. To this end, we define a random variable yé(|y|,$) by analogy with (18) and shall first show
that there exists [ € N such that the following estimate holds uniformly in n € N:

sup 6 ( Lut(ul. D)) <506 (ko). ) + (28)

For any Borel set B C R, the event {y!(|y], ) € B} belongs to the o-field a({zzs}szl). Since ¢

is “nice” by Assumption 1, it follows from Remark 2.2 (ii) that there exists a sequence {¢; }ien

satisfying lim;_, o, ¢; = 0 and

[6 (Goktol. D)) @p-ary < sup [P D) € B - F 1. 5 € B <

BEB(R),t

10



This yields
1 ~
sopB6 ( Lut(l, 7)) < s (14klsl. ) + (29)

and so (28) holds true whenever [ is large enough.

We can use the same arguments as in the proof of Theorem 2.4 in order to show that
Jim [yb(lyl, &) = willyl, )| =0 P-and Pras.  (€N). (30)
In particular, for any fixed [ € N, we have that
. 1 N v — *_
Jim ‘yt(|y|,1/)) m‘ =0 Ptas
Thus, it follows from (29) and by analogy with Step 1 that there exists [ € N such that

hmsupsupIEG <%yi(|y|,1})> < e+ limsup supIE*G <%yi(|y|,{/§)> =e. (31)

n—o0 n—o0

We will now extend this estimate to the case I = 0, and this yields (25).

3. Let us choose I € N such that (31) holds true. Using G(0) = 0 and (31), we obtain

1 ~
lim sup sup EG (Eyt(|y|7 z/;))

n—oo

< hmﬁsupsup ‘E{G <%yt(|y|,1z)> -G (%yi(“ﬂ,{/’v)) H + €

Due to (30), we can choose T' = T'(e, 1) such that
1 ~ 1, .~
sup B G | ~wi(lyl, ) | = G~y (lyl,9) || <,
t>T n n

and so Lebesgue’s theorem yields

1 ~
hmsupsupEG (ﬁyt(|y|’¢)> < 2e.

n—o0

Thus, we have shown (25).

The next result follows immediately from Proposition 4.2.

Corollary 4.3 Let m € N be given. For any real-valued Lipschitz continuous function F on R™

with compact support we have that

lim sup E|F(yt1(y7wn))"')yt (y 1:[] )) (yt1(y dj):)ytm(yﬂ/})” =0.

n—o0 t1,..t

Using Proposition 4.2 and Theorem 3.2, we can now verify our local convergence result stated in
Theorem 2.6.

Proof of Theorem 2.6: Let us first establish convergence of the one-dimensional distributions. To

this end, it is enough to prove that
tlim /F(yt (y,v)dP = /Fdl/()
— 00
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for any real-valued Lipschitz continuous function F' on R with compact support. We have that

‘ [ Pt e~ [ Fa

< ‘ [ Pt - Flutyv) dP\ ¥ ‘ [ Ftgvmae - [ Fag

+‘/FdV6L—/FdV0

According to Proposition 4.2 there exists a constant N3 = Nj(e) € N such that

Wl m

‘ [ Pt - F(w(y,w»}dﬂ»‘ <

for all n > N; and for all ¢ € N. Moreover, we can choose No = Ny(e
‘/Fdl/g—/FdVO

Let us now fix ng > max{N;, N»}. Since the environment ¥™° is “nice”, it follows from Theorem
2.4 that there exists a constant T'(ng) such that

~—

€ N satisfying

< g (n > Na),

due to Lemma 4.1.

€
‘/F(yt(y,zb”U))dP—/dego <3
for all t > T'(ng). In particular, we get
‘/F(yt(yaw))dﬁb_/Fdl/g S €

for all ¢ > T'(ng). This shows weak convergence of the sequence {Law(y:(y, ), P)}ien to the prob-
ability measure vy. Convergence of the finite-dimensional distributions follows by analogy with the
proof of Theorem 2.4. a

5 A Markovian Case Study

In this section, we study a class of Markovian models where our basic Assumption 1 can indeed be
verified. To this end, we recall the notion of a “random system with complete connections”.

Let (My,d) be a compact metric space and (M, M) be a measurable space. Let Z denote a
stochastic kernel from M; to My and let v : My x My — M; be a measurable mapping.

Definition 5.1 Following Iosefescu and Theodorescu (1968), we call the quadruple
Y= ((Mlyd)7(M27M2)7Z7v) (32)

a homogeneous random system with complete connections (RSCC). Given an initial value
& € My, a RSCC induces two stochastic processes {&:}ren and {(;}ten on the canonical probability
space (0, F,P¢) taking values in My and in M, respectively, by

§v1 = (&, G)  and  Pe(Ce € +&, Gi—1,80-1,C—2,---) = Z(&5) (teN).

Here, & = £ P¢-a.s. These processes are called the associated Markov chain and the signal

sequence, respectively.
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We assume that the following conditions are satisfied.

Assumption 2 (i) For any starting point { € My, the Markov chain {&: }ren converges in distri-

bution to a unique stationary probability measure u* on M.

(i) There ezists a constant C' < oo such that

sup sup |Z(&; B) — ?(6; B)| <
BeMz ¢£¢ d(f, 6)

(iii) The mapping v : My x My — M, satisfies the contraction condition

d(v(&,0),v(E, Q) <d(E,€) (B <1).

Uniqueness of the invariant measure implies that the Markov chain {&}:en is stationary and

ergodic under the law
B0 = [ B (ae) (33)

However, as we assume that the sequence {Law(&;,P¢)}ien converges weakly but not necessarily
in the total variation norm to u*, the process {{; }ten typically does not have a “nice” asymptotic
behaviour.

Let us first consider a driving sequence ¢ which is generated by the signal process {(: }ten. More

precisely, we assume that ¢ is of the form

¢ ={(f(¢),9(¢e)) Heen,

where f,g: Ms — R are measurable functions satisfying

o < /Ml /M2 In | £(O)|Z(6: )" (d€) <0 and /Ml /M2<1n|g<<>|>+Z<s;d<>u*(da> < .

The environment 1 is stationary and ergodic under the measure P* defined in (33) and satisfies
(6); see Theorems 2.1.57 and 2.2.10 in Tosefescu and Theodorescu (1968). Thus ¢ is “nice”, and so
Theorem 2.4 yields the following result.

Proposition 5.2 Under our above assumptions, the environment ¢ defined on the probability space

(Q, F,P¢) is “nice”. Thus, the stochastic sequence {Y;}ien defined by the linear recursive relation
Yitr = f(G)Ye + 9(C)
converges in distribution to a unique stationary process in the sense specified in Theorem 2.4.

We are now going to consider a driving sequence which is defined in terms of the Markov chain
{& }ten instead of the signal process {(; }:en. More precisely, we consider an environment of the form

¢ ={(f(&),9(&)) }en,

where f,g : M; — R are Lipschitz continuous functions which are bounded away from zero. The

environment ¢ is stationary and ergodic under the law P* defined by (33) but ¢ is not necessarily
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“nice” with respect to the measure P = P;. However, the driving sequence can be approximated
in law by a sequence of “nice” processes {¢)"},.¢cn, and the approximating sequence {"},en, Y™ =
{(A}, Bl") }ten, may be constructed as follows:

Let {e:}ten and {n:}ten be sequences of non-negative random variables defined on (2, F). For
each £ € M, these random variables are independent under the law P¢, they are P¢-independent
of all & (¢t € N) and satisfy Law((eo,10),P¢) = LaW((Gg,no),]Pé) for all £, € M;. The probability
measure Law((eg,no),P¢) is assumed to have a bounded Lipschitz continuous density with respect

to the 2-dimensional Lebesgue measure on R?.

Proposition 5.3 Suppose that our Assumption 2 and the integrability conditions
—o0 < / In|fldu* <0 and / (In|g)tdp* <
M1 Ml

are satisfied. Then the finite dimensional distributions of the process {Yi}ien defined recursively by

the linear relation
Yirr = f(&)Y: + g(&)

converge weakly to the finite dimensional distributions of a uniquely determined stationary process

in the sense specified in Theorem 2.6.

Proof: The sequences 1, ¢!, 12, . .. defined on (€2, F, IP¢) are stationary and ergodic under P*. They
satisfy (6), due to Proposition 4.30 in Horst (2000). Since the mapping f,g : M; — R are bounded
away from zero, it follows from a monotone convergence argument that ¥™ (n € N) is “nice” and
that the regularity conditions (15) and (16) are satisfied. Thus, our Assumption 1 is met, and so the
assertion follows from Theorem 2.6. |
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