
ar
X

iv
:m

at
h/

07
03

83
1v

1 
 [

m
at

h.
PR

] 
 2

8 
M

ar
 2

00
7

A Limit Theorem for Financial Markets with Inert Investors

Erhan Bayraktar
Department of Mathematics, University of Michigan, 525 East University, Ann Arbor, MI 48109

email: erhan@umich.edu

Ulrich Horst
Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver, BC, V6T 1Z2

email: horst@math.ubc.ca

Ronnie Sircar
Department of Operations Research & Financial Engineering, Princeton University, Princeton, NJ 08544

email: sircar@princeton.edu

We study the effect of investor inertia on stock price fluctuations with a market microstructure model comprising
many small investors who are inactive most of the time. It turns out that semi-Markov processes are tailor
made for modelling inert investors. With a suitable scaling, we show that when the price is driven by the
market imbalance, the log price process is approximated by a process with long range dependence and non-
Gaussian returns distributions, driven by a fractional Brownian motion. Consequently, investor inertia may lead
to arbitrage opportunities for sophisticated market participants. The mathematical contributions are a functional
central limit theorem for stationary semi-Markov processes, and approximation results for stochastic integrals of
continuous semimartingales with respect to fractional Brownian motion.
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1. Introduction and Motivation We prove a functional central limit theorem for stationary semi-
Markov processes in which the limit process is a stochastic integral with respect to fractional Brownian
motion. Our motivation is to develop a probabilistic framework within which to analyze the aggregate
effect of investor inertia on asset price dynamics. We show that, in isolation, such infrequent trading
patterns can lead to long-range dependence in stock prices and arbitrage opportunities for other more
“sophisticated” traders.

1.1 Market Microstructure Models for Financial Markets In mathematical finance, the dy-
namics of asset prices are usually modelled by trajectories of some exogenously specified stochastic process
defined on some underlying probability space (Ω,F , P). Geometric Brownian motion has long become
the canonical reference model of financial price fluctuations. Since prices are generated by the demand of
market participants, it is of interest to support such an approach by a microeconomic model of interacting
agents.

In recent years there has been increasing interest in agent-based models of financial markets. These
models are capable of explaining, often through simulations, many facts like the emergence of herding
behavior [41], volatility clustering [42] or fat-tailed distributions of stock returns [17] that are observed
in financial data. Brock and Hommes [10, 11] proposed models with many traders where the asset price
process is described by deterministic dynamical systems. From numerical simulations, they showed that
financial price fluctuations can exhibit chaotic behavior if the effects of technical trading become too
strong.

Föllmer and Schweizer [27] took the probabilistic point of view, with asset prices arising from a sequence
of temporary price equilibria in an exogenous random environment of investor sentiment; see [25], [32] or
[26] for similar approaches. Applying an invariance principle to a sequence of suitably defined discrete
time models, they derived a diffusion approximation for the logarithmic price process. Duffie and Protter
[22] also provided a mathematical framework for approximating sequences of stock prices by diffusion
processes.

All the aforementioned models assume that the agents trade the asset in each period. At the end of
each trading interval, the agents update their expectations for the future evolution of the stock price and
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formulate their excess demand for the following period. However, small investors are not so efficient in
their investment decisions: they are typically inactive and actually trade only occasionally. This may be
because they are waiting to accumulate sufficient capital to make further stock purchases; or they tend
to monitor their portfolios infrequently; or they are simply scared of choosing the wrong investments; or
they feel that as long-term investors, they can defer action; or they put off the time-consuming research
necessary to make informed portfolio choices. Long uninterrupted periods of inactivity may be viewed
as a form of investor inertia. The focus of this paper is the effect of such investor inertia on asset prices
in a model with asynchronous order arrivals. See [37] for an alternative micro-structure model with
asynchronous trading.

1.2 Inertia in Financial Markets Investor inertia is a common experience and is well documented.
The New York Stock Exchange (NYSE)’s survey of individual shareownership in the United States,
“Shareownership2000” [46], demonstrates that many investors have very low levels of trading activity.
For example they find that “23 percent of stockholders with brokerage accounts report no trading at all,
while 35 percent report trading only once or twice in the last year” (see pages 58-59). The NYSE survey
(e.g. Table 28) also reports that the average holding period for stocks is long, for example 2.9 years in
the early 90’s.

Empirical evidence of inertia also appears in the economic literature. For example, Madrian and Shea
[43] looked at the reallocation of assets in employees’ individual 401(k) (retirement) plans1 and found “a
status quo bias resulting from employee procrastination in making or implementing an optimal savings
decision.” A related study by Hewitt Associates (a management consulting firm) found that in 2001, four
out of five plan participants did not do any trading in their 401(k)s. Madrian and Shea explain that “if
the cost of gathering and evaluating the information needed to make a 401(k) savings decision exceeds
the short-run benefit from doing so, individuals will procrastinate.” The prediction of Prospect Theory
[35] that investors tend to hold onto losing stocks too long has also been observed ([50]).

A number of microeconomic models study investor caution with regard to model risk, which is termed
uncertainty aversion. Among others, Dow and Werlang ([21]) and Simonsen and Werlang ([51]) considered
models of portfolio optimization where agents are uncertain about the true probability measure. Their
investors maximize their utility with respect to nonadditive probability measures. It turns out that
uncertainty aversion leads to inertia: the agents do not trade the asset unless the price exceeds or falls
below a certain threshold.

We provide a mathematical framework for modelling investor inertia in a simple microstructure model
where asset prices result from the demand of a large number of small investors whose trading behavior
exhibits inertia. To each agent a, we associate a stationary semi-Markov process xa = (xa

t )t≥0 on a
finite state space which represents the agent’s propensity for trading. The processes xa have heavy-tailed
sojourn times in some designated “inert” state, and relatively thin-tailed sojourn times in various other
states. Semi-Markov processes are tailor made to model individual traders’ inertia as they generalize
Markov processes by removing the requirement of exponentially distributed, and therefore thin-tailed,
holding times. In addition, we allow for a market-wide amplitude process Ψ, that describes the evolution
of typical trading size in the market. It is large on heavy-trading days and small on light trading days.
We adopt a non-Walrasian approach to asset pricing and assume that prices move in the direction of
market imbalance. We show that in a model with many inert investors, long range dependence in the
price process emerges.

1.3 Long Range Dependence in Financial Time Series The observation of long range de-
pendence (sometimes called the Joseph effect) in financial time series motivated the use of fractional
Brownian motion as a basis for asset pricing models; see, for instance, [44] or [19]. By our invariance
principle, the drift-adjusted logarithmic price process converges weakly to a stochastic integral with re-
spect to a fractional Brownian motion with Hurst coefficient H > 1

2 . Our approach may thus be viewed
as a microeconomic foundation for these models. A recent paper that proposes entirely different eco-
nomic foundations for models based on fractional Brownian motion is [36]. An approximation result for

1A 401k retirement plan is a special type of account funded through pre-tax payroll deductions. The funds in the account

can be invested in a number of different stocks, bonds, mutual funds or other assets, and are not taxed on any capital gains,

dividends, or interest until they are withdrawn. The retirement savings vehicle was created by United States Congress in

1981 and gets its name from the section of the Internal Revenue Code that describes it.
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fractional Brownian motion in the context of a binary market model is given in [52].

As is well known, fractional Brownian motion processes are not semimartingales, and so these models
may theoretically allow arbitrage opportunities. Explicit arbitrage strategies for various models were con-
structed in [49], [13] and [3]. These strategies capitalize on the smoothness of fractional Brownian motion
(relative to standard Brownian motion) and involve rapid trading to exploit the fine-scale properties of
the process’ trajectories. As a result, in our microstructure model, arbitrage opportunities may arise for
other, sufficiently sophisticated, market participants who are able to take advantage of inert investors by
trading frequently. We discuss a simple combination of both inert and active traders in Section 2.3.

Evidence of long-range dependence in financial data is discussed in [19]. Bayraktar et al. [5] studied
an asymptotically efficient wavelet-based estimator for the Hurst parameter, and analyzed high frequency
S&P 500 index data over the span of 11.5 years (1989-2000). It was observed that, although the Hurst
parameter was significantly above the efficient markets value of H = 1

2 up through the mid-1990s, it
started to fall to that level over the period 1997-2000 (see Figure 1). They suggested that this behavior
of the market might be related to the increase in Internet trading, which is documented, for example, in
NYSE’s Stockownership2000 [46], [1], and [14], who find that “after 18 months of access, the Web effect
is very large: trading frequency doubles.” Barber and Odean [2] find that “after going online, investors
trade more actively, more speculatively and less profitably than before”. Similar empirical findings were
recently reached, using a completely different statistical technique in [6]. Thus, the dramatic fall in the
estimated Hurst parameter in the late 1990s can be thought of as a posteriori validation of the link our
model provides between investor inertia and long-range dependence in stock prices.
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Figure 1: Estimates of the Hurst exponent of the S&P 500 index over 1990s, taken from Bayraktar, Poor and
Sircar ([5]).

We note the evidence of long memory in stock price returns is mixed. There are several papers in the
empirical finance literature providing evidence for the existence of long memory, yet there are several
other papers that contradict these empirical findings; see e.g. [5] for an exposition of this debate and
references. However, long memory is a well accepted feature in volatility (squared and absolute returns)
and trading volume (see e.g. [18] and [20]). The mathematical results of this paper might also be seen
as an intermediate step towards a microstructural foundation for this phenomenon.
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1.4 Mathematical Contributions We establish a functional central limit theorem for semi-Markov
processes (Theorem 2.1 below) which extends the results of Taqqu et. al. [54], who proved a result similar
to ours for on/off processes, that is, semi-Markov processes taking values in the binary state space {0, 1}.
Their arguments do not carry over to models with more general state spaces. Our approach builds on
Markov renewal theory. We also demonstrate (see Example 3.1) that there may be a different limit
behavior when the semi-Markov processes are centered, a situation which cannot arise in the binary
case. Taqqu and Levy [53] considered renewal reward processes with heavy tailed renewal periods and
independent and identically distributed rewards. They assume a general state space, but the distributions
of the length of renewal periods does not depend on the current state; for an extension to the case of
heavy-tailed rewards, see [40]. A recent paper [45] studies the binary case under a different limit taking
mechanism; see also [28].

Binary state spaces are natural for modelling internet traffic, but for many applications in Economics
or Queueing Theory, it is clearly desirable to have more flexible results that apply to general semi-Markov
processes on finite state spaces. In the context of a financial market model, it is natural to allow for both
positive (buying), negative (selling) and a zero (inactive) state. Our results also have applications to
complex multi-level queueing networks where the level-dependent holding-time distributions are allowed
to have slowly decaying tails. They may serve as a mathematical basis for proving heavy-traffic limits in
the network models studied in, e.g. [23], [24] and [55].

We allow for limits which are integrals with respect to fractional Brownian motion proving an approx-
imation result for stochastic integrals of continuous semimartingales with respect to fractional Brownian
motion. Specifically, we consider a sequence of good semimartingales {Ψn} and a sequence of stochastic
processes {Xn} having zero quadratic variation and give sufficient conditions which guarantee that joint
convergence of (Xn, Ψn) to (BH , Ψ), where BH is a fractional Brownian motion process with Hurst pa-
rameter H > 1

2 , and Ψ is a continuous semimartingale, implies the convergence of the stochastic integrals
∫

ΨndXn to
∫

ΨdBH . In addition, we obtain a stability result for the integral of a fractional Brownian
motion with respect to itself. These results may be viewed as an extension of Theorem 2.2 in [38] beyond
the semimartingale setting.

The remainder of this paper is organized as follows. In Section 2, we describe the financial market model
with inert investors and state the main result. Section 3 proves a central limit theorem for stationary
semi-Markov processes. Section 4 proves an approximation result for stochastic integrals of continuous
semimartingales with respect to fractional Brownian motion.

2. The microeconomic setup and the main results We consider a financial market with a set
A := {a1, a2, . . . , aN} of agents trading a single risky asset. Our aim is to analyze the effects investor
inertia has on the dynamics of stock price processes. For this we choose the simplest possible setup.
In particular, we model right away the behavior of individual traders rather than characterizing agents’
investment decisions as solutions to individual utility maximization problems. Such an approach has also
been taken in [29], [27], [41], [26] and [37] for example.

We associate to each agent a ∈ A a continuous-time stochastic process xa = (xa
t )t≥0 on a finite state

space E, containing zero. This process describes the agent’s trading mood. He accumulates the asset at
a rate Ψtx

a
t at time t ≥ 0. The random quantity Ψt > 0 describes the size of a typical trade at time t,

and xa
t may be negative, indicating the agent is selling. Agents do not trade at times when xa

t = 0. We
therefore call the state 0 the agents’ inactive state.

Remark 2.1 In the simplest setting, xa ∈ {−1, 0, 1}, so that each investor is either buying, selling or
inactive, and Ψ ≡ 1: there is no external amplification. Even here, the existing results in [54] do not
apply because the state space is not binary.

The holdings of the agent a ∈ A and the “market imbalance” at time t ≥ 0 are given by
∫ t

0

Ψsx
a
sds and IN

t :=
∑

a∈A

∫ t

0

Ψsx
a
sds, (1)

respectively. Hence the process (IN
t )t≥0 describes the stochastic evolution of the market imbalance. In

our microstructure model, market imbalance will be the only component driving the dynamics of asset
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prices. All the orders are received by a single market maker who clears the trades and sets prices as to
reflect the incoming order flows. That is, the market maker sets prices in reaction to the evolution of
market imbalances.

Remark 2.2 In our continuous time model buyers and sellers arrive at different points in time. Hence
the economic paradigm that a Walrasian auctioneer can set prices such that the markets clear at the end
of each trading period does not apply. Rather, temporary imbalances between demand and supply will
occur, and prices are assumed to reflect the extent of the current market imbalance. In the terminology
explained in [29], ours is a model of a “continuous market (trading asynchronously during continuous
intervals of time)”, rather than a “call market (trading synchronously at pre-established discrete times)”.
As Garman reports, the New York Stock Exchange was a call market until 1871, and since then has
become a continuous market. (See also Chapter 1 of [47].)

We consider the pricing rule

dSN
t =

∑

a∈A

Ψtx
a
t dt and so SN

t = S0 + IN
t , (2)

for the evolution of the logarithmic stock price process SN = (SN
t )t≥0. This is the simplest mechanism

by which incoming buy orders increase the price and sell orders decrease the price. Other choices might
be utilized in a future work studying, for example, the effect of a nonlinear market depth function, but
these are beyond the scope of the present work. (The choice of modelling the log-stock price is simply
standard finance practice to define a positive price).

Kruk ([37]) considered a model for continuous auction market, in which order arrivals are modelled by
independent renewal processes. There are a finite number of possible prices, and agents randomly submit
price dependent limit orders. These are stored in the order book waiting the arrival of matching orders.
Kruk finds a limiting distribution of the outstanding number of buy/sell orders at one of the possible
prices. In contrast, our aim is to find the limiting price process that is driven by the market imbalance
under different assumptions on the market micro-structure.

2.1 The dynamics of individual behavior Next, we specify the probabilistic structure of the
processes xa. We assume that the agents are homogeneous and that all the processes xa and Ψ are
independent. It is therefore enough to specify the dynamics of some reference process x = (xt)t≥0. In
order to incorporate the idea of market inertia as defined by Assumption 2.2 below, we assume that x is
a semi-Markov process defined on some probability space (Ω,F , P) with a finite state space E. Here E
may contain both positive and negative values and we assume 0 ∈ E. The process x is specified in terms
of random variables ξn : Ω → E and Tn : Ω → R+ which satisfy 0 = T0 ≤ T1 ≤ · · · almost surely and

P{ξn+1 = j, Tn+1 − Tn ≤ t
∣

∣ξ1, ..., ξn; T1, ..., Tn} = P{ξn+1 = j, Tn+1 − Tn ≤ t
∣

∣ξn}

for each n ∈ N, j ∈ E and all t ∈ R+ through the relation

xt =
∑

n≥0

ξn1[Tn,Tn+1)(t). (3)

Remark 2.3 In economic terms, the representative agent’s mood in the random time interval [Tn, Tn+1)
is given by ξn. The distribution of the length of the interval Tn+1 − Tn may depend on the sequence
{ξn}n∈N through the states ξn and ξn+1. This allows us to assume different distributions for the lengths
of the agents’ active and inactive periods, and in particular to model inertia as a heavy-tailed sojourn
time in the zero state.

Remark 2.4 In the present analysis of investor inertia, we do not allow for feedback effects of prices into
agents’ investment decisions. While such an assumption might be justified for small, non-professional
investors, it is clearly desirable to allow active traders’ investment decisions to be influenced by asset
prices. When such feedback effects are allowed, the analysis of the price process is typically confined to
numerical simulations because such models are difficult to analyze on an analytical level. An exception is
a recent paper [26] where the impact of contagion effects on the asymptotics of stock prices is analyzed in
a mathematically rigorous manner. One could also consider the present model as applying to (Internet
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or new economy) stocks where no accurate information about the actual underlying fundamental value
is available. In such a situation, price is not always a good indicator of value and is often ignored by
uninformed small investors.

We assume that x is temporally homogeneous under the measure P, that is,

P{ξn+1 = j, Tn+1 − Tn ≤ t
∣

∣ξn = i} = Q(i, j, t) (4)

is independent of n ∈ N. By Proposition 1.6 in [15], this implies that {ξn}n∈N is a homogeneous Markov
chain on E whose transition probability matrix P = (pij) is given by

pij = lim
t→∞

Q(i, j, t).

Clearly, x is an ordinary temporally homogeneous Markov process if Q takes the form

Q(i, j, t) = pij

(

1 − e−λit
)

. (5)

We assume that the embedded Markov chain {ξn}n∈N satisfies the following condition.

Assumption 2.1 For all i, j ∈ E, i 6= j we have that pij > 0. In particular, there exists a unique
probability measure π on E such that πP = π.

The conditional distribution function of the length of the n-th sojourn time, Tn+1−Tn, given ξn+1 and
ξn is specified in terms of the semi-Markov kernel {Q(i, j, t); i, j ∈ E, t ≥ 0} and the transition matrix
P by

G(i, j, t) :=
Q(i, j, t)

pij
= P{Tn+1 − Tn ≤ t|ξn = i, ξn+1 = j}. (6)

For later reference we also introduce the distribution of the first occurrence of state j under P, given
x0 = i. Specifically, for i 6= j, we put

F (i, j, t) := P{τj ≤ t|x0 = i}, (7)

where τj := inf{t ≥ 0 : xt = j}. We denote by F (j, j, ·) the distribution of the time until the next
entrance into state j and by

ηj :=

∫

tF (j, j, dt) (8)

the expected time between two occurrences of state j ∈ E. Further, we recall that a function L : R+ → R+

is called slowly varying at infinity if

lim
t→∞

L(xt)

L(t)
= 1 for all x > 0

and that f(t) ∼ g(t) for two functions f, g : R+ → R+ means limt→∞
f(t)
g(t) = 1.

Assumption 2.2 (i) The average sojourn time at state i ∈ E is finite:

mi := E[Tn+1 − Tn|ξn = i] < ∞. (9)

Here E denotes the expectation operator with respect to P.

(ii) There exists a constant 1 < α < 2 and a locally bounded function L : R+ → R+ which is slowly
varying at infinity such that

P{Tn+1 − Tn ≥ t
∣

∣ξn = 0} ∼ t−αL(t). (10)

(iii) The distributions of the sojourn times at state i 6= 0 satisfy

lim
t→∞

P{Tn+1 − Tn ≥ t
∣

∣ξn = i}
t−(α+1)L(t)

= 0.

(iv) The distribution of the sojourn times in the various states have continuous and bounded densities
with respect to Lebesgue measure on R+.
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Our condition (10) is satisfied if, for instance, the length of the sojourn time at state 0 ∈ E is
distributed according to a Pareto distribution. Assumption 2.2 (iii) reflects the idea of market inertia:
the probability of long uninterrupted trading periods is small compared to the probability of an individual
agent being inactive for a long time. It is stronger than the corresponding assumption for the binary case
in [54] where the sojourn time in the only other state may in fact be as heavy tailed. For our economic
application, however, it is natural to think of the sojourn times in the various active states as being thin
tailed, such as in the exponential distribution, since small investors typically do not trade continually for
long periods.

2.2 An invariance principle for semi-Markov processes In this section, we state our main
results. With our choice of scaling, the logarithmic price process can be approximated in law by the
stochastic integral of Ψ with respect to fractional Brownian motion BH where the Hurst coefficient H
depends on α. The convergence concept we use is weak convergence on the Skorohod space D of all
real-valued right continuous processes with left limits. We write L- limn→∞ Zn = Z if a sequence of
D-valued stochastic processes {Zn}n∈N, converges in distribution to Z.

In order to derive our approximation result, we assume that the semi-Markov process x is stationary.
Under Assumption 2.1, stationarity can be achieved by a suitable specification of the common distribution
of the initial state ξ0 and the initial sojourn time T1. We denote the distribution of the stationary semi-
Markov processes by P∗. The proof follows from Theorem 4.2.5 in [9], for example.

Lemma 2.1 In the stationary setting, that is, under the law P∗ the following holds:

(i) The joint distribution of the initial state and the initial sojourn time takes the form

P
∗ {ξ0 = k, T1 > t} =

πk
∑

j∈E πjmj

∫ ∞

t

h(k, s)ds. (11)

Here mi denotes the mean sojourn time in state i ∈ E as defined by (9), and for i ∈ E,

h(i, t) = 1 −
∑

j∈E

Q(i, j, t) (12)

is the probability that the sojourn time at state i ∈ E is greater than t.

(ii) The law ν = (νk)k∈E of xt in the stationary regime is given by

νk =
πkmk

∑

j∈E πjmj
. (13)

(iii) The conditional joint distribution of (ξ1, T1), given ξ0 is

P
∗ {ξ1 = j, T1 < t | ξ0 = k} =

pkj

mk,j

∫ t

0

[1 − G(k, j, s)]ds. (14)

Here mk,j :=
∫∞
0 [1−G(k, j, s)]ds denotes the conditional expected sojourn time at state k, given

the next state is j, and the functions G(k, j, ·) are defined in (6).

Let us now introduce a dimensionless parameter ε > 0, and consider the rescaled processes xa
t/ε. For

ε small, xa
t/ε is a “speeded-up” semi-Markov process. In other words, the investors’ individual trading

dispensations are evolving on a faster scale than Ψ. Observe, however, that we are not altering the main
qualitative feature of the model. That is, agents still remain in the inactive state for relatively much
longer times than in an active state.

Mathematically, there is no reason to restrict ourselves to the case where Ψ is non-negative. Hence
we shall from now on only assume that Ψ is a continuous semimartingale. Given the processes Ψ and xa

(a ∈ {a1, . . . , aN}), the aggregate order rate at time t is given by

Y ε,N
t =

∑

a∈A

Ψtx
a
t/ε. (15)

Let µ := E
∗xt and Xε,N = (Xε,N

t )0≤t≤T (T > 0) be the centered process defined by

Xε,N
t :=

∫ t

0

∑

a∈A

Ψs(x
a
s/ε − µ) ds =

∫ t

0

Y ε,N
s ds − µN

∫ t

0

Ψsds. (16)
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We are now ready to state our main result. Its proof will be carried out in Sections 3 and 4. The definition
of the stochastic integral with respect to fractional Brownian motion will also be given in Section 4.

Theorem 2.1 Let Ψ = (Ψt)t≥0 be a continuous semimartingale on (Ω,F , P∗) with a decomposition
Ψ = M +A, in which M is a local martingale and A is an adapted process of finite variation. We assume
that E{[M, M ]T } < ∞ and that E{|A|T } < ∞, where (|A|t)t≥0 is the total variation of A. If Assumptions
2.1 and 2.2 are satisfied, and if µ

∑

k∈E k mk

η2
k

> 0, then there exists c > 0 such that the process Xε,N

satisfies

L- lim
ε↓0

L- lim
N→∞

(

1

ε1−H
√

NL(ε−1)
Xε,N

t

)

0≤t≤T

=

(

c

∫ t

0

ΨsdBH
s

)

0≤t≤T

. (17)

Here the Hurst coefficient of the fractional Brownian motion process BH is H = 3−α
2 > 1

2 .

Observe that Theorem 2.1 does not apply to the case µ = 0. For centered semi-Markov processes
xa, Example 3.1 below illustrates that the limiting process depends on the tail structure of the waiting
time distribution in the various active states. This phenomenon does not arise in the case of binary state
spaces.

Remark 2.5 (i) Theorem 2.1 says the drift-adjusted logarithmic price process in our model of inert
investors can be approximated in law by the stochastic integral of Ψ with respect to a fractional
Brownian motion process with Hurst coefficient H > 1

2 .

(ii) In a situation where the processes xa are independent, stationary and ergodic Markov processes
on E, that is, in cases where the semi-Markov kernel takes the form (5), it is easy to show that

L- lim
ε↓0

L- lim
N→∞

(

1√
εN

Xε,N
t

)

0≤t≤T

=

(

c

∫ t

0

ΨsdWs

)

0≤t≤T

where (Wt)t≥0 is a standard Wiener process. Thus, if the market participants are not inert, that
is, if the distribution of the lengths of the agents’ inactivity periods is thin-tailed, no arbitrage
opportunities emerge because the limit process is a semimartingale.

The proof of Theorem 2.1 will be carried out in two steps. In Section 3 we prove a functional central
limit theorem for stationary semi-Markov processes on finite state spaces. In Section 4 we combine our
central limit theorem for semi-Markov processes with extensions of arguments given in [38] to obtain (17).

2.3 Markets with both Active and Inert Investors It is simple to extend the previous analysis
to incorporate both active and inert investors. Let ρ be the ratio of active to inert investors. We associate
to each active trader b ∈ {1, 2, . . . , ρN} a stationary Markov chain yb = (yb

t )t≥0 on the state space E. The
processes yb are independent and identically distributed and independent of the processes xa. The thin-
tailed sojourn time in the zero state of yb reflects the idea that, as opposed to inert investors, these agents

frequently trade the stock. We assume for simplicity that Ψ ≡ 1. With Ŷ ε,N
t =

∑ρN
b=1

(

yb
t/ε − E∗y0

)

and

X̂ε,N
t :=

∫ t

0
Ŷ ε,N

s ds, it is straightforward to prove the following modification of Theorem 2.1.

Proposition 2.1 Let xa (a = 1, 2, . . . , N) be semi-Markov processes that satisfy the assumption of The-
orem 2.1. If yb (b = 1, 2, . . . , ρN) are independent stationary Markov processes on E, then there exist
constants c1, c2 > 0 such that

L- lim
ε↓0

L- lim
N→∞

(

1

ε1−H
√

NL(ε−1)
Xε,N

t +
1√
Nε

X̂ε,N
t

)

0≤t≤T

=
(

c1B
H
t + c2

√
ρ Wt

)

0≤t≤T
.

Here, W = (Wt)t≥0 is a standard Wiener process.

Thus, in a financial market with both active and inert investors, the dynamics of the asset price
process can be approximated in law by a stochastic integral with respect to a superposition, BH + δW ,
of a fractional and a regular Brownian motion. It is known ([12]) that BH + δW is a semimartingale for
any δ 6= 0, if H > 3

4 , that is, if α < 3
2 , but not if H ∈ (1

2 , 3
4 ]. Thus, no arbitrage opportunities arise
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if the small investors are “sufficiently inert.” The parameter α can also be viewed as a measure for the
fraction of small investors that are active at any point in time. Hence, independent of the actual trading
volume, the market is arbitrage free in periods where the fraction of inert investors who are active on the
financial market is small enough.

3. A limit theorem for semi-Markov processes This section establishes Theorem 2.1 for the
special case Ψ ≡ 1. We approach the general case where Ψ is a continuous semimartingale in Section 4.
Here we consider the situation where

Y ε,N
t =

∑

a∈A

xa
t/ε and where Xε,N

t =

∫ t

0

Y ε,N
s ds − Nµt,

and prove a functional central limit theorem for stationary semi-Markov processes. Our Theorem 3.1
below extends the results in [54] to situations where the semi-Markov process takes values in an arbitrary
finite state space. The arguments given there are based on results from ordinary renewal theory, and
do not carry over to models with more general state spaces. The proof of the following theorem will be
carried out through a series of lemmas.

Theorem 3.1 Let H = 3−α
2 . Under the assumptions of Theorem 2.1,

L- lim
ε↓0

L- lim
N→∞

(

1

ε1−H
√

NL(ε−1)
Xε,N

t

)

0≤t≤T

=
(

cBH
t

)

0≤t≤T
. (18)

Let γ be the covariance function of the semi-Markov process (xt)t≥0 under P
∗, and consider the case

ε = 1. By the Central Limit Theorem, and because x is stationary, the process Y = (Yt)t≥0 defined by

Yt = L- lim
N→∞

1√
N

(Y 1,N
t − Nµ) (19)

is a stationary zero-mean Gaussian process. It is easily checked that the covariance function of the process
( 1√

N
Y 1,N

t ) is also γ for any N , and hence for Yt. By standard calculations, the variance of the aggregate

process (
∫ t

0
Ys ds) at time t ≥ 0 is given by

Var(t) := Var

(∫ t

0

Ys ds

)

= 2

∫ t

0

(∫ v

0

γ(u)du

)

dv. (20)

In the first step towards the proof of Theorem 3.1, we can proceed by analogy with [54]. We are
interested in the asymptotics as ε ↓ 0 of the process

Xε
t :=

∫ t

0

Ys/ε ds, (21)

which can be written Xε
t = ε

∫ t/ε

0
Ys ds. Therefore the object of interest is the large t behavior of Var(t).

Suppose that we can show
Var(t) ∼ c2t2HL(t) as t → ∞. (22)

Then the mean-zero Gaussian processes Xε = (Xε
t )t≥0 have stationary increments and satisfy

lim
ε↓0

E
∗
(

1

ε1−H
√

L(ε−1)
Xε

t

)2

= c2t2H . (23)

Since the variance characterizes the finite dimensional distributions of a mean-zero Gaussian pro-
cess with stationary increments, we see that the finite dimensional distributions of the process
(

1

ε1−H
√

L(ε−1)
Xε

t

)

t≥0

converge to
(

cBH
t

)

t≥0
whenever (22) holds. The following lemma gives a suffi-

cient condition for (22) in terms of the covariance function γ.

Lemma 3.1 For (22) to hold, it suffices that

γ(t) ∼ c2H(2H − 1)t2H−2L(t) as t → ∞. (24)
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Proof. By Proposition 1.5.8 in [8], every slowly varying function L which is locally bounded on R+

satisfies
∫ t

0

τβL(τ)dτ ∼ tβ+1L(t)

β + 1

if β > −1. Applying this proposition to the slowly varying function

L̃(t) :=
γ(t)

c2H(2H − 1)t2H−2
,

we conclude
∫ t

0

∫ v

0

γ(u)du dv ∼ c2

2
t2HL(t),

and so our assertion follows from (20). �

Before we proceed with the proof of our main result, let us briefly consider the case µ = 0 which is
not covered by our theorem. For semi-Markov processes whose “heavy-tailed state” happens to be the
mean, the structure of the limit process depends on the distribution of the sojourn times in the various
active states.2

Example 3.1 We consider the case E = {−1, 0, 1}, and assume that p−1,0 = p1,0 = 1 and that p0,−1 =
p0,1 = 1

2 . With ν1 = P∗{xt = 1} > 0, we obtain

γ(t) = ν1 (E∗[xtx0|x0 = 1] + E
∗[xtx0|x0 = −1]) .

Suppose that the sojourns in the inactive state are heavy tailed, and that the waiting times in the active
states are exponentially distributed with parameter 1. In such a symmetric situation

E
∗[xtx0|x0 = ±1] = P

∗{T1 ≥ t|x0 = ±1} = e−t.

Therefore, γ(t) = 2ν1e
−t. In view of (23), this yields c > 0 such that

L- lim
ε↓0

L- lim
N→∞

(

1√
εN

Xε,N
t

)

0≤t≤T

= (cWt)0≤t≤T

for some standard Wiener process W .

In order to prove Theorem 3.1, we need to establish (24). For this, the following representation of
the covariance function turns out to be useful: in terms of the marginal distribution νi = P∗{xt = i}
(i ∈ E) of the stationary semi-Markov process given in Lemma 2.1 (i), and in terms of the conditional
probabilities

P ∗
t (i, j) := P

∗{xt = j|x0 = i},
we have

γ(t) =
∑

i,j∈E

ijνi (P ∗
t (i, j) − νj) . (25)

It follows from Proposition 6.12 in [15], for example, that P ∗
t (i, j) → νj as t → ∞. Hence limt→∞ γ(t) = 0.

In order to prove Theorem 3.1, however, we also need to show that this convergence is sufficiently slow.
We shall see that the agents’ inertia accounts for the slow decay of correlations. It is thus the agents’
inactivity that is responsible for that fact that the logarithmic price process is not approximated by
a stochastic integral with respect to a Wiener process, but by an integral with respect to fractional
Brownian motion.

We are now going to determine the rate of convergence of the covariance function to 0. To this end, we
show that P ∗

t (i, j) can be written as a convolution of a renewal function with a slowly decaying function
plus a term which has asymptotically, i.e., for t → ∞, a vanishing effect compared to the first term;
see Lemma 3.2 below. We will then apply results from [31] and [34] to analyze the tail structure of the
convolution term.

Let

R(i, j, t) := E

{ ∞
∑

n=0

1{ξn=j,Tn≤t}
∣

∣ x0 = ξ0 = i

}

2We thank Chris Rogers for Example 3.1.
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be the expected number of visits of the process (xt)t≥0 to state j up to time t in the non-stationary

situation, i.e., under the measure P, given x0 = i. For fixed i, j ∈ E, the function t 7→ R(i, j, t) is a
renewal function. If, under P, the initial state is j, then the entrances to j form an ordinary renewal
process and

R(j, j, t) =

∞
∑

n=0

Fn(j, j, t). (26)

Here F (j, j, ·) denotes the distribution of the travel time between to occurrences of state j ∈ E as defined
in (7), and Fn(j, j, ·) is the n-fold convolution of F (j, j, ·). On the other hand, if i 6= j, the time until
the first visit to j has distribution F (i, j, ·) under P which might be different from F (j, j, ·). In this case
R(i, j, ·) satisfies a delayed renewal equation, and we have

R(i, j, t) =

∫ t

0

R(j, j, t − u)F (i, j, du). (27)

We refer the interested reader to [15] for a survey on Markov renewal theory.

Let us now return to the stationary setting and derive a representation for the expected number
R∗(i, j, t) of visits of the process (xt)t≥0 to state j up to time t under P∗, given x0 = i. To this end, we
denote by F ∗(i, j, ·) the distribution function in the stationary setting of the first occurrence of j, given
x0 = i and put

Pt(i, j) := P{xt = j|x0 = i}.
Given the first jump time T1 and given that xT1

= i we have that

P
∗{xt = j|xT1

= i} = Pt−T1
(i, j) on {t ≥ T1}. (28)

Thus,

R∗(i, j, t) =

∫ t

0

R(j, j, t − u)F ∗(i, j, du). (29)

3.1 A representation for the conditional transition probabilities In this section we derive a
representation for P ∗

t (i, j) which will allow us to analyze the asymptotic behavior of P ∗
t (i, j)−νj . To this

end, we recall the definition of the joint distribution of the initial state and the initial sojourn time and
the definition of the conditional joint distribution of (ξ1, T1), given ξ0 from (11) and (14) respectively.
We define

s(i, t) := P
∗{ξ0 = i, T1 > t} and ŝ(i, j, t) = P

∗{ξ1 = j, T1 ≤ t|ξ0 = i}. (30)

In terms of these quantities, the transition probability P ∗
t (i, j) can be written as

P ∗
t (i, j) =

s(i, t)

νi
δij +

∑

k∈E

∫ t

0

Pt−u(k, j)ŝ(i, k, du). (31)

Here the first term on the right-hand-side of (31) accounts for the P∗-probability that x0 = i and that

the state i survives until time t. The quantity
∫ t

0
Pt−u(k, j)ŝ(i, k, du) captures the conditional probability

that the first transition happens to be to state k before time t, given ξ0 = i. Observe that we integrate
the conditional probability Pt−u(i, j) and not P ∗

t−u(i, j): conditioned on the value of semi-Markov process
at the first renewal instance the distributions of (xt)t≥0 under P and P∗ are the same; see (28).

In the sequel it will be convenient to have the following convolution operation: let h̃ be a locally
bounded function, and F̃ be a distribution function both of which are defined on R+. The convolution
F̃ ∗ h̃ of F̃ and h̃ is given by

F̃ ∗ h̃(t) :=

∫ t

0

h̃(t − x)F̃ (dx) for t ≥ 0. (32)

Remark 3.1 Since F̃ ∗ h̃ is locally bounded, the map t 7→ G∗(F̃ ∗ h̃)(t) is well defined for any distribution
G on R+. Moreover, G ∗ (F̃ ∗ h̃)(t) = F̃ ∗ (G ∗ h̃)(t) = (G ∗ F̃ ) ∗ h̃(t). In this sense distributions acting on
the locally bounded function can commute. Thus, for the renewal function R =

∑∞
n=0 F̃n associated to F̃ ,

as defined in (26), the integral R ∗ h̃(t) is well defined and R ∗ (G ∗ h̃)(t) = G ∗ (R ∗ h̃)(t) = (R ∗G) ∗ h̃(t).



12 Bayraktar, Horst, Sircar: Investor Inertia

Mathematics of Operations Research xx(x), pp. xxx–xxx, c©200x INFORMS

We are now going to establish an alternative representation for the conditional probability P ∗
t (i, j)

that turns out to be more appropriate for our subsequent analysis.

Lemma 3.2 In terms of the quantities s(i, t) and h(i, t) in (12) and R∗(i, j, t), we have

P ∗
t (i, j) =

s(i, t)

νi
δij +

∫ t

0

h(j, t − s)R∗(i, j, ds). (33)

Proof. In view of (31), it is enough to show

R∗(i, j, t) ∗ h(j, t) =
∑

k∈E

∫ t

0

Pt−u(k, j)ŝ(i, k, du).

To this end, observe first that F ∗(i, j, t) can be decomposed as

F ∗(i, j, t) = ŝ(i, j, t) +
∑

k 6=j

∫ t

0

F (k, j, t − u)ŝ(i, k, du). (34)

Indeed, ŝ(i, j, t) is the probability that the first transition takes place before time t and happens to be to
state j ∈ E, and

∫ t

0

F (k, j, t − u)ŝ(i, k, du) = P
∗{xv = j for some v ≤ t, xT1

= k|x0 = i}.

In view of (29) and (34), Remark 3.1 yields

R∗(i, j, t) ∗ h(j, t) = R(j, j, t) ∗ F ∗(i, j, t) ∗ h(j, t)

= R(j, j, t) ∗ ŝ(i, j, t) ∗ h(j, t) +
∑

k 6=j

F (k, j, t) ∗ ŝ(i, k, t) ∗ R(j, j, t) ∗ h(j, t).

Now recall from Proposition 6.3 in [15], for example, that

Pt(i, j) =

∫ t

0

h(j, t − s)R(i, j, ds).

Thus, by also using (27) we obtain

R∗(i, j, t) ∗ h(j, t) = ŝ(i, j, t) ∗ Pt(j, j) +
∑

k 6=j

R(j, j, t) ∗ F (k, j, t) ∗ ŝ(i, k, t) ∗ h(j, t)

= ŝ(i, j, t) ∗ Pt(j, j) +
∑

k 6=j

R(k, j, t) ∗ ŝ(i, k, t) ∗ h(j, t)

=
∑

k

ŝ(i, k, t) ∗ Pt(k, j).

This proves our assertion. �

3.2 The rate of convergence to equilibrium Now, our goal is to derive the rates of convergence
of the mappings t 7→ s(i, t) to 0 and t 7→ R∗(i, j, t) ∗ h(j, t) to νj , respectively. Due to (25) it is enough
to analyze the case i, j 6= 0. To this end we shall first study the asymptotic behavior of the map
t 7→ R∗(i, j, t). Since R(j, j, ·) is a renewal function, we see from (29) and (33) that the asymptotics of
P ∗

t (i, j) can be derived as an application of Theorem A.1 essentially if we can show that

F ∗(i, j, t) ∗ h(j, t) = o(F̄ (j, j, t)). (35)

3.2.1 The tail structure of the travel times Let us first deal with the issue of finding the
convergence rate of F̄ (j, j, t) = 1 − F (j, j, t) to 0. To this end, we introduce the family of random
variables

Θ = {(θℓ
i,j), i, j ∈ E, ℓ = 0, 1, 2, ...}, (36)

such that any two random variables in Θ are independent, and for fixed pair (i, j) the random variables
θk

i,j have G(i, j, ·) as their common distribution function. To ease the notational complexity we assume
that the law of Tn+1 − Tn only depends on ξn. We shall therefore drop the second sub-index from the
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elements of Θ. The random variables (θℓ
i )ℓ∈N are independent copies of the sojourn time in state i.

We shall prove Lemma 3.4 below under this additional assumption. The general case where Tn+1 − Tn

depends both on ξn and ξn+1 can be analyzed by similar means.

Let N i,j
k denote the number of times the embedded Markov chain {ξn}n∈N visits state k ∈ E before it

visits state j, given ξ0 = i. By definition, N i,j
j = 0 with probability one. We denote by N

i,j the vector

of length |E| with entries N i,j
k , and by n = (nk)k∈E an element of N|E|. Then we have

F̄ (i, j, t) = P







θ0
i +

∑

k 6=j

Ni,j

k
∑

ℓ=1

θℓ
k > t







. (37)

With G(k, t) := P{Tn+1 − Tn ≤ t
∣

∣ξn = k}, we can rewrite (37) as

F̄ (i, j, t) =
∑

n

P







θ0
i +

∑

k 6=j

nk
∑

ℓ=1

θℓ
k > t

∣

∣

∣

∣

N
i,j = n







P{N i,j = n}

= 1 − G(i, t) ∗
∑

n

∗
k 6=j

Gnk(k, t)P{N i,j = n}.
(38)

Our goal is now to show that

lim
t→∞

F̄ (i, j, t)

t−αL(t)
=
∑

n≥0

nP{N i,j
0 = n} + δi,0 (39)

for j 6= 0. Here, δi,0 = 0 if i 6= 0 and δi,0 = 1 otherwise. The first term on the right-hand-side,
∑

n≥0 nP{N i,j
0 = n}, is the expected number of occurrences of state 0 under P before the first visit to

state j, given ξ0 = x0 = i. This quantity is positive, due to Assumption 2.1. In order to prove (39), we
need the following results which appear as Lemma 10 in [34].

Lemma 3.3 Let F1, ..., Fm be probability distribution functions such that, for all j 6= i, we have F̄j(t) =
o(F̄i(t)).Then for any positive integers n1, . . . , nm,

1 − Fn1

1 ∗ ... ∗ Fnm
m (t) ∼ niF̄i(t).

Moreover, for each u > 0, there exists some Ku < ∞ such that

1 − Fn1

1 ∗ ... ∗ Fnm
m (t)

1 − Fni

i (t)
≤ Ku(1 + u)ni

for all t ≥ 0.

We are now ready to prove (39).

Lemma 3.4 Under the assumptions of Theorem 3.1 we have, for j 6= 0,

lim
t→∞

F̄ (i, j, t)

t−αL(t)
=
∑

n≥0

nP{N i,j
0 = n} + δi,0 > 0.

Proof. Let us first prove that the expected number of occurrences of state 0 before the first return
to state j occurs is finite. To this end, we put p = min{pij : i, j ∈ E, i 6= j} > 0. Since

P{N i,j
0 = n} ≤ P{ξm 6= j for all m ≤ n} ≤ (1 − p)n,

we obtain
∑

n≥0

nP{N i,j
0 = n} ≤

∑

n≥0

n(1 − p)n < ∞. (40)

Now, we define a probability measure µ̄ on N|E| by

µ̄{n} = P{N i,j = n}
and put

An(t) = G(i, t) ∗
k 6=j

Gnk(k, t).
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Since 1−G(0,t)
t−αL(t) → 1 as t → ∞, the first part of Lemma 3.3 yields

lim
t→∞

1 − An(t)

t−αL(t)
= lim

t→∞





1 − G(i, t) ∗
k 6=j

Gnk(k, t)

1 − G(0, t)





(

1 − G(0, t)

t−αL(t)

)

= n0 + δi,0.

From the definition of the measure µ̄, we obtain

1 −
∑

n An(t)P{N i,j = n}
t−αL(t)

= Eµ̄

{

1 − An(t)

t−αL(t)

}

,

and so our assertion follows from the dominated convergence theorem if we can show that

sup
t

1 − An(t)

t−αL(t)
∈ L1(µ̄). (41)

To verify (41), we will use the second part of Lemma 3.3. For each u > 0 there exists a constant Ku such
that

1 − An(t)

t−αL(t)
=

(

1 − An(t)

1 − G(0, t)

)(

1 − G(0, t)

t−αL(t)

)

≤ Ku(1 + u)n0+δi,0 sup
t

1 − G(0, t)

t−αL(t)
.

Since

lim
t→∞

1 − G(0, t)

t−αL(t)
= 1,

and because we are only interested in the asymptotic behavior of the function t 7→ F̄ (i,j,t)
t−αL(t) , we may with

no loss of generality assume that

sup
t

1 − G(0, t)

t−αL(t)
= 1.

This yields

sup
t

1 − An(t)

t−αL(t)
≤ Ku(1 + u)n0+δi,0 . (42)

From (40) and (42) we get

Eµ̄

{

sup
t

1 − An(t)

t−αL(t)

}

≤ Ku(1 + u)δi,0

∞
∑

k=0

(1 − p)k(1 + u)k.

Choosing u < p
1−p we obtain β := (1 − p)(1 + u) < 1 and so the assertion follows from

Eµ̄

{

sup
t

1 − An(t)

t−αL(t)

}

≤ Ku(1 + u)δi,0

∑

n≥0

βn < ∞.

�

So far, we have shown that F̄ (i, j, t) ∼ t−αL(t)
(

∑

n≥0 nP{N i,j
0 = n} + δi,0

)

for j 6= 0. In view of

Lemmas 3.3 and 3.4, the representation (34) of F ∗(i, j, t) yields a similar result for the stationary setting.

Corollary 3.1 For all i, j 6= 0 we have

lim
t→∞

F̄ ∗(i, j, t)

t−αL(t)
=
∑

n≥0

nP{N i,j
0 = n}.

Proof. Due to (34), (30) and (14) we can write

F ∗(i, j, t) =
pij

mi,j

∫ t

0

(1 − G(i, j, s))ds +
∑

k 6=j

pik

mi,k

∫ t

0

F (k, j, t − u)(1 − G(i, k, u))du, (43)

and therefore

F̄ ∗(i, j, t) =
pij

mi,j

∫ ∞

t

(1 − G(i, j, s))ds +
∑

k 6=j

pik

(

1 − 1

mi,k

∫ t

0

F (k, j, t − u)(1 − G(i, k, u))du

)

. (44)
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We will now show that

lim
t→∞

∫∞
t (1 − G(i, j, s))ds

t−αL(t)
= 0 if pij > 0 and i 6= 0. (45)

To this end, we first apply Proposition 1.5.10 in [8]: if g is a function on R+ that satisfies g(t) ∼ t−βL(t)
for β > 1, then

∫ ∞

t

g(s)ds ∼ t−β+1

β − 1
L(t).

Together with Assumption 2.2 (iii) this proposition implies that

lim
t→∞

∫∞
t

h(i, s)ds

t−αL(t)
= 0, i 6= 0, (46)

where h(i, ·) is the tail of the distribution of the sojourn time in state i, defined in (12). The representation

h(i, t) = 1 −
∑

j∈E

pijG(i, j, t) =
∑

j∈E

pij(1 − G(i, j, t)), (47)

along with (46) implies (45).

In order to find the decay rate of the remaining terms of (44), recall first that N i,j
k is the number of

visits to state k before reaching state j, given ξ0 = i, and not counting the first one in the case k = i.

P{N i,j
0 = n} =

∑

k/∈{0,j}
pikP{Nk,j

0 = n} + pi0P{N i,0
0 = n − 1},

and so
∑

n≥0

nP{N i,j
0 = n} =

∑

k 6=j

pik

∑

n≥0

nP{Nk,j
0 = n} + pi0

∑

n≥0

P{N0,j
0 = n}. (48)

Note that Assumption 2.1 implies
∑

n≥0 P{N0,j
0 = n} = 1. Since 1

mi,j

∫ t

0 (1−G(i, j, s))ds is a distribution

function whose tail is 1
mi,j

∫∞
t

(1 − G(i, j, s))ds, Lemmas 3.3, 3.4 together with equations (45) and (48)

imply that

lim
t→∞

∑

k 6=j pik

(

1 − 1
mi,k

∫ t

0
F (k, j, t − u)(1 − G(i, k, u))du

)

t−αL(t)
=

∑

k 6=j

pik

∑

n≥0

nP{Nk,j
0 = n} + pi0

=
∑

n≥0

nP{N i,j
0 = n}.

This completes the proof.

�

The next result shows that the first term on the right-hand-side of (33) converges to zero sufficiently
fast.

Corollary 3.2 For all i 6= 0 we have

lim
t→∞

s(i, t)

t−α+1L(t)
= 0.

Proof. The proof is an immediate consequence of Corollary 3.1 since F̄ ∗(i, j, t) ≥ s(i, t)/νi. �

3.2.2 The tail structure of R
∗

∗ h So far, we have analyzed the tail structure of the distribution
of the travel time between states i and j (i, j 6= 0) in the stationary regime. We are now going to study
the tail structure of R∗(i, j, t) ∗ h(j, t).

Lemma 3.5 There exists Cj > 0 such that, for j 6= 0,

lim
t→∞

R∗(i, j, t) ∗ h(j, t) − νj

t−α+1L(t)
=

Cj

α − 1

for all i ∈ E, i 6= 0.
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Proof. Let us fix i, j ∈ E, i, j 6= 0. Using the representation (29) for the function R∗(i, j, ·), we need
to show that

lim
t→∞

R(j, j, t) ∗ F ∗(i, j, t) ∗ h(j, t) − νj

t−α+1L(t)
=

Cj

α − 1
.

It follows from Fubini’s theorem that
∫ ∞

0

F ∗(i, j, t) ∗ h(j, t)dt =

∫ ∞

0

∫ ∞

0

h(j, t − s)1{s≤t}F
∗(i, j, ds) dt

=

∫ ∞

0

∫ ∞

s

h(j, t − s)dt F ∗(i, j, ds)

=

∫ ∞

0

h(j, t)dt

= mj,

where mj is the mean sojourn time at state j ∈ E as defined in (9). Suppose now that we can show that
the continuous non-negative function z defined by

z(i, j, t) := F ∗(i, j, t) ∗ h(j, t) (49)

satisfies z(i, j, t) = o(F̄ (i, j, t)), is directly Riemann integrable3 and of bounded variation, and its total
variation function z∗(i, j, ·), defined in (57) below, satisfies z∗(i, j, t) = O(t−α+1L̂(t)), where we define

L̂(t) = L(t)
∑

n≥0

nP{N j,j
0 = n}.

Then Theorem A.1 yields

mj

ηj
−
∫ t

0

z(i, j, t − s)R(j, j, ds) ∼ − mj

(α − 1)η2
j

t−α+1L̂(t), (50)

because R(j, j, t) =
∑

n≥0 Fn(j, j, t) is a renewal function, F (j, j, ·) is nonsingular and F̄ (j, j, t) ∼ t−αL̂(t)

for j 6= 0. By Propositions 5.5 and 6.12 in [15], νj =
mj

ηj
, and so (50) would yield

lim
t→∞

R(j, j, t) ∗ F ∗(i, j, t) ∗ h(j, t) − νj

t−α+1L(t)
=

mj

(α − 1)η2
j

∑

n≥0

nP{N j,j
0 = n}

and hence prove our assertion with

Cj :=
mj

η2
j

∑

n≥0

nP{N j,j
0 = n}. (51)

We will now establish that (i) z(i, j, t) = o(F̄ (i, j, t)), that (ii) z∗(i, j, t) = O(t−α+1L̂(t)) and z(i, j, ·) is
of bounded variation, and that (iii) z(i, j, ·) is directly-Riemann integrable.

(i) Since i, j 6= 0 and because pi,0 > 0 the probability that the semi-Markov process x visits the
state 0 before it reaches the state j is positive. Thus, it follows from Assumption 2.2 (iii) and
from Corollary 3.1 that

h(j, t) = o(F̄ ∗(i, j, t)). (52)

Now it follows from (52) and Lemma 3.3 that

F̄ ∗(i, j, t) + z(i, j, t) = 1 − F ∗(i, j, t) ∗ (1 − h(j, t)) ∼ F̄ ∗(i, j, t). (53)

Hence z(i, j, t) = o(F̄ ∗(i, j, t)), and so z(i, j, t) = o(F̄ (i, j, t)) by Lemma 3.4 and Corollary 3.1.

(ii) Assumption 2.2 (iv) along with (38), the representation (43) of F ∗(i, j, ·) and (47) guarantees
that F ∗(i, j, ·) and h(j, ·) have a bounded continuous densities f∗(i, j, ·) and h′(j, ·), respectively.
As a result, z(i, j, ·) is absolutely continuous with density

z′(i, j, t) = f∗(i, j, t) +

∫ t

0

h′(j, t − s)f∗(i, j, s)ds. (54)

3See Appendix B for the definition of directly Riemann integrability.
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Since h′(j, t − s) ≤ 0,

|z′(i, j, t)| ≤ f∗(i, j, t) −
∫ t

0

h′(j, t − s)f∗(i, j, s)ds. (55)

In terms of the distribution function g(j, t) := 1 − h(j, t) we have

−
∫ t

0

h′(j, t − s)f∗(i, j, s)ds = − ∂

∂t

∫ t

0

h(j, t − s)f∗(i, j, s)ds + f∗(i, j, t)

=
∂

∂t
(g(j, t) ∗ F ∗(i, j, t)) .

(56)

As a result the total variation function z∗(i, j, ·) satisfies

z∗(i, j, t) =

∫ ∞

t

|z′(i, j, s)|ds ≤ F̄ ∗(i, j, t) + [1 − g(j, t) ∗ F ∗(i, j, t)] . (57)

Thus, z∗(i, j, t) ≤ 2 and z(i, j, ·) is of bounded variation. Lemma 3.3 and (52) together with (57)
give z∗(i, j, t) = O(F̄ ∗(i, j, t)), and so Corollary 3.1 yields z∗(i, j, t) = O(t−α+1L̂(t)).

(iii) In order to prove that z is directly Riemann integrable note first that since h ≥ 0 is decreasing
and by Assumption 2.2 (i) it is integrable, therefore by Lemma B.1 (i) it is directly Riemann
integrable. Now Lemma B.1 (ii) implies that z is directly Riemann integrable.

�

3.2.3 Proof of the central limit theorem for semi-Markov processes We are now ready to
prove the main result of this section.

Proof of Theorem 3.1: By (33) we have the representation

P ∗
t (i, j) =

s(i, t)

νi
δij +

∫ t

0

h(j, t − s)R∗(i, j, ds)

for the conditional probability that xt = j, given x0 = i. Due to Corollary 3.2 and Lemma 3.5,

lim
t→∞

P ∗
t (i, j) − νj

t−α+1L(t)
=

Cj

α − 1
(i, j 6= 0),

where Cj is given by (51). With H = 3−α
2 it follows from (25) that

lim
t→∞

γ(t)

t2H−2L(t)
=

1

(2 − 2H)

∑

i,j∈E

ijνiCj . (58)

By Lemma 3.1 this proves the existence of a constant c such that the finite dimensional distributions

of the processes

(

1

ε1−H
√

L(ε−1)
Xε

t

)

0≤t<∞
converge weakly to the finite dimensional distributions of the

fractional Brownian motion process cBH as ε ↓ 0, and c is given by

c2 =
1

2H(1 − H)(2H − 1)

∑

i,j∈E

ijνi
mj

η2
j

∑

n≥0

nP{N j,j
0 = n} =

1

2H(1 − H)(2H − 1)
µ
∑

j∈E

j
mj

η2
j

∑

n≥0

nP{N j,j
0 = n}.

In order to establish tightness, we proceed in two steps.

(i) We first establish the existence of a constant C < ∞ such that

Var(t) ≤ Ct2HL(t) for all t ≥ 0. (59)

In view of (22), we can choose a sufficiently large T ∈ N that satisfies

Var(t) ≤ 2c2t2HL(t) for all t ≥ T.

In terms of the random variables Y i :=
∫ it/T

(i−1)t/T
Ysds (i = 1, 2, . . . , T ) we have

Var

(∫ t

0

Ysds

)

= Var

(

T
∑

i=1

∫ it/T

(i−1)t/T

Ysds

)

=

T
∑

i,j=1

Cov(Y i, Y j).
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Since the mean zero Gaussian process (
∫ ·
0
Ysds) has stationary increments, the sequence

Y 1, Y 2, . . . , Y T is stationary. Thus, the Hölder inequality yields

Cov(Y i, Y j) ≤
√

Var(Y i)
√

Var(Y j) = Var(Y 0),

and so

Var(t) ≤ T 2Var

(

t

T

)

for 0 ≤ t ≤ T.

In view of (25), the function γ is bounded: ‖γ‖∞ < ∞. Hence for s ∈ [0, 1] the representation
(20) shows that

Var(s) = 2

∫ s

0

∫ v

0

γ(u)dudv ≤ s2‖γ‖∞ ≤ s2H‖γ‖∞ because H ∈
(

1

2
, 1

)

.

This yields (59) with C := max{2c2, T 2−2H‖γ‖∞} (after putting L ≡ 1 on [0, T ]).

(ii) Let us now denote by Zε = (Zε
t ) the mean zero Gaussian process with stationary increments

defined by

Zε
t :=

1

ε1−H
√

L(ε−1)
Xε

t (0 ≤ t ≤ T ).

Due to Theorem 12.3 in [7], the family of stochastic processes (Zε) is tight if the following moment
condition is satisfied for some constants δ > 1 and Ĉ < ∞ and for all sufficiently small ε:

E[Zε
t2 − Zε

t1 ]
2 ≤ Ĉ|t2 − t1|δ for all 0 ≤ t1 ≤ t2 ≤ T. (60)

In view of (21), we have

E[Zε
t2 − Zε

t1 ]
2 = ε2Var

(

t2 − t1
ε

)

1

ε2−2HL(ε−1)
,

and so it follows from step (i) that

E[Zε
t2 − Zε

t1 ]
2 ≤ C(t2 − t1)

2H L
(

ε−1(t2 − t1)
)

L(ε−1)
. (61)

Since L is slowly varying, L(ε−1u)
L(ε−1) tends to 1 as ε → 0, and this convergence is uniform in u over

compact sets ([8], Theorem 1.2.1). Thus, there exists ε∗ > 0 such that

L(ε−1u)

L(ε−1)
≤ 2 for all 0 ≤ u ≤ T

if ε < ε∗, and so (60) follows from (61) with Ĉ := 2C. �

4. Approximating Integrals with respect to fractional Brownian motion In this section
we prove an approximation result for stochastic integrals which contains Theorem 2.1 as a special case.
More precisely we give conditions which guarantee that for a sequence of processes {(Ψn, Zn)}n∈N the
convergence L- limn→∞(Ψn, Zn) = (Ψ, BH) implies the convergence L- limn→∞

(

Ψn, Zn,
∫

ΨndZn
)

=
(

Ψ, BH ,
∫

ΨdBH
)

. We follow the notational convention in [38] that
∫

XdY (without displaying the
running variable) denotes

∫

Xs−dYs.

All stochastic integrals in this section are understood as limits in probability of Stieltjes-type sums
which can be described as follows: given a probability space (Ω,F , P) and a filtration {Ft : t ≥ 0} of
sub-sigma-fields of F consider two adapted stochastic processes φ and Z; we say that the integral

∫

φdZ
exists if for any T < ∞ and for each sequence of partitions {τ l}l∈N, τ l = (τ l

1, τ
l
2, . . . , τ

l
Nl

), of the interval

[0, T ] that satisfies liml→∞ maxi |τ l
i+1 − τ l

i | = 0,

∫ T

0

φs−dZs = P- lim
l→∞

∑

i

φτ l
i
(Zτ l

i+1
− Zτ l

i
), (62)

where P- lim denotes the limit in probability. This definition of stochastic integrals applies to the usual
semimartingale setting where φ is a process in D and where Z is a semimartingale. If Z = BH is a
fractional Brownian motion process with Hurst coefficient H > 1

2 , the limit in (62) exists for a large
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class of integrands, including continuous semimartingales and C1-functions of fractional Brownian mo-
tion. In particular, the stochastic integral

∫

BHdBH exists in the sense of (62), and for the continuous
semimartingale Ψ we have the following integration by parts formula, due to [39]:

−
∫

BHdΨ + ΨBH =

∫

ΨdBH . (63)

Before we state the main result of this section, we recall that a sequence {Ψn}n∈N of semimartingales
defined on probability spaces (Ωn,Fn, Pn) is called good in the sense of [22] if, for any sequence {Zn}n∈N

of càdlàg adapted processes, the convergence L- limn→∞(Ψn, Zn) = (Ψ, Z) implies the convergence

L- lim
n→∞

(

Ψn, Zn,

∫

ZndΨn

)

=

(

Ψ, Z,

∫

ZdΨ

)

.

Remark 4.1 Any semi-martingale Ψ can be written as Ψ = M +A, in which M is a local martingale with
M0 = 0 and A is an adapted finite variation process. We will denote by [M, M ] the quadratic variation
of M and by |A| the total variation of A. A sequence (Ψn}n∈N (Ψn = Mn + An) of semi-martingales is
good on [0, T ] if the sequences (En{[Mn, Mn]T })n∈N and (En{|A|T })n∈N are bounded; see [22, Theorem
4.1] for details.

In the following we will denote by {Ψn}n∈N a sequence of “good” semimartingales and by {Zn}n∈N a
sequence of D-valued stochastic processes defined on some probability space (Ω,F , P) and assume that
the following conditions are satisfied.

Assumption 4.1 (i) The sample paths of the processes Zn are almost surely of zero quadratic vari-
ation on compact sets, and P{Zn

0 = 0} = 1.

(ii) The stochastic integrals
∫

ΨndZn and
∫

ZndZn exist in the sense of (62), and the sample paths

t 7→
∫ t

0 Zn
s−dZn

s and t 7→
∫ t

0 Ψn
s−dZn

s are càdlàg.

We are now ready to state the main theorem of this section. Its proof requires some preparation which
will be carried out below.

Theorem 4.1 Let {Ψn}n∈N be a sequence of good semimartingales and let {Zn}n∈N be a sequence of
D-valued stochastic processes that satisfy Assumption 4.1. If Ψ is a continuous semimartingale and
if BH is a fractional Brownian motion process with Hurst parameter H > 1

2 , then the convergence
L- limn→∞(Ψn, Zn) = (Ψ, BH) implies the convergence

L- lim
n→∞

(

Ψn, Zn,

∫

ΨndZn

)

=

(

Ψ, BH ,

∫

ΨdBH

)

.

Before we turn to the proof of Theorem 4.1, we consider an example where Assumption 4.1 can indeed
be verified.

Example 4.1 Let {Hn}n∈N be a sequence of real numbers with Hn > 1
2 , and assume that limn→∞ Hn =

H > 1
2 . Let Zn be a fractional Brownian motion process with Hurst parameter Hn and let Ψ be a

continuous semimartingale independent of Zn for all n. Since Hn > 1
2 , the processes Zn have zero

quadratic variation. Moreover, L- limn→∞ Zn = BH because the centered Gaussian processes Zn and BH

are uniquely determined by their covariation functions and all stochastic integrals exists in the sense of
(62). Thus, Theorem 4.1 yields

L- lim
n→∞

(

Zn,

∫

ΨdZn

)

=

(

BH ,

∫

ΨdBH

)

.

We prepare the proof of Theorem 4.1 with the following simple lemma.
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Lemma 4.1 Under the assumptions of Theorem 4.1 the processes [Zn] and [Zn, Ψn] defined by

[Zn]t := (Zn
t )2 − 2

∫ t

0

Zn
s−dZn

s and [Zn, Ψn]t := Zn
t Ψn

t −
∫ t

0

Zn
s−dΨn

s −
∫ t

0

Ψn
s−dZn

s ,

have P-a.s. sample paths which are equal to zero.

Proof. It follow from the representation of the stochastic integrals
∫

ZndZn,
∫

ΨndZn and
∫

ZndΨn

as probabilistic limits of Stieltjes-type sums that, for any t and each sequence of partitions {τ l}l∈N of
[0, t] with liml→∞ maxi |τ l

i+1 − τ l
i |,

[Zn] = P- lim
l→∞

∑

i

(Zn
τ l

i+1

− Zn
τ l

i
)2 and [Zn, Ψn] = P- lim

l→∞

∑

i

(Zn
τ l

i+1

− Zn
τ l

i
)(Ψn

τ l
i+1

− Ψn
τ l

i
).

Since a typical sample path of the stochastic integrals
∫

ΨndZn and
∫

ZndΨn is in D, we can ap-
ply the same arguments as in the proof of Theorem II.6.25 in [48] in order to obtain the inequality
P
{

[Zn, Ψn]2t ≤ [Zn]t[Ψ
n]t
}

= 1. Thus, our assertion follows from P{[Zn]t = 0 for all t ≥ 0} = 1. �

For the proof of Theorem 4.1 we will also need the following result.

Lemma 4.2 (i) Let C be the space of all real valued continuous functions. For n ∈ N, let αn, βn ∈ D

and assume that the sequence {(αn, βn)}n∈N converges in the Skorohod topology to (α, β) ∈ C×C.
Then, on compact intervals, the process

γn = (γn(t))t≥0 defined by γn(t) = αn(t)βn(t)

converges to αβ = (α(t)β(t))t≥0 in the Skorohod topology on D.

(ii) Let {(Y n, Zn)}n∈N be a sequence of D-valued random variables defined on some probability space
(Ω,F , P) that converges in law to (Y, Z). If P{(Y, Z) ∈ C × C} = 1, then

L- lim
n→∞

{(Y n
t Zn

t )0≤t≤T } = (YtZt)0≤t≤T

holds for all T < ∞.

Proof. Since α and β are continuous, (i) follows from Lemma 2.1 in [38]. The second assertion
follows from (i) and Skorohod’s representation theorem. �

We are now ready to finish the proof of Theorem 4.1.

Proof of Theorem 4.1: Since {Ψn}n∈N is a sequence of good semimartingales and because a typical
sample path of a fractional Brownian motion process is continuous, we deduce from Theorem 2.2 in [38]
and from Lemma 4.2 (ii) that

L- lim
n→∞

(

Ψn, Zn,

∫

ZndΨn

)

=

(

Ψ, BH ,

∫

BHdΨ

)

and L- lim
n→∞

(ΨnZn) =
(

ΨBH
)

, (64)

respectively. By the continuous mapping theorem, it follows from (64), from Lemma 4.1 and from the
integration by parts formula for fractional Brownian motion (63) that the finite dimensional distributions
of the processes

(

Ψn, Zn,

∫

ΨndZn

)

=

(

Ψn, Zn,−
∫

ZndΨn + ΨnZn

)

converge weakly to the finite dimensional distributions of the process
(

Ψ, BH ,−
∫

BHdΨ + ΨBH

)

=

(

Ψ, BH ,

∫

ΨdBH

)

.

It also follows from (64) that the sequence
{∫

ZndΨn
}

n∈N
is C-tight and the sequence {ΨnZn}n∈N

is
tight. By Corollary VI.3.33 in [33] the sum of a tight sequence of stochastic processes with a sequence
of C-tight processes is tight. Thus, continuity of the processes ΨBH and

∫

BHdΨ yields tightness of the
sequence

{∫

ΨndZn
}

n∈N
. This shows that

L- lim
n→∞

(

Ψn, Zn,

∫

ΨndZn

)

=

(

Ψ, BH ,

∫

ΨdBH

)

.
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�

In view of Lemma 4.1 and the integration by parts formula for fractional Brownian motion processes
we also have the following approximation result for the integral of fractional Brownian motion process
with respect to itself.

Proposition 4.1 Under the assumption of Theorem 4.1 it holds that

L- lim
n→∞

∫ t

0

Zn
s−dZn

s =

∫ t

0

BH
s dBH

s .

Proof. By Lemma 4.1

(Zn
t )2 = 2

∫ t

0

Zn
s−dZn

s P-a.s.

Thus, in view of Lemma 4.2 (ii) and the Itô formula for fractional Brownian motion the sequence
{(Zn

t )2}n∈N converges in distribution to

(BH
t )2 = 2

∫ t

0

BH
s dBH

s .

This yields the assertion. �

We finish this section with the proof of Theorem 2.1.

Proof of Theorem 2.1: In terms of the processes Y and Xε introduced in (19) and (21), respectively,
we have

L- lim
N→∞

1√
N

(Xε,N
t )0≤t≤T = L- lim

N→∞

(

∫ t

0

(

1√
N

∑

a∈A

Ψsx
a
s/ε −

√
NµΨs

)

ds

)

0≤t≤T

=

(∫ t

0

ΨsYs/εds

)

0≤t≤T

=

(∫ t

0

ΨsdXε
s

)

0≤t≤T

and
∫ t

0

Xε
sdXε

s =

∫ t

0

Xε
sYs/ε ds

where all the stochastic integrals have continuous sample paths. By Theorem 3.1,

L- lim
ε↓0

1

ε1−H
√

L(ε−1)
Xε = c BH

with H > 1
2 and the sequence of semi-martingales consisting of a single element Ψ is good as a result of

Remark 4.1 since by assumption E{[Ψ, Ψ]T} < ∞ and E{|A|T } < ∞. Therefore, the assertion follows
from Theorem 4.1 if we can show that the processes Xε have zero quadratic variation on compact time
intervals and that the stochastic integrals

∫

ΨdXε and
∫

Xε dXε exist as the probabilistic limits of
Stieltjes-type sums. These properties, however, follow from (21) by direct computation. �

5. Conclusion & Discussion We proved a functional central limit theorem for stationary semi-
Markov processes and an approximation result for stochastic integrals of fractional Brownian motion.
Our motivation was to provide a mathematical framework for analyzing microstructure models where
stock prices are driven by the demand of many small investors. We identified inertia as a possible source
of long range dependencies in financial time series and showed how investor inertia can lead to stock price
models driven by a fractional Brownian motion. Several avenues are open for further research.

In our financial market model, investors do not react to changes in the stock price. Over short time
periods, such an assumption might be justified for small, non-professional investors, but incorporating
feedback effects, whereby traders’ investment decisions can be influenced by asset prices, would be an
important next step from an economic point of view. This, however, leads to a significant increase in the
complexity of the dynamics, as discussed in Remark 2.4.
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Financial market models where stock prices are driven by the demand of many heterogenous agents
constitute another mathematical challenge. Heterogeneity among traders has been identified as a key
component affecting the dynamics of stock prices, and in recent years an extensive literature on the
mathematical modelling of heterogeneity and interactions in financial markets has appeared. But the
analysis is usually confined to models of active market participants trading every period, and it is therefore
of interest to introduce heterogeneity and interaction into our model. One approach would be to build
on the case study in Section 2.3 to look at models where inert traders (who alone would lead to a limit
fractional Brownian motion price process) interact with active traders (who alone would lead to a limit
standard Brownian motion price process), and to include mechanisms by which their interaction leads to
efficient markets. One could also try incorporate strategically interacting institutional investors; see [4]
for a possible game theoretic framework.

For long-term economic models, it is important to look at time-varying rates of long-range dependence,
where the variation is caused by global economic factors, or regime changes. At some times, the market
may be efficient, for example in a bullish exuberant economy like the late 1990s (see Figure 1), while
at other times, the Joseph effect may be prominent, such as during a recession or period of economic
nervousness as in the early 1990s. The mathematical challenge is then to adapt the limit theorem of this
paper to stochastically varying measures of inertia.

Appendix A. The key renewal theorem in the heavy tailed case In this appendix we recall
a result of Heath et al. ([31]) on the rate of convergence in the key renewal theorem in the heavy tailed
case.

Theorem A.1 Let F be a distribution with domain [0,∞) satisfying

F̄ (t) = 1 − F (t) ∼ t−αL̂(t)

for some 1 < α < 2, and where L̂ is a slowly varying function at infinity. Assume that Fn is nonsingular
for some n ≥ 1. Let κ =

∫∞
0

F̄ (x)dx be the expected value and denote by U the renewal function associated
with F , that is,

U =

∞
∑

n=0

Fn.

Let z be a continuous, non-negative function of bounded variation on [0,∞), such that limt→∞ z(t) = 0.
That is, z(t) =

∫∞
t ζ(dy) for some finite signed measure ζ on [0,∞). Let z∗ denote the total variation

function of ζ. That is,

z∗(t) =

∫ ∞

t

|ζ|(dy).

We will also assume that z is a directly Riemann integrable function (see [16], p.295 for a definition) on
[0,∞), such that z(t) = o(F̄ (t))and that

z∗(t) = O
(

t−α+1L̂(t)
)

. (65)

Let λ =
∫∞
0 z(t)dt < ∞. Then the function h : R+ → R+ defined by

h(t) =
λ

κ
−
∫ t

0

z(t − s)U(ds)

satisfies

h(t) ∼ − λ

(α − 1)κ2
t−α+1L̂(t).

Proof. The proof follows from the Remark on page 11 of [31]. �

Appendix B. Directly Riemann Integrable Functions The proof of our approximation result
uses the notion of directly Riemann integrability. A real valued function g on R+ is called directly
Riemann integrable if

lim
a→0+

∞
∑

n=1

a inf
(n−1)a≤t≤na

g(t) = lim
a→0+

∞
∑

n=1

a sup
(n−1)a≤t≤na

g(t) =

∫

g(t)dt.

These sums would be Riemann sums if not for the infinite limit of summation. If a function is directly
Riemann integrable, it is Lebesgue integrable, but the converse is not necessarily true.
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Lemma B.1 ([16, Chapter 9], Proposition 2.16, (c) and (d))

(i) Let g ≥ 0 be a monotone non-increasing function; then g is directly Riemann integrable if and
only if g is Riemann integrable.

(ii) Let g ≥ 0 and let φ be a distribution function on R+. If g is directly Riemann integrable, then
φ ∗ g is directly Riemann integrable as well.
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