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Abstract

This internet supplement summarizes some mathematical results on which the results

of the original paper are based.

1 Poisson distribution, branching processes and random sums

This mathematical appendix to our paper on “Stochastic Cascades, Credit Contagion, and
Large Portfolio Losses” summarizes properties of the Poisson distribution, branching pro-
cesses and simple compound distributions. Proofs can be found in, e.g., Resnick (1992),

Chapter 1.

1.1 The Poisson distribution

A integer-valued random variable X defined on some probability space (2, F,P) is Poisson
distributed with parameter v, X ~ P(v), if

vkev

PIX =K =m(v) = —

(1)

Its moment generating function F(z) =3~ 7, (v)s* takes the form
F(z) = e’ 1), (2)

If X1 ~P(v) (i =1,2) are independent, then X; + Xo ~ P(v1 + v2).
The Poisson distribution can be viewed as an approximation of the binomial distribution

for large n and small success probabilities. More specifically, let b(n,p) be the distribution



of the number of successes in n Binomial trails when the success probability is p. If X, ~
b(n,p(n)) and

lim np(n) = lim EX,, =v € (0, 00),

n—oo n—oo

then the sequence {X,} converges in distribution to a random variable X where X ~ P(v);
see, e.g., Resnick (1992), p. 29. This property of the binomial distribution is in fact the key
to the proof of our Theorem 2.7.

1.2 Compound Poisson distributions

Let (Z;)ien be a sequence of independent and identically distributed random variables with
moment generating function F, and let N be independent of (Z;);en and Poisson distributed

with parameter A\. The random sum
S=Z1+-+2Zn
follows a compound Poisson distribution. Its moment generating function takes the form
G() = exp (\(F(x) - 1)
and so the mean and variance of Sy are given by, respectively,
ES=AEZ; and VS=X(VZ +(EZ)?),

Remark 1.1 If the compounding variables Z; are distributed according to a Borel Tanner
distribution with parameter v, then an application of Lagrange’s theorem on the inversion of

series yields

1 «
EZ; = d V21 = ——.
Tl o ! (1-a)3
In this case the mean and variance of the random sum S take the respective forms
A A
ES = d VS =-——.
1—v o (1-v)3

A random variable X has a geometric distribution if for £k =0,1,2,...
PIX=k=(01-p" (0<p<1)

which is the distribution of the number of failures before the first success in repeated Bernoulli

trials. The moment generating function takes the form

1
F(z) = 1—pqa; for 0<x<§.

If {Zt}teN is a sequence of independent geometrically distributed random variable and if

Zy =1+ Z, then S = Z; + -+ + Zx has moment generating function

G(z) = exp <)\ [1—(]1”6—19)56 - 1}) for N ~P(N).



1.3 Branching processes

The following definition recalls the notion of a branching process. For a detailed discussion

of branching processes we refer the interested reader to Harris (1989).

Definition 1.2 Let {Z, ;,n,j € N} be a family of independent and identically distributed
random variables defined on some probability space (2, F,P). The sequence {Z,} defined
recursively by

Zo=1 and Z,=Zp1+ -+ Znz, (3)

1s called a branching process with | sister ancestors.

The quantity Z, can be thought of as the size of a population starting out with a single
ancestor. The random variable Z,, ; describes the number of members of the n-th generation
which are offsprings of the j-th member of the (n—1)-st generation, and the initial population

is size [. Clearly, the state 0 is an absorbing state, and we denote by
T :=inf{n: Z, =0}

the time of extinction. It is well known that a simple branching process exhibits an instability:

either extinction occurs or the process explodes with positive probability. More specifically
Plr < 0] =1—-P[Z, T <]

The following theorem states that a population dies out if, on average, each particle

produces at most one descendent.

Theorem 1.3 Let {Z,} be a branching process in the sense of Definition 1.2. If a parent

generation produces on average at most one offspring, i.e., if

E[Z, ;] <1

then the population dies out almost surely:
Plr < oo] = 1.

If {Z,} is a branching process with an almost surely finite time of extinction, then the
total progeny
Z:=14+Z1+Zo+ -+ Z;

is finite with probability 1. In this case the random variables Zj are independent, with the

same distribution as Z. The tail of the distribution of Z can be specified in terms of the



moment generating function F : (0, 3) — R of Z, ;, due to a seminal result by Otter (1949).
If there exists z* € (0, %) that satisfies

Fl(a*) = (4)
then there is a multiplicative constant C' < oo such that
_f—L1.,_3

PlZ =kl =Cr "2k 2 as k — oo (5)

where 7 := %;*); see also Harris (1989), Theorem 1.13.1. For the special case where
Zn,; s Poisson distributed with parameter v,
i.e., for a population that reproduces from generation to generation in a Poisson way,
P[r < oo] if and only if v <1.

In such a situation Z,, is conditionally Poisson distributed given Z,_1 with parameter vZ,_1,
and the total number of offspring is known to follow a Borel-Tanner distribution. For a proof

of the following result, we refer the reader to Kingman (1993).

Theorem 1.4 If the random variables Z, ; follows a Poisson distribution with parameter

v <1, and if Zy =1, then distribution of the total progeny satisfies

l I (kv)k—te=kv

In particular, for | = 1 the random variable Z follows a Borel Tanner distribution. If Zy ~
P(u), then

Zo
z=3Y" 7
t=1
for a sequence { Z; }1en of independent random variables following a Borel-Tanner distribution.

If Z,; ~ P(v), then the moment generating function is given by (2), and z* := v~!
7]

satisfies (4). In this case #;*) = and we obtain

vel—v>

(NI

P[Z = k|Zo) = C(ver")Fk™ as k — oc.
Thus, for the limiting case v = 1, the total population size has a power law distribution.

Corollary 1.5 Ifv =1, then

P[Z=k=Ck 2 as k— oo (7)
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