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Abstract

This internet supplement summarizes some mathematical results on which the results
of the original paper are based.

1 Poisson distribution, branching processes and random sums

This mathematical appendix to our paper on “Stochastic Cascades, Credit Contagion, and

Large Portfolio Losses” summarizes properties of the Poisson distribution, branching pro-

cesses and simple compound distributions. Proofs can be found in, e.g., Resnick (1992),

Chapter 1.

1.1 The Poisson distribution

A integer-valued random variable X defined on some probability space (Ω,F ,P) is Poisson

distributed with parameter ν, X ∼ P(ν), if

P[X = k] = πk(ν) =
νke−ν

k!
. (1)

Its moment generating function F (x) =
∑

k≥0 πk(ν)sk takes the form

F (x) = eν(x−1). (2)

If X1 ∼ P(νi) (i = 1, 2) are independent, then X1 + X2 ∼ P(ν1 + ν2).

The Poisson distribution can be viewed as an approximation of the binomial distribution

for large n and small success probabilities. More specifically, let b(n, p) be the distribution
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of the number of successes in n Binomial trails when the success probability is p. If Xn ∼
b(n, p(n)) and

lim
n→∞np(n) = lim

n→∞EXn = ν ∈ (0,∞),

then the sequence {Xn} converges in distribution to a random variable X where X ∼ P(ν);

see, e.g., Resnick (1992), p. 29. This property of the binomial distribution is in fact the key

to the proof of our Theorem 2.7.

1.2 Compound Poisson distributions

Let (Zi)i∈N be a sequence of independent and identically distributed random variables with

moment generating function F , and let N be independent of (Zi)i∈N and Poisson distributed

with parameter λ. The random sum

S = Z1 + · · ·+ ZN

follows a compound Poisson distribution. Its moment generating function takes the form

G(x) = exp (λ(F (x)− 1)

and so the mean and variance of SN are given by, respectively,

ES = λEZ1 and VS = λ
(
VZ1 + (EZ1)2

)
,

Remark 1.1 If the compounding variables Zi are distributed according to a Borel Tanner

distribution with parameter ν, then an application of Lagrange’s theorem on the inversion of

series yields

EZ1 =
1

1− α
and VZ1 =

α

(1− α)3
.

In this case the mean and variance of the random sum S take the respective forms

ES =
λ

1− ν
and VS =

λ

(1− ν)3
.

A random variable X has a geometric distribution if for k = 0, 1, 2, . . .

P[X = k] = (1− p)kp (0 ≤ p ≤ 1)

which is the distribution of the number of failures before the first success in repeated Bernoulli

trials. The moment generating function takes the form

F (x) =
p

1− qx
for 0 < x <

1
q
.

If {Ẑt}t∈N is a sequence of independent geometrically distributed random variable and if

Zt := 1 + Ẑ, then S = Z1 + · · ·+ ZN has moment generating function

G(x) = exp
(

λ

[
px

1− (1− p)x
− 1

])
for N ∼ P(λ).
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1.3 Branching processes

The following definition recalls the notion of a branching process. For a detailed discussion

of branching processes we refer the interested reader to Harris (1989).

Definition 1.2 Let {Zn,j , n, j ∈ N} be a family of independent and identically distributed

random variables defined on some probability space (Ω,F ,P). The sequence {Zn} defined

recursively by

Z0 = l and Zn = Zn,1 + · · ·+ Zn,Zn−1 (3)

is called a branching process with l sister ancestors.

The quantity Zn can be thought of as the size of a population starting out with a single

ancestor. The random variable Zn,j describes the number of members of the n-th generation

which are offsprings of the j-th member of the (n−1)-st generation, and the initial population

is size l. Clearly, the state 0 is an absorbing state, and we denote by

τ := inf{n : Zn = 0}

the time of extinction. It is well known that a simple branching process exhibits an instability:

either extinction occurs or the process explodes with positive probability. More specifically

P[τ < ∞] = 1− P[Zn ↑ ∞].

The following theorem states that a population dies out if, on average, each particle

produces at most one descendent.

Theorem 1.3 Let {Zn} be a branching process in the sense of Definition 1.2. If a parent

generation produces on average at most one offspring, i.e., if

E[Zn,j ] ≤ 1

then the population dies out almost surely:

P[τ < ∞] = 1.

If {Zn} is a branching process with an almost surely finite time of extinction, then the

total progeny

Z := l + Z1 + Z2 + · · ·+ Zτ

is finite with probability 1. In this case the random variables Zk are independent, with the

same distribution as Z. The tail of the distribution of Z can be specified in terms of the
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moment generating function F : (0, β) → R of Zn,j , due to a seminal result by Otter (1949).

If there exists x∗ ∈ (0, β∗) that satisfies

F ′(x∗) =
F (x∗)

x∗
(4)

then there is a multiplicative constant C < ∞ such that

P[Z = k] = Cr−k− 1
2 k−

3
2 as k →∞ (5)

where r := x∗
F (x∗) ; see also Harris (1989), Theorem I.13.1. For the special case where

Zn,j is Poisson distributed with parameter ν,

i.e., for a population that reproduces from generation to generation in a Poisson way,

P[τ < ∞] if and only if ν ≤ 1.

In such a situation Zn is conditionally Poisson distributed given Zn−1 with parameter νZn−1,

and the total number of offspring is known to follow a Borel-Tanner distribution. For a proof

of the following result, we refer the reader to Kingman (1993).

Theorem 1.4 If the random variables Zn,j follows a Poisson distribution with parameter

ν ≤ 1, and if Z0 = l, then distribution of the total progeny satisfies

P[Z = k|Z0 = l] =
l

k
πk−l(kν) =

l

k

(kν)k−le−kν

(k − l)!
for k = l, l + 1, . . .. (6)

In particular, for l = 1 the random variable Z follows a Borel Tanner distribution. If Z0 ∼
P(µ), then

Z
D=

Z0∑

t=1

Zt

for a sequence {Zt}t∈N of independent random variables following a Borel-Tanner distribution.

If Zn,j ∼ P(ν), then the moment generating function is given by (2), and x∗ := ν−1

satisfies (4). In this case x∗
F (x∗) = 1

νe1−ν , and we obtain

P[Z = k|Z0] = C(νe1−ν)kk−
3
2 as k →∞.

Thus, for the limiting case ν = 1, the total population size has a power law distribution.

Corollary 1.5 If ν = 1, then

P[Z = k] = Ck−
3
2 as k →∞. (7)

4



References

Harris, T.E., 1989. The Theory of Branching Processes. Springer-Verlag, Berlin.

Kingman, J.F.C., 1993. Poisson Processes. Oxford University Press, Oxford.

Otter, R., 1949. The multiplicative process, Annals of Mathematical Statistics 20, 206–224.

Resnick, S.I., 1992. Adventures in Stochastic Processes. Birkhäuser, Boston.
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