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Abstract

We consider an agent-based model of financial markets with asynchronous order ar-
rival in continuous time. Buying and seeling orders arrive in accordance with a Poisson
dynamics where the order rates depend both on past prices and the mood of the market.
The agents form their demand for an asset on the basis of their forecasts of future prices
and where their forecasting rules may change over time, as a result of the influence of
other traders. Among the possible rules are “chartist” or extrapolatory rules. We prove
that when chartists are in the market, and with choice of scaling, the dynamics of asset
prices can be approximated by an ordinary delay differential equation. The fluctuations
around the first order approximation follow an Ornstein-Uhlenbeck dynamics with delay
in a random environment of investor sentiment.
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1 Introduction

In recent years there has been increasing interest in agent-based models of financial markets
where the demand for a risky asset comes from many agents with interacting preferences and
expectations. These models are capable of reproducing, often through simulations, many
“stylized facts” like the emergence of herding behavior (Lux 1995), volatility clustering (Lux
& Marchesi 2000), or fat-tailed distributions of stock returns (Cont & Bouchaud 2000), that
are observed in financial data. In contrast to the traditional framework of an economy with
a utility-maximizing representative agent, behavioral finance models comprise many hetero-

geneous traders who are boundedly rational. The market participants do not necessarily
share identical expectations about the future evolution of asset prices or assessments about a
stock’s fundamental value. Instead, agents are allowed to use rule of thumb strategies when
making their investment decisions and to switch randomly between them as time passes.
Following up on the seminal work by Frankel & Froot (1986) one typically distinguishes fun-

damentalists, noise traders and chartists. Different types of traders often coexist1 with their
proportions varying over time as agents are allowed to change their strategies in reaction to
the strategies’ performances or the choices of other market participants. This may lead to
temporary deviations of prices from their benchmark rational expectations value generating
bubbles or crashes in periods when technical trading predominates.

An array of agent-based models has been suggested over the past two decades. The under-
lying mathematical methods and techniques range from central limit theorems for stochastic
processes in random media to deterministic dynamical systems. Föllmer & Schweizer (1993)
and Horst (2005), for instance, model asset prices as a sequence of temporary equilibrium
prices in a random environment of investor sentiment. They show that in a noise trader
framework, and after suitable scaling, the asset price process can be approximated by an
Ornstein-Uhlenbeck process with random coefficients. Their approach captures some inter-
action and imitation effects such as word-of-mouth advertising, but the dynamics of the
environment lacks a dependence on asset prices. This gap is filled by Föllmer, Horst & Kir-
man (2005) where the agents are allowed to use technical trading rules. This generate a
feedback from past prices into the environment. It turns out that asset prices converge to a
unique limiting distribution if the impact of chartists is not too strong. Similar results were
obtained in a different setting by Böhm & Wenzelburger (2005); we refer to Bayraktar, Horst
& Sircar (2006) for a more detailed discussion of probabilistic agent-based models.

The approach pioneered by Day & Huang (1990) and Brock & Hommes (1997) analyzes
financial markets using deterministic dynamical systems. The idea is to view agent-based
models as highly nonlinear deterministic dynamical systems and markets as complex adap-

1The question when boundedly rational agents will survive in the long run has been studied by, e.g., Blume

& Easley (2005) and Horst & Wenzelburger (2005). The closely related issue of evolutionary stability of

portfolio rules has been addressed by, e.g., Evstigneev, Hens & Schenk-Hoppé (2006).



tive systems, with the evolution of expectations and trading strategies coupled to market
dynamics. Their models display a quite complex dynamics so only few analytical characteri-
zations of asset price processes are available. However, when simulated these models generate
realistic time paths of prices explaining many of the stylized facts observed in real financial
markets. For further details we refer to recent surveys by Hommes (2006) and LeBaron
(2006).

The aforementioned models differ considerably in their degree of complexity and analyt-
ical tractability, but they are all based on the idea that asset prices can be described by a
sequence of equilibrium prices. All agents submit their demand schedule to a market maker
who matches individual demands in such a way that markets clear in every period. While
such an approach is consistent with dynamic microeconomic theory, a closer examination of
the microstructure of securities markets raises the question whether the standard economic
paradigm of a Walrasian auctioneer can actually be applied. In real markets buyers and
sellers arrive at different points in time. Moreover, almost all electronic trading systems are
based on order books in which all unexecuted limit orders are stored and displayed while
awaiting execution.

Analytically tractable models of order book dynamics were of considerable value, but their
development has been hindered by the inherent complexity of limit order markets. Rigorous
mathematical results have so far only been established under rather restrictive assumptions
by, e.g., Mendelson (1982), Luckock (2003) and Kruk (2003). At the same time, there is a
considerable (econophysics) literature (Chiarella & Iori (2002), Potters & Bouchaud (2003),
Smith, Farmer, Gillemot & Krishnamurthy (2003), Farmer, Patelli & Zovko (2005), among
others) on continuous double auctions with “minimal intelligence agents”. Here, interest
is not so much on probabilistic models for the resulting price dynamics, but on statistical
properties of sample paths. Underlying this approach is the idea that the dynamics of order
arrivals follows a Poisson process and that non-executed orders are cancelled at random
points in time. Incoming orders typically follow an i.i.d. dynamics with no dependence on
past prices. “Minimal” or “zero intelligence agent” models make many testable predictions
for basic properties of markets such as price volatility, and despite their many simplifying
assumptions on trader behavior these models have successfully reproduced some of the stylized
facts of financial time series.

Microstructure models with asynchronous order arrivals where incoming orders are ex-
ecuted immediately rather than awaiting the arrival of a matching order were studied in a
series of papers by, e.g., Lux (1995, 1997) and more recently by Bayraktar, Horst & Sircar
(2005, 2006). These models may be viewed as a first step towards bridging the gap between
the econophysics literature with its many models that generate a rich dynamics and realistic
time series, but are not amenable to analytic solutions (beyond statistical properties), and
the more traditional temporary equilibrium models which allow for analytic solutions but do
not accurately capture the microstructure of automated trading systems. The idea is that

2



an incoming order changes the stock price by a fixed amount and that agents may switch
their investment behavior as a result of the behavior of others and/or the performance of
different trading strategies. A convenient mathematical framework is based on the theory
of state-dependent queuing networks (Mandelbaum & Pats 1998, Mandelbaum, Massey &
Reimann 1998).

This paper proposes a mathematical framework for analyzing financial market models
with asynchronous order arrivals. Our model is flexible enough to capture a chartist behavior.
As such it extends earlier work of Lux (1995). He studied a noise trader framework where
the joint dynamics of asset prices and opinion indices can be approximated by a system of
ordinary differential equations. The ODE approach provides a first approximation to stock
prices in a noise trader model, but it does not capture situations where agents base their
demand rather than their opinion on price patterns. To capture trend chasing strategies we
consider a model in which the order rates depend on historic asset prices and opinion indices.
We show that when the number of speculators tends to infinity the joint dynamics of asset
prices and trader type distributions can be approximated by a delay differential equation.
The delay effect reflects the presence of chartists. Our numerical simulations suggest that it
has a major effect on stock prices.

More important than the first order approximation are the random fluctuations around
the deterministic trajectory of the delay equation. In our model they can be described by
a coupled system of Ornstein-Uhlenbeck processes with delay. Stochastic delay differential
equations are a continuous time analogue of higher order discrete time difference equations.
While random difference equations have been widely used as a mathematical basis for mod-
elling stock price dynamics, stochastic delay differential equations have attracted less atten-
tion in the finance literature. They have primarily been used in stochastic volatility models
(Hobson & Rogers 1998, Kazmerchuk & Wu 2004) and more recently in the context of in-
sider models by Stoica (2005). In this paper we show that delay equations arise naturally
in behavioral finance models when the agents base their investment decisions on the perfor-
mances of trading strategies and identify the delay effect as a major determinant of financial
price fluctuations. For a noise trader model the 2nd order approximation is given by an
Ornstein-Uhlenbeck process as in Föllmer & Schweizer (1993) and Horst (2005).

The remainder of this paper is organized as follows. In Section 2 we introduce our model
and state the main results. Section 3 illustrates the impact of chartists by means of numerical
simulation. All proof appear in Section 4.

2 The microeconomic model and the main results

It was first argued by Garman (1976) that an exchange market can be characterized by a flow
of orders to buy and sell. He also argued that while the orders would arise as the solution
to individual traders’ underlying optimization problems, the explicit characterization of such
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problems is not necessarily important. What matters more is that orders are submitted at
different points in time and that imbalances between supply and demand can arise. We shall
therefore take a pragmatic approach to modelling financial markets and start right away with
the dynamics of order flows. This approach is common in much of the econophysics literature
where interest is not so much on causes of trading, but on phenomenological models and their
overall implications. This literature has demonstrated that “zero intelligence” models that
drop agent rationality altogether and focuss instead of the dynamics of order arrivals are
capable of reproducing many statistical properties of financial time series.

2.1 Order rates and market dynamics

We consider a financial market with a large set A = {1, 2, . . . , N} of economic agents trading
a single risky asset. With each agent a ∈ A we associate a continuous time stochastic process
xa = (xa

t ) taking values in some finite set C = {c1, c2, . . . , cm} of investor characteristics.
We think of xa as describing the evolution of the agent’s trader type or state. The agents
submit buying and selling orders according to independent Poisson dynamics with the type-
dependent rate functions

λ̃+(xa
t , ·) and λ̃−(xa

t , ·).
Incoming orders are instantaneously matched by a market maker who sets the price so as to
reflect the degree of market imbalance.

We refer to the empirical distribution %N
t of trader types at time t as the mood of the

market,

%N
t :=

{
%N

t (c)
}

c∈C
with %N

t (c) :=
1
N

N∑

i=1

1{c}(xa
t ), (1)

and allow for a dependence of the order rates on past prices and market moods. To this end,
we denote by SN

t the logarithmic asset price at time t, fix constants 0 < δ1 < δ2 < . . . < δl

along with an (m+1)-dimensional continuous function q̃ on [−δl, 0] and put

SN
(t) := (SN

t , SN
t−δ1 , . . . , S

N
t−δl

) and %N
(t) := (%N

t , %N
t−δ1 , . . . , %

N
t−δl

)

where (SN
t , %N

t ) = q̃t on [−δl, 0]. In the time interval [t, t+h] an agent a ∈ A submits a buying
and selling order with probabilities

λ̃+(xa
t , %

N
(t), S

N
(t)) ∗ h + o(h) and λ̃−(xa

t , %
N
(t), S

N
(t)) ∗ h + o(h) as h →∞, (2)

respectively. Here o(h) denotes a function that converges faster than linear to zero when
h → 0. In terms of %N

t the per capita order rates take the form

λ̃±
(
%N
(t), S

N
(t)

)
:=

∫
λ̃±

(
x, %N

(t), S
N
(t)

)
%N

t (dx).
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Since the agents act conditionally independently of each other given the histories of past
prices and market moods, the probability of some agent submitting a buying/selling order
between t and t + h equals

N ∗ λ̃±
(
%N
(t), S

N
(t),

)
∗ h + o(h) as h → 0.

The probabilistic structure of the order arrivals is thus equivalent to assuming that orders
arrive according to independent Poisson processes

{
Π̃+(t)

}
t≥0

and
{

Π̃−(t)
}

t≥0

with respective rate functions N ∗ λ̃+ and N ∗ λ̃−. The accumulated market wide net order
flow by time t is therefore equal to

Π̃+

(∫ t

0
N ∗ λ̃+

(
%N
(u), S

N
(u)

)
du

)
− Π̃−

(∫ t

0
N ∗ λ̃−

(
%N
(u), S

N
(u)

)
du

)
.

Assuming that a buying order increases the logarithmic price by 1/N while a selling order
decreases the price by the same amount, we arrive at the following stochastic integral equation
for the logarithmic asset prices:

SN
t = SN

0 +
1
N

Π̃+

(
N

∫ t

0
λ̃+

(
%N
(u), S

N
(u)

)
du

)
− 1

N
Π̃−

(
N

∫ t

0
λ̃−

(
%N
(u), S

N
(u)

)
du

)
. (3)

Remark 2.1 Note that the stock price process is given as a jure jump process in a random
environment {%N

t } of investor sentiment. The dynamics of the environment will be endoge-
nous. We allow the agents to switch from one type or forecasting rule to another at random
points in time in reaction to historic price patterns, trends or the performance of competing
trading strategies. This generates feedback effects from the price process into the environment.
We postpone specific examples to Section 3 below.

The agents are allowed to switch between different types or trading strategies at random
points in time in reaction to a strategies’ past performance or the behavior of others. Specif-
ically, we assume that independently of other traders an agent of type i ∈ C switches to a
different state j ∈ C within the time interval [t, t + h] with probability

λ
i,j

(
%N
(t), S

N
(t)

)
∗ h + o(h) as h → 0;

the probability that an agent changes her type twice in [t, t+h] is of the order o(h) and hence
negligible for small h.

Remark 2.2 Notice that all the other individuals influence one particular trader in the same
way. This excludes the existence of a designated “leader” or financial “guru” whose behavior
attracts the attention of the majority of market participants.
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The average probability that some trader of type i switches to a different state between
time t and time t + h equals

λ̂i
−

(
%N
(t), S

N
(t)

)
:=

∑

j∈C

%N
t (i) ∗ λ

i,j
(
%N
(t), S

N
(t)

)
+ o(h) (4)

while the average probability that an agent switches to state i from a different state j 6= i is
given by

λ̂i
+

(
%N
(t), S

N
(t)

)
:=

∑

j∈C

%N
t (j) ∗ λ

j,i
(
%N
(t), S

N
(t)

)
+ o(h). (5)

The structure of the agents’ migration probabilities allows us to describe the dynamics
of the mood of the market in terms of a queuing network with routing as in Mandelbaum
& Pats (1998). There exists a family of Poisson processes (Π̂i±)i∈C such that the empirical
distribution of trader types satisfies the system of stochastic integral equations:

%N
t (i) = %N

0 (i) +
1
N

Π̂i
+

(
N

∫ t

0
λ̂i

+

(
%N
(u), S

N
(u)

)
du

)
− 1

N
Π̂i
−

(
N

∫ t

0
λ̂i
−

(
%N
(u), S

N
(u)

)
du

)
. (6)

The Poisson process Π̂i
+ specifies the times at which some agent switches to state i while

Π̂i− specifies the times when some agent leaves state i. As a result, the processes (Π̂i±)i∈C are
dependent. The next section shows how a strong approximation result for Poisson processes
can be applied to represent the joint dynamics of asset prices and empirical distributions in
terms of interacting diffusion processes.

2.2 Approximation of Poisson processes and financial market dynamics

The joint dynamics of asset prices and empirical distributions can be described in terms of a
higher-dimensional non-Markovian queuing network. To this end, we introduce the vector

λ̂ = λ̂+ − λ̂− where λ̂± = (λ̂1
±, . . . , λ̂m

± )t

that specifies the agents’ instantaneous propensities to adopt new trading strategies and put

QN
t = (%N

t , SN
t ), QN

(t) = (%N
(t), S

N
(t)) and λ±(QN

(t)) =


 λ̂±

(
%N
(t), S

N
(t)

)

λ̃±
(
%N
(t), S

N
(t)

)

 .

With suitably defined (m+1)-dimensional Poisson processes Π± = {Πi±}m+1
i=1 it follows from

equations (3) and (6) that the i-th component QN,i of the vector QN = {QN,i}m+1
i=1 satisfies

QN,i
t = QN,i

0 +
1
N

Πi
+

(
N

∫ t

0
λi

+

(
QN

(u)

)
du

)
− 1

N
Πi
−

(
N

∫ t

0
λi
−

(
QN

(u)

)
du

)
; (7)

here we use the convention that QN
t ≡ q̃t on [−δl, 0]. The first m components of the vector

process QN describe the dynamics of the distribution of states while the last component
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describes the evolution of the logarithmic asset price: Πm+1
± = Π̃±. Our goal is then to prove

a limit theorem for the processes QN as the number of market participants tends to infinity.
To obtain a well defined price dynamics in the limit of an infinite number of investors we
impose the following conditions on the agents’ order rates.

Assumption 2.3 1. The rate functions λ̃± and λ̂± are uniformly bounded.

2. For each x ∈ C, the rate functions λ̃±(x, ·) and λ̂±(x, ·) are continuously differentiable
with bounded first derivative.

The convergence results will be based on a strong approximation result which allows for
a pathwise approximation of a Poisson process by a standard Brownian motion living on the
same probability space.

Lemma 2.4 (Kurtz 1978) A standard Poisson process {Π(t)}t≥0 can be realized on the same
probability space as a standard Brownian motion {B(t)}t≥0 in such a way that the random
variable

Y := sup
t≥0

|Π(t)− t−B(t)|
log (max{2, t})

has a finite moment generating function in the neighborhood of the origin and hence finite
mean. In particular, Y is almost surely finite.

By Assumption 2.3 (i), the strong approximation result allows us to realize all the Poisson
processes on the same probability space as the (m+1)-dimensional Wiener processes

{B+(t)}t≥0 and {B−(t)}t≥0

in such as way that we have the following alternative representation of the logarithmic asset
price process and sequence of empirical distributions of trader types:

QN,i
t = QN,i

0 +
1
N

{
N

∫ t

0
λi

(
QN

(u)

)
du + Bi

+

(
N

∫ t

0
λi

+

(
QN

(u)

)
du

)

−Bi
−

(
N

∫ t

0
λi
−

(
QN

(u)

)
du

)} (8)

up to a correction term which is of the order log N
N uniformly on compact time intervals. Here

we defined
λi(QN

(t)) := λi
+(QN

(t))− λi
−(QN

(t)).

Notice that the correction term vanishes almost surely uniformly on compact time inter-
vals when the number of market participants tends to infinity. We shall therefore drop it to
simplify our notation. The aim is thus to prove approximation results for the sequence of
(m+1)-dimensional stochastic processes {QN}N∈N defined by (8). The convergence concept
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we use for the first order approximation is almost sure convergence on compact time intervals.
The convergence concept for the 2nd-order approximation is weak convergence of probability
measures on the set DT of all real-valued right continuous functions with left limits on [0, T ].
We write L- limn→∞Xn = X if the DT -valued random variables Xn converge in distribution
to X as n tends to infinity.

2.3 Approximation results

We are now going to state a first approximation result for the market dynamics; the proof
requires some preparation and will be carried out below. It turns out that the joint dynamics
of logarithmic asset prices and distributions of trader types can almost surely be approximated
by the trajectory of an ordinary delay differential equation. The delay effect reflects the
presence of chartists.

Theorem 2.5 (First Order Approximation) Under Assumption 2.3 the following holds:

(i) For a given continuous initial function q̃ : [−δl, 0] → Rm+1 and any terminal time
T > 0 there exists a unique process q = {qt}−δl≤t≤T that satisfies the delay differential
equation

dqt = λ(q(t))dt with initial condition q ≡ q̃ on [−δl, 0]. (9)

(ii) The sequence of stochastic processes {QN}N∈N converges almost surely to q where the
convergence is uniform on compact time intervals:

lim
N→∞

sup
0≤t≤T

∣∣qt −QN
t

∣∣ = 0 P-a.s.

In a second step we study the joint distribution of asset prices and trader types around
their first order approximation. For this we use the self-similarity property of a Wiener
process W . It states that {W (t)} and

{
1√
c
W (ct)

}
have the same distribution for any positive

constant c. When studying the second order approximation we may hence assume that the
process QN is defined by:

QN,i
t =

∫ t

0
λi

(
QN

(u)

)
du +

1√
N

Bi
+

(∫ t

0
λi

+

(
QN

(u)

)
du

)

− 1√
N

Bi
−

(∫ t

0
λi
−

(
QN

(u)

)
du

)
.

(10)

It turns out that the fluctuations of QN around the first order approximation can be described
by a coupled system of interacting Ornstein-Uhlenbeck processes with delay driven by the
Gauss processes

Xi
t := Bi

+

(∫ t

0
λi

+(q(u))du

)
−Bi

−

(∫ t

0
λi
−(q(u))du

)
. (11)
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We are no ready to state the main result of this paper. Its proof will be carried out in
Section 4.

Theorem 2.6 (Second Order Approximation) Under Assumption 2.3 the following holds:

(i) There exists a unique pathwise solution Z = (Z1, . . . , Zm+1) to the stochastic delay
integral equation

Zi
t =

∫ t

0
< ∇λi

(
q(u)

)
, Z(u) > du + Xi

t for i ∈ {1, . . . , m + 1} (12)

with initial function Zi
t = 0 on [−δl, 0]. Here ∇λi and < ·, · > denote the gradient

vector of the function λi and the standard inner product, respectively.

(ii) The fluctuation of the process QN around its first order approximation converge in
distribution to Z = (Zi)m+1

i=1 :

L- lim
N→∞

{√
N

(
QN

t − qt

)}
0≤t≤T

= {Zt}0≤t≤T .

We notice that while the logarithmic asset price process takes values in R, the empirical
distributions of trader types takes only non-negative values. It would be hence more appro-
priate to approximate the fluctuations of the process %N by a reflected diffusion. As this
would render our analysis considerably more involved and because our focus on the impact
of trend chasers on the diffusion approximation, we chose a second order approximation in
terms of a “regular” diffusion process.

Remark 2.7 When only fundamentalists and noise traders are active on the market, the first
order approximation reduces to an ordinary differential equation as in Lux (1995) and the sec-
ond order approximation is given by an Ornstein-Uhlenbeck process as in Föllmer & Schweizer
(1993). Under standard assumptions the first order approximation converges to some steady
state q∗ = (s∗, %∗) as time tends to infinity. In this case limt→∞ {λ+(qt)− λ−(qt)} = 0. In
the long run markets clear on average and asset prices fluctuate around the equilibrium level
in accordance with a standard Wiener process with volatility

σ∗ = lim
t→∞

√
λ+(qt) + λ−(qt).

3 Examples and numerical simulations

In this section we obtain Lux’s noise trader model as a limiting case of our framework.
Numerical simulations suggest that while his model displays an instable behavior for very
small time lags if the impact of noise traders is too strong, stability may be gained when
the time lags exceed some critical level. Our second example can be viewed as a continuous
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time version of the model by Föllmer, Horst & Kirman (2005). In this case delay equations
arise rather naturally as the agents switch their states in reaction to the past performances of
trading strategies. Throughout, we put xa

t = 0 if the agent a ∈ A is a fundamentalist at time
t while xa

t = +1 and xa
t = −1 indicate (optimistic/pessimistic) noise traders or chartists.

Example 3.1 In our setting the demand function of a fundamentalist in Lux (1995) corre-
sponds to linear order rates of the form

λ̃+(0, %N
(t), S

N
(t)) =

{
γ(F − SN

t ) if F − SN
t > 0

0 else

and

λ̃−(0, %N
(t), S

N
(t)) =

{
γ(SN

t − F ) if F − SN
t < 0

0 else
.

The demand depends on the difference between some fundamental value (F) and the current
price; the constant γ measures the trading volume. A noise trader’s order rates are price
independent. An optimistic noise trader buys the asset while a pessimist sells it:

λ̃±(±1, %N
(t), S

N
(t)) ≡ 1 and λ̃±(∓1, %N

(t), S
N
(t)) ≡ 0.

Let us assume that the proportion of fundamentalists is fixed, that chartists switch between
optimism and pessimism according to prevailing price trends and denote by xN

t the average
opinion of noise traders. In Lux’s model the price dynamics follows the trajectory of an
ordinary differential equation ṡ = f(x, s) because the agents base their opinion on ṡ, a purely
fictitious benchmark for the current trend. Our market participants, by contrast, react to
observed market data. With the performance index

Ut,t−δ :=
a1

δ

(
SN

t − SN
t−δ

)
+ a2x

N
t

Lux’s transition rates (9) are, in our framework, to be replaced by λ̂0,±1 = 0 and

λ̂−1,1
(
%N
(t), S

N
(t)

)
= eUt,t−δ and λ̂1,−1

(
%N
(t), S

N
(t)

)
= e−Ut,t−δ .

For large N the joint evolution of logarithmic asset prices and opinion indices can then be
approximated by the delay differential equation

ẋt = 2 {tanh(Ut,t−δ)− xt} cosh(Ut,t−δ)dt and ṡt = (xt + γ(F − st)) dt. (13)

The equation for the change of stock prices depends only on st because the agents order rates
do not depend on past prices.

It turns out that the quantitative behavior of the system (13) depends on δ. When a1 = 1,
a2 = 0.75 and γ = 3

2 , Lux’s stability condition is violated so the fundamental equilibrium
xt ≡ 0 and st ≡ F is unstable for small δ. This is shown in Figure 1(a) which displays
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(a) δ = 0.01: convergence to a stable limit cycle
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(b) δ = 0.5: convergence to equilibrium.

Figure 1: Dependence of asset prices and opinion indices of the time lag.

the first order approximation for δ = 0.01. When δ is increased to 0.5 asset prices initially
display large fluctuations but eventually settle down to the equilibrium level as displayed in
Figure 1(b).

The previous example suggests that the time lag δ is a major determinant of stock price
fluctuations in a noise trader framework. It also suggests that it is appropriate to reduce the
first order approximation to an ordinary differential equation by replacing the performance
index Ut,t+δ by a1ṡt + a2xt when δ is sufficiently small. While such reduction is possible in
a noise trader framework it does not always carry over to models of trend chasing where
the agents base their demand rather than their opinion on price patterns. As an illustration
consider a situation where chartists submit orders in reaction to the actual price trend:

λ̃±(±1, %N
(t), S

N
(t)) = f

(
SN

t − SN
t−δ

δ

)
and λ̃±(∓1, %N

(t), S
N
(t)) ≡ 0

for some transformation f . For large N and small δ one is tempted to replace
SN

t −SN
t−δ

δ by ṡt

and hence the delay equation (13) by

ẋt = 2 {tanh(a1ṡt + a2xt)− xt} cosh(a1ṡt + a2xt) and ṡt = (xtf(ṡt) + γ(F − st)) .

However, when f is non-linear there is no reason to expect this implicit dynamics to be well
defined. Beyond the simple benchmark of a noise trader framework, continuous-time agent-
based models thus call for an extension of Lux’s approach beyond an ODE approximation.
The following example further illustrates this effect.
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Example 3.2 Consider a model with a fundamentalist and chartists. A fundamentalist’s
order rates are as in the previous example and the chartists’ rates are given by

λ̃+(1, %N
(t), S

N
(t)) =

{
γC(SN

t − SN
t−δ) if SN

t − SN
t−δ > 0

0 else

and

λ̃−(1, %N
(t), S

N
(t)) =

{
−γC(SN

t − SN
t−δ) if SN

t − SN
t−δ < 0

0 else

respectively. Let us assume that the agents choose their trading strategies in reaction to a
utility index that reflects the strategies’ past performances. More precisely, let P 0

t−δi
and

P+1
t−δi

be the profits over the time periods (t− δi, t− δi+1) associated with the fundamentalist’s
and chartists’ trading strategy, respectively. The profits are obtained by multiplying the price
increment between t − δi+1 and t − δi with the average demand. For a fundamentalist this
quantity is given by

P 0
t−δi

= γ(eSt−δi − eSt−δi+1 )(F − St−δi+1)

while a chartist’s profit function takes the form

P 1
t−δi

= γC(eSt−δi − eSt−δi+1 )(St−δi+1 − St−δi+2).

Following Föllmer, Horst & Kirman (2005) we define the performance index associated with
a trading strategy as a weighted average of the profits a trader would have generated in the
past if she would have implemented this strategy:

U0
t =

l∑

i=1

αi−1P 0
t−δi

and U1
t =

l∑

i=1

αi−1P+1
t−δi

(14)

for some discount factor α < 1. Let us now put Ut = U0
t −U1

t and denote by xt the proportion
of fundamentalists minus the proportion of chartists at time t. A blend of the models by
Föllmer, Horst & Kirman (2005) and Lux (1995) is captured by the flip rates:

λ̂0,1
(
%N
(t), S

N
(t)

)
=

e−β1Ut−β2xt

eβ1Ut+β2xt + e−β1Ut−β2xt

and

λ̂1,0
(
%N
(t), S

N
(t)

)
=

eβ1Ut+β2xt

eβ1Ut+β2xt + e−β1Ut−β2xt
.

The first order approximation is then given by the system of delay differential equations

ẋt = {tanh(β1ut + β2xt)− xt} dt

ṡt =
{

γC
1− xt

2
(st − st−δ1) + γ

1 + xt

2
(F − st)

}
dt

(15)

where ut is the fundamentalist’s excess performance as defined by (14) with the observed prices
SN

t , SN
t−δ1

, . . . , SN
t−δl

replaced by their respective approximations st, st−δ1 , . . . , st−δl
.
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(a) Small lags: rapid convergence to equilibrium.
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(b) Large lags: erratic fluctuations.

Figure 2: Dependence of the market dynamics on time lags.

Our simulation suggest that past asset prices may have a significant impact of stock
market dynamics. Figure 2 displays the first order approximation of the model of Example
3.2 for γ = 1, γC = 3, α = 0.9, F = 0, β1 = 2, β2 = 0.5 and l = 3 if xt ≡ st ≡ 0.4 for t < 0. For
these parameter values the delay equation (15) has a steady state at s = 0 and x = 0. For the
small time lags δ1 = 3

10 , δ2 = 5
10 and δ3 = 7

10 the first order approximation converges rapidly
to an equilibrium as shown in Figure 2(a). For larger lags δ1 = 1, δ2 = 2 and δ3 = 3 the system
displays erratic though regular and persistent fluctuations; see Figure 2(b). Such a history
dependence of asset prices and market moods is and cannot be captured if the dynamics is
reduced to a simple ODE. It turns out that the strength of social interactions as measured
by β2 also has an important impact on the magnitude of the fluctuations. A stronger social
interaction decreases the relative importance of the past performances of trading strategies
and seems to dampen price fluctuations. This effect is illustrated by Figure 3 which shows
the first order approximation for δ1 = 1, δ2 = 2 and δ3 = 3 and β2 = 0.5 and β2 = 1.14,
respectively.

4 Proof of the main theorems

In this section we prove our main results: the pathwise approximation of the processes QN

by the trajectory of a delay differential equation and the approximation in distribution of the
fluctuations around the first order approximation by a stochastic delay equation.
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(a) Large lags; weak social interaction.
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(b) Large lags; stronger social interaction.

Figure 3: Dependence of the market dynamics on the strength of social interactions.

4.1 Proof of the first order approximation

In order to establish the strong approximation, we first state a result on the existence and
uniqueness of solutions of delay differential equation. Its proof follows from standard argu-
ments given in, e.g., Driver (1977).

Lemma 4.1 Under the assumptions of Theorem 2.5, for any continuous initial function
(qs)−δl≤s≤0, there exists a unique global solution to the delay equation (9).

We are now ready to establish the approximation of the processes QN by the solution to
the delay differential equation (9).

Proof of the first order approximation: Since the rate functions are uniformly
bounded, the law of iterated logarithm for Brownian motion yields

lim
N→∞

sup
u≤t

1
N

Bi
±

(
N

∫ u

0
λi
±

(
QN

(v)

)
dv

)
= 0 P-a.s.

Thus for every ε > 0 there exists N∗ ∈ N such that

∣∣QN
t − qt

∣∣ ≤
∫ t

0

∣∣∣λ(QN
(u))− λ(q(u))

∣∣∣ du + ε P-a.s.

for all N ≥ N∗. Since the rate functions are differentiable with uniformly bounded first
derivatives, there exists a constant L < ∞ that satisfies

∣∣QN
t − qt

∣∣ ≤ L

∫ t

0
sup

−δl≤v≤u

∣∣QN
v − qv

∣∣ du + ε P-a.s.

14



By convention QN
v = qv for v < 0 so sup−δl≤v≤u

∣∣QN
v − qv

∣∣ = sup0≤v≤u

∣∣QN
v − qv

∣∣ and

sup
0≤v≤t

∣∣QN
v − qv

∣∣ ≤ L

∫ t

0
sup

0≤v≤u

∣∣QN
v − qv

∣∣ du + ε P-a.s.

As a result, an application of Gronwall’s lemma yields

sup
0≤v≤t

∣∣QN
v − qv

∣∣ ≤ εeLt P-a.s.

This proves the assertion as ε is arbitrary. 2

4.2 Proof of the second order approximation

To keep the paper self-contained we first prove pathwise uniqueness of the solution to the
stochastic integral equation (12).

Proposition 4.2 Under the assumptions of Theorem 2.6 there exists an almost surely unique
pathwise solution to (12).

Proof: To prove the existence of a global solution we shall first establish the existence and
uniqueness of a local solution, i.e., of a solution on a time interval [0, δ] for a sufficiently small
δ > 0. In a second step we apply a standard argument to show how the local solution can be
extended to a solution on [0, T ].

Let CT equipped with the standard sup-norm ‖ ·‖∞ be the Banach space of all continuous
(m + 1)-dimensional functions on [−δl, T ]. For the continuous initial function q : [−δl, 0] →
Rm+1 and a given trajectory (Xt(ω))t≥0 we define mappings ϕ ∈ CT and F : [−δl, T ]×CT →
Rm+1 by

ϕ(t) =

{
q(t) for t ∈ [−δl, 0]

q(0) + Xt(ω) for t ∈ [0, T ]
and F i(t, x) =< ∇λi

(
q(t)

)
, x(t) >,

respectively. By Assumption 2.3 the map t → F (·, ϕ) is almost surely continuous and hence
it is almost surely bounded:

‖F (·, ϕ)‖∞ ≤ B

where the random bound B depends on the trajectory of the process X. Let us now fix a
positive constant b. For a given δ > 0 we introduce a closed subset of CT by

Eδ = {ψ ∈ Cδ : ‖ψ − ϕ‖∞ ≤ b and ψ ≡ q on [−δl, 0]} .

Since the rate functions have a uniformly bounded first derivative we have for all x ∈ Eδ that

|F (t, x)| ≤ |F (t, x)− F (t, ϕ)|+ |F (t, ϕ)| ≤ L‖x− ϕ‖∞ + B ≤ Lb + B
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for some L < ∞. Since the constants B and b do not depend on δ the operator defined by

H(x)(t) =

{
q(t) for t ∈ [−δl, 0]

q(0) +
∫ t
0 F (u, x)du + Xt(ω) for t ∈ [0, δ]

maps the closed set Eδ into itself when δ is sufficiently small. Observe now that

|H(x)(t)−H(y)(t)| ≤
∫ t

0
|F (u, x)− F (u, y)| du ≤ Lδ max

−l≤s≤δ
|x(s)− y(s)|.

Hence
max
−l≤s≤δ

|H(x)(t)−H(y)(t)| ≤ Lδ max
−l≤s≤δ

|x(s)− y(s)|.

This shows that for almost every trajectory of the process X there exists a sufficiently small
δ > 0 such that the operator H : Eδ → Eδ is a contraction. By Banach’s theorem it has a
unique fixed point. As a result, the stochastic integral equation (12) has a unique solution
on sufficiently small time intervals. By a standard argument the solution can be extended to
a solution on the whole interval [0, T ]. 2

As a second step towards the proof of the second order approximation we introduce the
processes

UN
t =

√
N

(
QN

t − qt

)
and XN

t = B+

(∫ t

0
λ+(QN

(u))du

)
−B−

(∫ t

0
λ−(QN

(u))du

)
.

The following lemma shows that the sequence {UN} is bounded in probability.

Lemma 4.3 For any ε > 0, there exists N∗ ∈ N and K < ∞ such that

P∗
[

sup
0≤t≤T

|UN
t | > K

]
< ε for all N ≥ N∗. (16)

Proof: The strong approximation for Brownian motion yields the representation

UN
t =

√
N

∫ t

0

{
λ

(
QN

(u)

)
− λ(q(u))

}
du + XN

t . (17)

Since the rate functions are bounded, the sequence {XN}N∈N is tight, and hence it is bounded
in probability. As a result, Lipschitz continuity of the rate functions yields

sup
0≤t≤T

|UN
t | ≤ L

∫ T

0
sup

0≤t≤u
|UN

u |du + sup
0≤t≤T

∣∣XN
t

∣∣ .

for some L > 0. Hence, by Gronwall’s inequality, we have almost surely that

sup
0≤t≤T

|UN
t | ≤ e3LT sup

0≤t≤T

∣∣XN
t

∣∣ .

2
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The second order approximation uses the following continuity property of a standard
Wiener process W : for any α ∈ (0, 1

2) and T > 0, there exists an integrable and hence almost
surely finite random variable M such that

|W (t1)−W (t2)| ≤ M |t1 − t2|α

almost surely for all t1, t2 ≤ T ; see, for instance, Remark 2.12 in Karatzas & Shreve (1991).
Thus, the first order approximation shows that the sequence of stochastic processes {XN}N∈N
converges almost surely to X uniformly on compact time intervals. With this we are now
ready to establish the second order approximation. The proof uses a perturbation of an
argument given in Bayraktar, Horst & Sircar (2005).

Proof of the second order approximation: For a function f ∈ CT and the continuous
initial function q̃ : [−δl, 0] → R let H(f) = (H1(f), . . . ,Hm+1(f)) be the unique function
that satisfies the integral equation

H i
t(f) =

{
qi(t) for t ∈ [−l, 0]∫ t

0 < ∇λi(q̃(u)),H(u)(f) > du + f i
t for t ∈ [0, T ]

.

Hence H(X) = Z where Z is defined in (12). Since the rate functions have a uniformly
bounded derivative, an application of Gronwall’s lemma shows that H is a continuous oper-
ator. As a result

lim
N→∞

‖H(XN )− Z‖∞ = 0

because the sequence {XN}N∈N converges almost surely and hence in probability to X. With
EN

t := UN
t −Ht(XN ) = (EN,1

t , . . . , EN,m+1
t )t it is then enough to prove that

lim
N→∞

sup
0≤t≤1

|EN
t | = 0 (18)

in probability because the limit in probability of the sum of two random variables is equal to
the sum of the limits in probability. The representation (17) of UN

t yields

EN,i
t =

√
N

∫ t

0

{
λi(QN

(u))− λi(q(u))
}

du−
∫ t

0
< ∇λi(q(u)),H(u)(X

N ) > du

=
√

N

∫ t

0

{
λi(QN

(u))− λi(q(u))
}

du−
∫ t

0
< ∇λi(q(u)), U

N
(u) > du

+
∫ t

0
< ∇λi(q(u)), E

N
(u) > du.

By the mean value theorem for vector-valued functions there exists a vector ξN
u that lies

between QN
(u) and q(u) such that

λi
(
QN

(u)

)
− λi(q(u)) =

1√
N

〈
∇λi

(
ξN
u

)
, UN

(u)

〉
.
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Hence

EN,i
t =

∫ t

0

〈
∇λi

(
ξN
u

)−∇λi(q(u)), U
N
(u)

〉
du−

∫ t

0
< ∇λi(q(u)), E

N
(u) > du.

In view of the first order approximation

lim
N→∞

sup
0≤u≤T

∣∣∇λi
(
ξN
u

)−∇λi(q(u))
∣∣ = 0

almost surely. Since the processes UN are bounded in probability it now follows from Lemma
3.15 (ii) in Bayraktar, Horst & Sircar (2005) that the processes

{∫ t

0

〈
∇λi

(
ξN
u

)−∇λi(q(u)), U
N
(u)

〉
du

}

0≤t≤T

converge to 0 in probability when N →∞. Now, an application of Gronwall’s lemma shows
that the processes EN converge to 0 in probability uniformly on compact time intervals. 2

5 Conclusion

This paper introduced a mathematical framework for analyzing financial price fluctuations in
continuous-time behavioral finance models. When buying and selling orders arrive at random
points in time in accordance with a Poisson dynamics and some agents employ technical
trading rules, we showed that the joint dynamics of asset prices and trader opinions can be
approximated by the trajectory of a delay differential equation. The fluctuations around this
first order approximation follow an Ornstein-Uhlenbeck process with delay. In a benchmark
model of noise trading our first and second order approximations resemble the dynamics of
Lux (1995) and Föllmer & Schweizer (1993), respectively. Mathematically, our limit results
were based on methods and techniques from the theory of state dependent queuing networks.

The driving feature of the price process is the switching of agents from one forecasting
rule to the other. This switching can be attributed to the relative success of the rules. The
switching process has the characteristic that agents can, at any point in time, herd on one
rule. When this happens agents forecasts are self reinforcing. There is freedom in specifying
the order rates which, eventually, map past profits from the different forecasting rules into the
probability of choosing those rules. This makes our specification rather general and extends
previous results on noise traders models.

Several avenues are open for future research. For instance, as pointed out in the introduc-
tion, stochastic delay equations have been used as a mathematical basis to study complete
market models with stochastic volatility. With our choice of scaling the volatility is deter-
ministic. Under a different limit taking scheme it seems possible to obtain a continuous time
version of the popular GARCH models of stochastic volatility. It would also be useful to
study the stability properties of the first order approximation in a more rigorous manner and
to identify the key parameters affecting the dynamics of asset prices and market moods.
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