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Abstract

We give sufficient conditions for a non-zero sum discounted stochastic game with compact and
convex action spaces and with norm-continuous transition probabilities, but with possibly unbounded
state space, to have a Nash equilibrium in homogeneous Markov strategies that depends in a Lip-
schitz continuous manner on the current state. If the underlying state space is compact this yields
the existence of a stationary equilibrium. Stochastic games with weakly interacting players provide
a probabilistic framework within which to study strategic behavior in models of non-market interac-
tions.
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1. Introduction

This paper considers infinite horizon discounted stochastic games with compact and
convex action spaces and with norm-continuous transition probabilities. We formulate con-
ditions on the games which guarantee existence of stationary equilibria in pure strategies
that depend in a Lipschitz continuous manner on the current state.
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Discounted stochastic games have been introduced by Shapley (1953) as a general
model of strategic interaction with symmetric information, and have since been intensively
analyzed in both the economic and the mathematical literature. The structure of a stochas-
tic game is similar to that of stochastic dynamic programming. The major difference is that
instead of one decision maker maximizing his utility over time, stochastic games involve
multiple players controlling the dynamics of some state variable. Since a full characteri-
zation of equilibria in stochastic games is typically intractable, one usually tries to prove
existence of time-homogeneous equilibria in Markovian strategies. In a Markovian equi-
librium the players’ actions in every period depend only on the current position of the state
variable, and so the dynamics of the state sequence can be described by a homogeneous
Markov chain.

For countable state spaces a variety of existence theorems for Markov equilibria have
been established by, e.g., Shapley (1953), Fink (1964), and Federgruen (1978). The ex-
istence of homogeneous Markov equilibria has also been proved in special cases with
uncountable state spaces. For instance, Parthasarathy (1982) considered 2-person games
in which the state space is the unit interval and where the agents’ strategy sets are finite.
This was extended to players, again each having a finite strategy set, in Parthasarathy
and Sinha (1989). Nowak (1985) also worked with an uncountable state space and two
players, both of whose action spaces are compact metric spaces. Under fairly general
conditions this author showed that such games haveeguilibrium stationary Markov
strategies. Nowak and Raghavan (1992) proved existence of correlated equilibria in sta-
tionary strategies. In a correlated equilibrium the behavior of the players is coordinated
by a signal transmitted by a fictitious mediator. Under a norm-continuity condition on
the transition probabilities Mertens and Parthasarathy (1987) discussed the existence of
subgame-perfect, but not necessarily Markovian equilibria in games with uncountable state
and action spaces. An alternative proof which is based on selection theorems for measur-
able correspondences is given in Solan (1998); Chakrabarti (1999) extended the results of
Mertens and Parthasarathy (1987) to Markov strategies.

However, no general existence result is yet available. Even less is known about exis-
tence of equilibria which display additional continuity properties. The latter issue is of
particular interest for games with norm continuous transition rules. In such games the dy-
namics of the equilibrium process can be described by a Markov chain that has the Feller
property if the underlying equilibrium strategy itself depends in a continuous manner on
the current state. If, in addition, the game has a compact state space, then the equilib-
rium is even ergodic. This means that the game admits an initial distribution such that the
state sequence is stationary and ergodic. The existence of (correlated) ergodic equilibrium
processes has been addressed in the contditite-horizonstochastic games with mu-
tually absolutely continuous transition probabilities by Duffie et al. (1994). These authors
give a variety of reasons for focussing on ergodic equilibrium processes. For instance,
such equilibria “constitute the simplest sort of equilibria and are thus perhaps focal,”
and “there ig[...] the suspicion that other equilibria require implausiple] coordina-
tion.” Guesnerie and Woodford (1992) point out that “an equilibrium that does not display
minimal regularity through time—maybe stationarity—is unlikely to generate the coor-
dination between agents that it assumes.” Duffie et al. (1994) conclude that “whatever
the additional merits of ergodic equilibria are, stationarity is the basis of all economet-
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ric models.” This calls for general existence results of continuous equilibria in Markovian
strategies.

To the best of our knowledge the existence of continuous equilibria has so far only
been established in the context of a specific capital accumulation game by Amir (1996)
and for supermodular games by Curtat (1996). The latter approach is based on Topkis’
(1978) monotonicity theorem. It uses lattice theoretic arguments and relies on complemen-
tarity and monotonicity assumptions. Complementarities occur when the marginal utility
to one player of undertaking an action is increasing in the number of peers undertaking
the same action. This paper provides a different and more unified approach that applies
beyond the setting of supermodular games. Instead of imposing monotonicity conditions
on the agents’ utility functions we consider stochastic games in which the interaction be-
tween different players is weak enough. To this end, we first extend the not\dod=rate
Social Influenceéntroduced by Glaeser and Scheinkman (2000) and enhanced in Horst
and Scheinkman (2002) to dynamic games. In a second step we reduce the dynamic deci-
sion problem to a static game through the introduction of average continuation functions.
This reduction allows us to view an agent’s decision problem as an optimization problem
depending on some parameters: the actions taken by all the other players and the current
position of the state sequence. Montrucchio (1987) gave sufficient conditions for such opti-
mization problems to have optimal solutions that are Lipschitz continuous functions of the
parameters. Combining these results with our weak interaction condition, we show that the
reduced one shot game has a unique equilibrium that is Lipschitz continuous in the state
variable. The key observation is that the Lipschitz constant can be chosen independently of
the specific average continuation function. In a third step, we prove existence of Lipschitz
continuous equilibria using results from the theory of dynamic programming.

Stochastic games with weakly interacting players are tailor-made to study dynamic mi-
croeconomic models of non-market interactions. Non-market interactions are interactions
between a large number of agents that are not regulated through a price mechanism. They
represent an important aspect of many socio-economic phenomena. For example, the de-
cision of a teen to commit a criminal act or to drop out of high school is often importantly
influenced by the related decisions of his friends as documented by Glaeser et al. (1996)
and Crane (1991), respectively. Jones (1994) identified smoking habits as another phe-
nomenon where peer group effects play an important role. But social interactions occur
not only between peers. They also occur between family members, between ethnic group,
and between neighbors in a geographical space. Topa (2001) showed that neighborhood
effects are important determinants of employment search; ethnic group effects can explain
segregation (Benabou, 1993) and income inequalities (Durlauf, 1992) across cities. Cooper
and John (1988) showed that local technological spillover effects are an important determi-
nant of the variation in aggregate output. If production processes are affected by spillovers,
small changes in economic fundamentals may be transformed into large changes in aggre-
gate output. Such multiplier effects are a characteristic feature of models of nhon-market
interactions. They provide a possible explanation for the emergence of large fluctuations
of aggregate endogenous variables relative to changes in exogenous quantities. But for the
multiplier to be well defined, one has to place a quantitative bound on the strength of in-
teractions. Otherwise extreme forms of “herding” may emerge, and the multiplier effects
become unbounded. This calls for models of weakly interacting players.
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The empirical evidence of peer and neighborhood effects has triggered an increasing
theoretical literature studyingtatic economies with non-market interactions; see, for in-
stance Glaeser et al. (1996) or Brock and Durlauf (2001). However, the literature on local
interactions has not yet been fully integrated into tly@mamicanalysis of equilibrium.

When dynamic economies are studied, the analysis is typically confined to the case of
backward looking myopic dynamics. Either as a simple explicit dynamic process with
random sequential choices as in Brock and Durlauf (2001), or, under a weak interaction
condition, as an equilibrium selection procedure for static economies as in, e.g., Glaeser
and Scheinkman (2000). One exception is the paper by Bisin et al. (2002). These authors
proved the existence of rational expectations equilibria of random economies with locally
interacting agents under the assumption that the interaction between different players is not
too strong. At the same time they considered an interaction structure that excludes strategic
behavior.

The weak interaction approach suggested in this paper provides a unified framework for
integrating strategic behavior into dynamic models of social interactions. The framework
is flexible enough to allow for both local and global interactions. Local interactions cap-
ture situations where agents interact only with a small set of other agents (friends, family
members, “neighbors,” etc.) in an otherwise large population. Local interactions are best
thought of as being direct. That is, agents’ instantaneous utility functions depend directly
on observable choices of neighbors. Interactions are global if people are affected by the
average behavior in the population. In a large population the actual average behavior is
unlikely to be observable. Instead, it is more natural to assume that agents receive noisy
signals about aggregate quantities. Therefore, global interactions are best modeled as in-
direct interactions. This means that the dependence of payoffs on the average behavior is
felt only through the impact of aggregate quantities on the dynamics of the state sequence.
Models of local and global interactions allow for a combinatiotoofal externalities like
neighborhood effects witblobal externalities like fashions on which an individual agent
in a large population only has a small impact. Our framework also allows us to integrate
the standard economic analysis in which interactions are mediated by global quantities
like prices, wages or per capita human capital into the analysis of peer and group effects
captured by local interactions. As an illustration we consider a model of economic growth
where local technological spillovers affect the efficiency of production processes.

The remainder of the paper proceeds as follows. The model and the main results are
presented in Section 2. Section 3 illustrates the range of applications of stochastic games
with weakly interacting players. In Section 4 the dynamic decision problem is reduced to
a static game. Section 5 proves our main results. Section 6 concludes.

2. Lipschitz continuous Nash equilibriain stochastic games

The stochastic games = (I, M, (X', U, %), Q, &) that we consider in this paper are
defined in terms of the following objects:

e The set ofplayersis the finite sef ={1,2,..., N}.
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e Thestate spacéV is a convex subset of a normed spa€g | - || 4). The state space
is equipped with its Boret=-field M.
e Theaction spaceX’ of the playeri is a closed, compact and convex subset of some
Hilbert spaceH', || - ||;). A typical action of player is denotedr’. The actions taken
by playeri's competitors are denoted™ € X := {x ™ = (x/)jep(i}}, and X :=
{x = (x))jer: x' € X'} is the compact set of adiction profiles
Theuutility functionof playeri is a continuous map’’ : M x X — R.
Thediscount factorof playeri is g € (0, 1).
Thelaw of motionQ is a stochastic kernel from x X to M.
The starting pointof the state sequencegss M.

In reaction to the current statg € M, the players take their action$ = 1i(&) inde-
pendently of each other according tdviarkov strategyr’ : M — X'. The restriction to
Markovian strategies does not pose any difficulties because any equilibrium when players
are restricted to Markovian strategies also constitutes an equilibrium in a game where the
players’ actions depend on the entire history of the state sequence.

The selected action profilg = (x;' )i along with the present stateyields the instan-
taneous payoft/’ (&, x,) = U' (&, x!, x; ") to the agent € 1. The distribution of the new
state isQ (&, x;; -). An initial distributionv on M along with a Markov strategy = (t/);¢;
induces a probability measuF on the canonical path space in the usual way. Utider
the state sequence is a Markov chain, andetkgected discounted rewatd playeri € 1
is given by

o

T 1) =] [Z(ﬂ")’uf@,,m}. (1)
t=0

Here the expectation is taken with respect to the meaBjuré\s usual, a Markov strat-

egy t will be called aNash equilibriumif no player can increase his payoff by unilateral

deviation:

JiEn=J(E ) = J (50", t7") forallo’:M — X' and eachi € I. (2)

Henceforth, a Nash equilibrium in Markovian strategiewill simply be called an equi-
librium. We say thatr is Lipschitz continuous, if there exists a finite constaritsuch
that

|7 & -7 )|, <L*|¢ —&|, foreachielandalls ée M.
This paper gives conditions that guarantee existence of Lipschitz continuous equilibria. In
a first step, we impose continuity conditions on the utility functions and the law of motion.

Assumption 2.1. (i) The utility functions are bounded and Lipschitz continuous: There
exists a constart > 0 such that

|U' (1, x) — U' (62, )|
<L(lIE1—&2llm + lx —yll) foreachér,é&2e Mand x,yeX.

Here|/x| := max ||x'|; denotes the norm oK.
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(ii) For all (£,x) € M x X, the probability measur@ (&, x; -) has a density (£, x, )
with respect to some measyieon (M, M), i.e.,

dO, x; ) =q(&, x, ) du.
For eacht;, & € M and every, y € X, the densities satisfy the Lipschitz condition

g€ x,m) — g2, y, m| < L(I1€1— E2llm + llx — yll). ®3)

The Lipschitz continuity condition (3) translates into a norm-continuity condition on
the transition probabilitie® (¢, x; -). If £, — & andx,, — x, then

Sup |Q(&,, x»; B) — Q(&,x; B)| > 0 asn — oc.
BeM

Norm-continuity conditions have also been imposed by, e.g., Mertens and Parthasarathy
(1987) and Duffie et al. (1994). Assumption 2.1 is sufficient to prove existence of equilib-
ria in mixed strategies. In order to prove existenceaftinuousequilibria we will also
assume strong concavity of an agent’s utility function which respect to his own action. In
addition, we need to place a quantitative bound on the strength of interactions between
different players. That is, we will assume that both the agents’ instantaneous utility func-
tions and the transition densities are only weakly affected by changes in players actions.
We formulate our weak interaction condition in terms of a perturbation oMbderate
Social Influencassumption introduced in Glaeser and Scheinkman (2000). The following
section illustrates the latter condition in a situation where the utilities and the densities are
sufficiently smooth.

2.1. Assumptions and the main results; the differentiable case

In this subsection we consider the special case wherg?, ..., XV c R are compact
intervals, and where the utility functions and the densities are at least twice continuously
differentiable. We use the notation

2 2

i . i . —
Uij6.x) =g U 60 and gij(§,xm) = o

In order to introduce a weak interaction condition for stochastic games, we fix an initial
state&, an action profilex, andaverage continuation functiong’ : ¥ — R. The map
fi: M — R specifies the rewards the playegxpects to receive from time= 2 on. Thus,
his actual expected payoff is

qé&,x,mn),

VIS G = U0 + 87 [ g Gx . @
Hence we can define ttstaticone-shot games
Sre=(X . XN vE . vV E)

with payoff functions V©/(&,.), and with action setsX’. Following Glaeser and
Scheinkman (2000), we say thiloderate Social InfluencéSI for short) prevails in
X1 if the marginal utility of an agent’s own action is less affected by a change in all the
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other players’ choices than by a change of his own action. Specifically, MSI prevails if
there existy < 1 such that

VARG
D _sup—i——
= v &)
This weak interaction condition guarantees uniqueness of equilibrBjn It also ex-
cludes “herding behavior” where, for instance, all players copy the behavior of some
“leader.” In particular, the MSI condition guarantees that the multiplier effects ina
are well defined. This means that a small perturbation of the current state cannot have an
unbounded effect on the average behavior throughout the entire set of players; see Glaeser
and Scheinkman (2000) or Horst and Scheinkman (2002) for further details.
A standard argument in discounted dynamic programming shows that the jdras
an equilibrium, if there exist average continuation functidhsM — R such that, in equi-
librium, the one-shot gamE'r ¢ satisfies

<y forallé e M, and every e I. ()

Vi (£, x) = U (£, x) + B f Fl(n)q (&, x. mu(dn) = Fi(¢) forall& e M and
iel (6)

Under theModerate Social Influenceondition the gameXr ¢ has a unique equilibrium

that depends continuously gnas shown by Horst and Scheinkman (2002). Thus, if there
exists an average continuation function such that (6) holds, and if MSI prevails in the static
gameXr g, thenX has a continuous equilibrium. Since the class of average continuation
functions can a priori not be restricted except for

. 0 1 .
[ < 2208) 107 ol LG
t=0 1 p

it is natural to assume that (5) holds uniformly in all average continuation functions. That
is, independently of what a player expects to receive in the future, his marginal utility at
timer = 1 is always more affected by changes in his own action than by changes in the
other agents’ choices. In order to make this more precise, we denéitg b, x, )|l ,1 1=
f|qij(5 x, n)|u(dn) the L(w)-norm of the random variablg ; (¢, x, -). Since

Vi x| <UL Evxn)| + BT £ o 91 Erxe. ) | s

an extension of the weak interaction condition in Horst and Scheinkman (2002) to dynamic
games can be formulated in terms of the following condition.

Assumption 2.2. Let 8 := max /3". There existyy < 1 such that, forall € 1,& e M,

U} (&, 0)] lgi.j (&, x, )2
Sup—= <vy. 7
L o I 5l oo s o < )

We are now ready to state a first existence result for Lipschitz continuous equilibria
of stochastic games with compact state spaces. The proof is similar to the one of The-
orem 2.10 below.
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Theorem 2.3. Let ¥ be a stochastic game wher&, X1, ..., X"’ c R are convex and
compact. If AssumptioB.1and the Moderate Social Influence Assump@dhhold, then
X' has a Lipschitz continuous equilibrium.

If {&} is an exogenous Markov chain whose dynamics cannot be controlled by the
players, theny; ; = 0. The same holds if the agents share a common convex actidn set
and if the law of motion takes the form

1 ‘
0, x;)=0(x)01;) + (1 —o0(x)) Q2(8;) where o(x)= N ZX’ (8)
iel
denotes the average action of all players. In both cases Assumption 2.2 reduces to the
diagonal dominance condition

Ul ;&0
Ssup
P |U,'7i(§7x)|
This is theModerate Social Influencsondition in Horst and Scheinkman (2002) &tatic
games with payoff function&’. If the law of motion depends in a more general manner
on the average action taken by all the agents, then the MSI condition translates into a
perturbation of the diagonal dominance condition. In situations where the densities take
the formg (&, x, n) = ¢(&, o(x), n) for a smooth functio : M x ¥ x M — R we have

<y <1 forallé e M,andevery e I. 9)

1
qi,j (€, x,m) = ﬁwzz(é, o(x),n).

Thus, there exist constanfé < oo such that thé1SI condition holds if

Ul ;6,01 ¢
D sup——— 4+ — <y<1 forall§ e M,andforeactic /.
— x |Uj;¢E, 0 N
J# L
If the constant&C? are uniformly bounded, Assumption 2.9 reduces to the diagonal domi-
nance condition (9) foN — oo. If the densities depend onthrough a weighted average
of the form Y ics ¢'x', then MSI prevails if the utility functions satisfy (9) and if the con-
stants¢’ are small enough.

Remark 2.4. Loosely speaking, the result formulated in Theorem 2.3 may be interpreted as
saying that if a game a close to being anonymous (see, e.g., the seminal paper by Jovanovic
and Rosenthal (1988) for a detailed analysis of anonymous games), then an equilibrium
exists.

Stochastic games with weakly interacting actions are tailor-made to analyze dynamic
games of non-market interactions. Non-market interactions are interactions between many
players that are not regulated through a price mechanism. Games of non-market interac-
tions will be studied in Section 3. We close this subsection with a first example where our
MSI condition can easily be verified.
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Example 2.5. Assume that the agents’ action sets &fe= [—1, 1]. Assume also that the
law of motion takes the linear form (8), and that the utility functions are given by

2
Ui(é,x)=—1<x"—#2xj) 1_2J(x —E) (10)

Utility functions of the form (10) are standard in the literature on non-market interactions;
see, e.g., Brock and Durlauf (2001), Glaeser and Scheinkman (1999) or Glaeser et al.
(1996). They capture situations where agents have a desire for conformity. That is, they
capture situations where the agents prefer to take the same actions as their peers. The taste
for conformity is measured by the paramefiee (0, 1). The quantityd’ may be viewed

as an individual parameter that specifies the agent's type. The MSI condition is satisfied
sinceq; ; =0, becauseU’J =—-J/(N—-1) and becausé]’ = 1. Thus, the game has

a Lipschitz continuous equilibrium. Since quadratic ut|I|ty functions are not monotone

in neighbors choices, the game is not supermodular. Therefore, existence of continuous
equilibria cannot be deduced from the results in Curtat (1996).

2.2. Assumptions and the main results: the non-differentiable case

Before we consider games with more general state and action spaces, we recall that
a function f: Y — R defined on a convex subskgt of some Hilbert spacé is called
a-concave fow > 0, if the mapy — f(y) + %oz||y||2 is concave orY. We also recall that
f:Y — Risdifferentiable ay € Y in the feasible direction € H, if y +th € Y for some
t >0, and if the limit /" (y; h) :=lim, 0 %(f(y +1th) — f(y)) exists and is finite.

Assumption 2.6. (i) There existe > 0 and functionsx’ : M — (a, 00) such that, for all
x~'e X', the mapU’(§, -, x™") is o' (§)-concave onX'.

(i) The partial derivatived/; (&, x; h') of U' in the coordinater’ at (&, x) exist in all
feasible directions’ € H', and the players’ marginal utilities are Lipschitz continuous:
There exist constants’>/ (£) such that

U6, 271 0) = U (E Ty T D S LY@ 3 = v 0

for all actions profilesc™, y=' € X~/ with x* = y* for k ¢ {i, j}. Moreover, there are
constantd.’ such that

UL (61, x', x 73 b)) = Ul (2. x", x5 1) | < LY |1g1 — E2ll || ]
for all £&1, & € M and eachx € X.
The quantity L’/ (¢) measures the dependence of agemtmarginal utility on the

changes of the choice of playgrif the current state i§. By analogy,L! measures the
dependence of his marginal utility on the current position of the state sequence.

1 The connection between-concavity and differentiability is discussed in Appendix A.
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Remark 2.7. We assume strict concavity of an agent’s utility function with respect to
his own action. Therefore, our model cannot be used to study games with finitely many
actions, by defining an auxiliary game with compact action sets in which the set of pure
actions coincides with the class of mixed actions in the original game.

We also need to bound the impact of an individual player on the law of motion.

Assumption 2.8. (i) Th.e directional derivative; (&, x, Kty of the densityy at (&, x, n) in
the feasible direction’ € H' exists andg; (&, x, )< el i for somey € L1(w).
(if) The directional derivatives;; (¢, x, n; k') are Lipschitz continuous. Specifically,

there areu-integrable functiorL!/ (&, -) : M — R which satisfy

lai (&, %" x 7o b)) — @& T,y ) [ STV E | =y IR, @)
for everyé € M and all action profiles 7, y~* with x* = y* for all k ¢ {i, j}, and

|Qi (Ev -xia -x_ia n; -xi - -xAl) —dqi (Ev -xAia x_iv n; -xi - -xAl)| g Zi,i(S’ 77) ||-xi - -xAi ||12
Moreover, there are constarité such that

|gi (1. x, m3 1) — qi (82, x, 3 1Y)| < L'|1— &2llm |’ I,
for eachéy, & e M and allx = (x%, x ™) € X.

We are now ready to formulate our weak interaction condition in the more general situ-
ation where the utility functions and the densities are not twice continuously differentiable.
As in the preceding section, we assume that an agent’s marginal utility is less affected by
a change in his own action than by changes in the other players’ choices.

Assumption 2.9. Let 8 := may g, andL/ (§) := | L' (&, -)||.1. Thereisy < 1 such that

UGS U N BRI s e
J#i Jel

holds for alli € I and eactt € M.

Let us now formulate an extension of Theorem 2.3 that applies to the case of non-smooth
utility functions. Its proof will be given in Section 5 below.

Theorem 2.10. Suppose that the discounted stochastic garrteas a compact state space
M and that Assumptio®.1and Assumption®.6—2.9are satisfied. The&' has a Lipschitz
continuous equilibrium. The Lipschitz constant depends sr0.

Following Duffie et al. (1994), we call an equilibriumergodicif there exists an initial
distributionu* such that the state sequence is stationary and elﬁmddier]P’fL*. If X satis-
fies the assumptions of Theorem 2.10, then it admits a Lipschitz continuous equiliarium

2 A Markov chain{&} with state space/ is called ergodic under a measw®ef lim 7_, oo % Z[Tﬂ féE) =
J f dP holdsP-a.s. for every bounded measurable functfori/ — R.



U. Horst / Games and Economic Behavior 51 (2005) 83-108 93

The transition operatok® of the equilibrium procesgs,;} acts on bounded measurable
functions f : M — R according to

K" f() :=/f(n)K”(-; dn)=/f(n)Q(~,r(-); dn).
M M

Since both the densities and the equilibrium strategies are Lipschitz continuous,
Jim KT f &) = KT @] < M || flloo||q (6. @) ) —q(€. 7@ )|
< n”—>mooL(”Sn —&lm+|tE) —Tt®)])=0

if im,— ~ &, = &. In particular, the Markov chaif¥;} has the Feller property. This means
that the transition kernek® maps the class of all continuous functiofisM — R into

itself. It is well known (Breiman, 1968) that Feller processes on compact state spaces
admit an ergodic invariant distribution. That is, there exists an initial distribytioeuch

that the state sequence is stationary and ergodic Uﬂjgelf, in addition, the densities are
strictly positive, then the Markov chain has at most one invariant measure. In this case the
sequencéé,} converges in distribution tp*, independently of the initial state. Thus, we
have the following corollary to Theorem 2.10.

Corollary 2.11. Under the assumptions of Theor@miOthe gameX' has an ergodic equi-
librium. If, in addition, g (¢, x, -) > 0, then the state sequence converges in distribution to
w*, independently of the initial condition.

Theorem 2.10 is applicable to stochastic games with compact, and bemcdedstate
spaces. An extension to games with unbounded state spaces can be established under a mild
additional assumption on the densitig§, x, -). To this end, we denote bW, + M C H
an increasing sequence of closed, compact convex sets, apd b, x X x M,:— R
(n € N) a sequence of densities with respectitavhich converges tq (¢, x, -) uniformly
on compact sets:

suplga (€, x,n) — (&, x,m)| =——>>0 for all compact set& c M. (13)
nek

Remark 2.12. Let Q,, be the stochastic kernel froM,, x X to M,, that is defined in terms

of the densities;,, and consider the stochastic gathg = (I, M,,, (U, X', B'), Oy, &).

Our condition (13) translates into an assumption on the conditional transition dynamics of
the state sequenc¢s’} and{&} associated to the respective ganigsand X'. In order

to see this, we fix a statee M,, and an action profile € X, and introduce the measures

pn(&, x;-) andu(§, x; ) by
dun(§,x;) =gn(€, x;)du and  qu(§, x;) =q (&, x; ) du, (14)
respectively. For any bounded functibn H — R with compact suppork c H we have

Jm | [ o[, i = i )
K
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< Nhllo SUP|gn (€, x, 1) — g (&, x,m)| =0.
nek

Thus, under (13) the sequenge, (¢, x; -)} converges weakly ta (&, x; -).

We are now ready to formulate an extension of Theorem 2.10 to stochastic games with
unbounded state spaces which will be proved in Section 5 below.

Corollary 2.13. Let ¥ = (I, M, (X', U', "), 0, &) be a discounted non-cooperative
stochastic game. Le¥,, 4 M C H be an increasing sequence of closed compact con-
vex sets, and leg,: M, x X x M, — R be densities with respect to some measure
w on (M, M) that satisfy(13). If there existsy* < 1 such that all the game&” =

(I, M,, (X', U, B)), Qn, &) satisfy the MSI conditioif12) with y = y*, then ¥ has a
Lipschitz continuous equilibrium.

3. Applications of stochastic games with weak interactions

We are now going to illustrate the range of applications of stochastic games with weakly
interacting players. Our focus will be on games of non-market interactions, i.e., on strategic
interactions between a large number of agents that are not mediated through markets.

3.1. Equilibria in dynamic models of non-market interactions

In this section we develop a dynamic extension of the model of non-market interac-
tions in Glaeser and Scheinkman (2000); see also Horst and Scheinkman (2002). We allow
for bothlocal andglobal components in the interaction between different players. Social
interactions are local if each player interacts only with a small set of other agents in an
otherwise large population. Local interactions typically occur between friends or family
members. Interactions are global if players are affected by the average behavior through-
out the whole population. We assume that a player’s instantaneous utility function depends
on the choices of others only through his own action and through the observable actions of
his neighbors. This captures the idea that observable choices of, e.g., family members have
a direct and possibly more distinctive impact on agents’ utilities than the average action of
all players. On the other hand, in a game with many players, it is unlikely that the average
behavior in period is observable, too. It is more natural to assume that the players only
observe signals abogt(x;). This idea will be captured by the fact that the impact of the
procesqo(x;)} on payoffs is only felt indirectly through its impact on the dynamics of the
state sequence.

Let us now be more specific about the structure of the model. Players are infinitely-lived.
To each player € I we associate his peer@ference grougV (i) C I\{i}. An agent’s peer
group may be viewed as the set of players whose actions the agent can actually observe. In
large populations, reference groups should thus be thought of as being small relative to the
whole set of all players.

In every period, each playet is subject to a randortaste shockd;. The random
variables; take values in some compact €2t R’. In reaction to his currertyped;, the
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agenti takes an action! = t(9}) from a common compact and convex action Be\s

in Glaeser and Scheinkman (2000), an agent’s instantaneous utility in petégmbnds on

the choices of all the other agents only through a weighted average of the actions chosen
by the players in his reference group. To this end, we fix weight fa@'g'ogo @i, jel)

that satisfyg“j’ﬁ =0forj ¢ N()and)"; yg {; =1foralli e I. Specifically, we assume

that preferences at tinteare described by a smooth utility function of the form

Ui(Oti,x,) = u(@,i,xf, Qi(xt)) where Qi(x,) = Z;;xlj
Jjel

denotes the average choice of playsrpeers. The map is «-concave in its second ar-
gument. In our model all heterogeneity across agents is incorporated into neighborhood
effects and types. Conditioned on the choices of all agents, the dynamics of the types is
described in terms Q¥ independent Markov chains. More precisely, the law of the random
variable, 1 = (9}+1)i€1 depends on the current action profileonly through the aver-
age behaviop(x;) = % Dier x%. Such an interaction structure captures situations where
agents’ preferences depend on the unobservable average behavior of all the people only
through privately observed signals. Specifically, we assume that the law of motion takes
the product form

00,x;) = l_[n(é‘i, o(x); ) where dr(@i, v; ) = (p(@i, v, ) dA. (15)
iel
Herep:® x Y x ® — R, is smooth, and. denotes the Lebesgue measure®nAn

inspection of the proof to Lemma 4.1 shows that for stochastic kernels of the form (15),
the quantitiegq; ; (£, x, n) || 1 in Assumption 2.9 can be replaced by

’ 2

Observe now than/f,j(ei, x)= {}uz,g(e", xt, o' (x)) fori # j. ThereforeModerate Social
Influenceprevails if there existy < 1 such that, for alb’ € @, and eacli e I,

o0, 0(x),")

oxi9x ‘Ll = yzle22(0". 000, )| 11

U luz,3(0", x', 0" (x))] B sup llulloo lo2.2ll0

vi 2200, x1,00(x)| 1= 4 luii0',x',0'(x)| N
Thus, if the utility functionu satisfies a diagonal dominance condition, the game has a
Lipschitz continuous equilibrium if the population is large enough. We further illustrate

this by means of the following example where preferences are subject to both peer group
effects and fashions.

X

Example 3.1. There are two consumption goods, say gobdand goodB. A priori,

the goods are close substitutes. In each period the agents have to decide which fraction
x! € [0, 1] of their budget for these goods to spend for gendPersonal preferences for
good A are described by random variablése [0, 1]. But the players also have a taste

for conformity. They derive utility from consuming the same good as their peers. Such a
behavior can frequently be observed among teenagers. For teenagers, brand-name articles
often play an important role in identifying themselves as members of certain youth groups.
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Specifically, letN (i) := {i — 1,i + 1} where we apply modulad¥ arithmetic, and assume
that preferences are described by the quadratic utility functions
o Coxitly yitINZ g, .
U’(O’,x) = —E(x’ — f) - E(x’ - 77’) +9;x;.
The constants & J1 < J2 satisfy J1 + J2 < 1. They measure the taste for conformity.
The quantityn; € [0, 1] specifies agent's subjective perception of the average behavior
of other players. This reflects the idea that preferences do not only depend on the tastes

of peers, but also on fashions. Fashions, in turn, reflect the aggregate behavior through the
entire population. For simplicity, we assume that

(0] 1. miq) ~ 7 (0] 0}, 0(x); +) := Q1(6):+) ® Q2(0(x1). )
where Q1 and Q2 are suitable stochastic kernels. That is, individual types evolve in-
dependently of each other in a Markovian manner, and each agent receives a private
signal about mean actions. In particular, the law of motion takes the product form (15).
The mapsU* are Lipschitz continuous and-concave witha = J1 + Jo. Moreover,
1U}; _4lloo = U} ; _1lloc = J1, @and |[U'||cc = 1. Thus, our weak interaction condition

i,i

holds if

B lg22lco
Jp4+ = real™
1+ 1-8 N
Thus, the game has a Lipschitz continuous equilibrium if the number of players is large
enough and/or if the relative impact of a neighbor’s action is weak enough, ife.isibig

enough.

< Jo.

3.2. A model of economic growth with local technological spillover effects

This section develops a model of economic growth where local technological spillover
effects influence production processes. We consider an economy with a finife=set
{1,2,..., N} of infinitely-lived industries. Each industriye I consists of many small,
identical firms. Aggregate behavior is thus proportional to the behavior of a representative
company. Following Durlauf (1993), we assume that all industries produce an identical
output good. Its price is normalized to one. Industries are distinguished by their respective
production technologie§' « [0, 1]. Once a production technology is chosen, labor is the
only input. Labor supply is totally inelastic, and, [0, 1] denotes the economy wide
wage level in period. Each industry chooses a sequeng#, /!} of production technolo-
gies and labor demands in order to maximize expected profits:

oo
maxE Y " g (¥! —wi}),
R E—t
whereY; denotes the industry’s output in periad_abor can be hired in continuous quan-
tities, Il € [0, 1], and local technological spillovers affect the production processes. The
set of companies whose production technologies affect the output of fgrdenoted by
N (i) C I. Specifically, production occurs instantaneously, and the firm produces the output

Y) = F(lf, ol {9zj}jeN(i))'
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The players act non-cooperatively in that they do not take account of their influence on
the production of others. No markets exist that allow industries to coordinate; firms cannot
be compensated for choosing production technologies that expand the output of the entire
economy.

Wages for the period are fixed at the end of date— 1. Wage claims depend on the
average labor demand in the preceding period, and on random external conditions like
inflation or growth rates. More precisely, we assume that

13
Wy ~ Q<wl—1ﬂ N ;l;_ﬁ )
1=

for some stochastic kernél from [0, 1] to [0, 1]. Thus, in a large economy the impact of

an individual industry on the level of wages is weak. Managers obserbefore deciding

how many workers to hire and which production technology to implement in period
givenw,, companyi € I takes the actio!, 6/ ) = ¢/ (w,). Such an assumption is justified

if we think of 6/ as a measure for labor intensity. The higher the wages, the more profitable
it is to implement a less labor intensive production technology.

The game has a Lipschitz continuous equilibrium if the technological spillover effects
are weak enough and if the impact of an individual industry on the wage level is not too
strong, i.e., if, for instancel is large enough. If, in addition, the law@(w, /; -) have
strictly positive densities with respecttmn [0, 1], then the Markov chaifw, } converges
in distribution to a unique limiting measure. However, in the presence of positive techno-
logical spillovers, significant multiplier effects may arise both in the unemployment rates
and in aggregate output: due to the interactive structure of the economy, the per capita
response in labor demand to an economic shock leading to high wages may considerably
exceed individual responses in models without local interactions. Thus, even if the overall
behavior of proces$w;} and hence the overall behavior of labor demand is ergodic, we
may still observe large fluctuations in unemployment rates.

3.3. Dynamic production games

Our last application of discounted stochastic games with weakly interacting agents deals
with dynamic extensions of the input game discussed in Cooper and John (1988); see
also Diamond (1982). There is a skt {1, 2, ..., N} of infinitely lived agents sharing
a production process. In each perioe N, the playeri € I bears an effort! € [0, 1]
in the production of a public good at a cast’). Herec:[0,1] — R is a strictly con-
vex cost function. The resulting output .'fs(x,",x,_i, &) whereé, € [0, 2] is a parameter
that determines the productivity of the agents’ choices. The case Wherenobserv-
able quantity and where the players take their actions in reactiof e analyzed in
Section 3.3.1. In such a situation the game’s state spake-=is[0, 2]. Thus, under suit-
able smoothness conditions the existence of equilibria can be established by means of
Theorem 2.3. If the productivity parameterusobservablethe analysis becomes more
involved. In Section 3.3.2 we consider a game where the agents can only estimate the dis-
tribution u, of & before making their choices. In this case the game’s state space is the
setP of all probability measures ofd, 2] equipped with the total variation norih ||y .



98 U. Horst / Games and Economic Behavior 51 (2005) 83-108

The total variation distance between two probability measuréson [0, 2] is given by
lv—9Dlly :=supse [v(A) — D(A)|, whereB denotes the Borel-field on[0, 2].

3.3.1. Games with observable productivity parameters
Let us first assume that the agents are able to observe the actual productivity parameter.
In this case we describe the players’ preferences by a utility function of the form
U'(x, &) =u(f(x',x7",€),c(x)),

We assume that the conditional distribution of the productivity parameter depends on the
average effort:

Y A s e E+xlg 4 xN
Q(E,Xw)—h( >IN )Ql(')+[1—h< I N >]Q2(-)-

Hereh:[0, 1] — [0, 1] is a twice continuously differentiable function that satisfi€¢sc
[0, 1], andQ; has a bounded densw with respect to. on [0, 2]. We have

17" | oo 1 2 2
21N f(q () +q“(m) pu(dn) < GINe

Under differentiability conditions on the utility, on the cost and on the production func-
tion, it is straightforward to show that the game has an equilibrium if the cost function is
sufficiently convex. As an illustration we consider the specific case

Ui(S,x)zéxinj —c(xi), where c(xi)=4(1+xi)3
J#
and where the law of motion depends in a linear manner on the agents’ efforts:
E+xt+.+xl E+xlt 4N
LX) = . 1— ).
Q@¢,x;) SIN 010) + LN Q2(-)

Thus, high efforts and a high productivity parameter make it more likely that the new
productivity parameter is chosen according to the probability distribu@igrSince

2

3(x[)2

lgij & x, )] 2 <

qij(E,x,m) =0, U'(E,x) = —24(1+x") < —24,

2
U'(g,x) =& <2,

ax'ox/

the MSI condition holds if 2V — 1) < 24, i.e., if N < 12. Thus, the game has a Lipschitz
continuous equilibrium if at most 12 players participate in the game. Under the additional
assumption thap1 stochastically dominate@, the game is supermodular. In this case
our result can also be derived from Theorem 4.6 in Curtat (1996). Our method allows us to
derive existence results without imposing monotonicity conditions on the law of motion.

Glaeser and Scheinkman (2000) discuss the case where an agent’s utility depends on
the average action taken by all the other agents. In our current setup, this means that

Zj;éi x!

i _ P =JFEE T i3
U',x)=¢&x N —1 4(l+x) .
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Let B/ =0.9 for alli € I, and consider the more general case wlieignot the identity.
Since||U! ||« < 32 and becausg/(1 — 8) = 9, the weak interaction condition (7) holds if
24+ 9% 32/(24+ N) < 24. This inequality is satisfied for aN > 12. Thus, the game has a
Lipschitz continuous Nash equilibrium if at least 12 players participate in the game.

3.3.2. Games with unobservable productivity parameters
Let us now consider the case where the actual productivity paragétemobservable.
The players only know its distribution,. Preferences are described by utility functions

U':X x P — R of the form

Ui(xt, i) = xti [E.§ —oV,E] Zxr] - 4(1+ xi)s
Jjel
whereE,, & andV,, & denote the mean and the variance of the random varihbieder
the law u;, respectively. The parameter specifies the agents’ common degree of risk
aversion. Thus, in a static model the players would be mean-variance maximizers.

We assume that the agents can control the dynamics of the sequence of distributions
{u:}. More precisely, we fix stochastic kernglg and 0, onP. Given a probability mea-
sureu € P, the lawQ1(u; -) is concentrated on a set of probability measures under which
& has a high mean, but also a high variance. The wu; -) is concentrated on a set
of measures under which the productivity parameter has both a lower mean and a lower
variance. Specifically,

1 N 1 N

Xy 4t x Xy 4t x

_— )+l ——
N O1(ss -) ( N

Thus, a high effort increases the expected productivity, but also its variance. If the agents
do not observe the actual productivity parameter, but only its distribution, the game’s state
is P which is not a Euclidean space. In order to derive sufficient conditions for the existence
of Lipschitz continuous Nash equilibria, we apply (12). Due to the linear structure of the
transition kernelp we may choos@"/(u, n) =0 foralli, j € I. The utility functions are
a-concave withe = 24 and

L () = |E/LE - UV#EL

Hence the weak interaction condition (12) holdg$Af — 1) sup,cp IE.& — oV, & < 24.
Typically, |[E, & — oV, &| < 2. Therefore, the game may have an equilibriumfos 12.

The additional uncertainty about the true productivity parameter reduces the impact of an
individual agent on the utility of others. Hence we can possibly allow for more players to
participate in the game and still guarantee the existence of equilibria.

O(s, xp5-) = )QZ(Mr§ ).

4. Lipschitz continuous equilibriain a static one-shot game

This section prepares the proofs of our main results by proving the existence of Lipschitz
continuous Nash equilibria in a certain class of one-shot games.

Since the agents’ instantaneous utility functions are bounded, we may with no loss
of generality assume that’ > 0 for all i € I. We introduce the vectar = (u');¢; with
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components; := | U’||» and denote byB, (M, RV), | - |») the Banach space of all non-
negative measurable functiofs M — Rﬁ satisfying|| f|l.o < u'. To each suclhverage
continuation functionve associate theeduced one-shot gamg; := (I, (X', U"/), &)
with payoff functions

U (g,x)=(1- YU (£, x) + f Fr g &, x, n)p(dn). (16)
M

The following lemma shows that the reduced galehas a unique Nash equilibrium
g7 (&), due to the weak interaction condition. Moreover, the equilibrium gapy — X
is Lipschitz continuous with a constant that can be chosen independently of the specific
average continuation function. This property turns out to be the key to the proof of Theo-
rem 2.10.

Lemma 4.1. Under the Assumptions of TheoréhiOthe following holds for every e
B,(M,RN):
() Foreacht e M andx~ € X%, the mapx’ > U/ (¢, x%, x7) s
&) =(1-p)a & —u' BT E)

concave orX', andinfg @' (§) > 0.
(ii) The conditional best reply’f (&,x7") of playeri € I depends in a Lipschitz continu-
ous manner on the actions of his competitors. More precisely, we have

(L—BHLY (8) +ul BILH (£)

g (5. x7") — g€y, < |« = 7], @an)

al(&)
if xk = y* for all k # j. Moreover, there exist6 < oo such that
| &% (€1, x7) — g% (&2, x )|, < Lllé1 — &2llm (18)

forall &1, € M and eachv = € X . ’ 3

(iii) The reduced gam&' s has a unique equilibriurg ¢ (&) = {g}(é)}ig € X.

(iv) The mappindg — gif(S) is Lipschitz continuous uniformly ifi € B, (M, R"). That
is, there existd., < oo such that

g} &) — @), < Lliér — Exllu
for all average continuation functiong € B, (M, R").

(V) The mapf + g';(-) from B, (M, RY) to B(M, X) is continuous.

Proof. (i) Let us fix an average continuation functigh an action profiler ™ € X and
a statef € M. BecausdJ' is Lipschitz continuous and because of (A.1), it is enough to
show that

Uy (gah x Tl &) — oy (6 2 T - ) <—d @ - F)D 0 (19)
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forall x’, X € X'. In order to prove (19), we put

Fi(g.xt,x) = / Fimq (. x x ) ().
M

By Assumption 2.8(iii), the directional derivativé] (¢, x', x~'; x' — £%) of the mapx’
Fi(g,x, x71) at (&, x) in the directionx’ — %! exists and satisfies
2

!Fi(&,xi,x_i;xi —)?i) — Fi(é,fi,x_i;xi —)?i)| < uizi’i(é)”xi —£i|‘i.
SinceUi (&, -, x 1) is ! (£)-concave orX' we have

2

it

U{(E,xi,x_i;xi —)?i) - U{(E,)?i; x 7l xt —)?i) < —ai(E)Hxi — 5t

Thus, the concavity condition (19) is satisfied #f— g')a’ (§) > Biul L (£). This, how-
ever, as well as inty &' (§) > O follows from the MSI condition.

(i) Since an agent’s utility function is strongly concave with respect to his own action,
his conditional best reply given the choices of his competitors is uniquely determined.
To establish the quantitative bound (17) on the dependence of playest reply on the
behavior of all the other agents, we fix a playe# i and action profiles ~' andy ! which
differ only at the jth coordinate. Under the assumptions of Theorem 2.10 the directional
derivativeUi’f(g,xi,x—i; h') of the mapx! — U™/ (g, x%, x~%) at (&, x) in the direction
h' € H' satisfies

0 (6xx50) = U (el )
< |- FILIE) + FU T O o7 7] I

Thus, (17) follows from Theorem A.1. Our estimate (18) follows from similar considera-
tions.

(iii) The existence of an equilibrium in pure strategies for the static gampdollows
from strict concavity of the utility function&*>/ with respect to the player’'s own actions
along with compactness of the action spaces using standard fixed point arguments. Unique-
ness can be seen as follows: in view of the MSI condition,

R 1— BIVLIJ (&) + BiuiLivJ
Lzzsupz( p') ((5)(5)/3“ (§)<1

Thus, given the action profiles™ andy~ of playeri’s competitors, (17) yields
lg (6. x7) =gy (637, <Emard =] ;.

For x # y, we therefore obtain
max] g’ (& x ™) — g (&, y7) [ ; < max|x’ — '

Thus, the map +— (g} (&, x—"))ll\’ has at most one fixed point. This proves uniqueness of
equilibriain X ;.
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(iv) Let g/ (¢£) be an equilibrium. Theg’}(é) = g}(é, {g}@)}j#), and so

G RG] N ARG R R AR PAC IS
+ g (6 {e7 ) ) — g (€2 87 G) )],
<Imaxgj(n) — gh@)]; + Llle— &zl

This yields

. . L
| g0 — g &), < 76— &allw,

and so the equilibrium mapping: : M — X is Lipschitz continuous which a constant that
does not depend on the average continuation function

(v) In order to prove the last assertion we §ix M andx~' € X' and apply Theo-
rem A.1 to the map

(xi, f) = Ui’f(é,xi,x_i).
Due to Assumption 2.8(i) we have for gl g € B, (M, R") that

U3 (%' x hT) = U2 (6, %7 x 7T h)| < BN L — falloo B
and so Theorem A.1 shows that

i’

i —i i —i B
”gfl(s’x )_gfz(é’x )”igm”fl_]%”oo-

Thus, similar arguments as in the proof of (iii) yield the assertion.

The previous lemma allows us to discuss the connection betwedviadarate Social
Influenceassumption and the monotonicity conditions in Curtat (1996) in greater detail.
Basically, Curtat (1996) assumes tiitand M are compact intervals, and that the transi-
tion law Q (&, x; -) has “doubly stochastically increasing differences end&.” Inter alias
this means that, for any increasing functipnM — R, the map

XH/f(n)q(E,x,n)V(dn) (20)

has doubly increasing differencesirandé. Thus, there is a Lipschitz continuous function
¢ :R — R such that the map

s f Fma(E. @)1 x: dn)v(dn) (21)

has increasing differences inand&. Here1 denotes the vectai, 1, ..., 1) in RVN. For

the proof of Theorem 4.2 in Curtat (1996) it is now essential that the Lipschitz continuous
“change of variables® can be chosen independently ofIn his Theorem 2.4, this author
essentially shows that a sufficiently smooth functionX x R — R has doubly increasing
differences, if and only if it has increasing differencesximnd & and if it satisfies the
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diagonal dominance condition

. 9%F 32F
! = <
fx: 92xi + Z axioxi

J#i

Applied to the map defined by (20), such a diagonal dominance condition holds uniformly
in f, if the densities depend linearly on the players’ actions as in (8) above. However,
we are unaware of any general method that allows us to verify Curtat's condition in more
general settings without explicitly specifying the law of motion. This motivated our MSI
condition.

5. Proofs of the main results

This section proves Theorem 2.10 and Corollary 2.13. In a first step we establish the ex-
istence of a Lipschitz continuous Nash equilibrium $ounder the additional assumption
thatM c H is compact. For the average continuation functfoa B, (M, R"), we denote
by g 7 (¢) the unique equilibrium in the one-shot gathe, and introduce an operat@ron
Bu(M,RY) by

(THE =1-p)YU (5, 7)) + B f Frq(&, g &), n)u(dn). (22)
M

Assume thafl has a fixed pointF. A standard argument in discounted dynamic program-
ming shows that the action profilg- (§) is an equilibrium in the non-zero sum stochastic
gameX. The equilibrium payoff to player € I is given by Fi (£)/(1 — '), and the map
gr .M — X is Lipschitz continuous, due to Lemma 4.1.

In order to prove Theorem 2.10 it is therefore enough to establish the existence of a
fixed point of the operatdrF. To this end, we will need the following basic propertiegof

Lemma 5.1. Under the assumptions of Theor@mOthe following holds

(i) Forall f e B,(M,RY), the mapping — (Tf)(&) is Lipschitz continuous.
(i) The operatorT is continuous in the sense thah,, . ||Tf — T f,llco = O Whenever
iMoo llf = falloo =0.

Proof. (i) It follows from Lipschitz continuity of the utility functions and the densities that
[(Tf) (€D — (TH E)|<[(1—B)L+ B Lu']
x (61— &2llm + | g5 (D) — 85 €D ,,)- (23)
Thus, Lipschitz continuity of the mapping — g(&) yields Lipschitz continuity
of (Tf):.

(ii) In order to prove continuity of7 in the topology of uniform convergence, we
fix functions f, € B,(M,RY) that converge uniformly tof. Lemma 4.1(v) yields
lim,—oo g, — &7lloo = 0. Thus, Lipschitz continuity of the reward functions and the
densities gives us
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[(Tf) (&) = (T E)| < (1= B)LlIgs, — &rlloo
B = oo +u L8 s — 85 lloo}
and so
lim |7 fy = Tflloo = 0.

This finishes the proof. O

Let L, be the common Lipschitz constant of the maps M — X and define
L*:=max{[(1—B')L+ B Lu'|(1+ Ly): i e I}.

We introduce the clas8(L*, u) of all functions f € B, (M, R") which are Lipschitz con-
tinuous with constant*. For f € L(L*, u) we obtain from Lemma 5.1(i) that

|Tfi (&) — Tfi(E2)| < L*||E1 — &2llm-

Thus, T maps the sef(L*, u) continuously into itself. We are now ready to prove the
main result of this section.

Proof of Theorem 2.10. Due to the theorem of Arzela and Ascoli, the convex&@gt*, u)

is compact with respect to the topology of uniform convergence. Since the opEnataps
to setL(L*, u) continuously into itself, it has a fixed poift* by Schauder’s theorem, and
gr+ Is a Lipschitz continuous equilibrium of the non-cooperative stochastic game

Before we prove the existence result for Lipschitz continuous equilibria in non-
cooperative stochastic games with unbounded state spaces, we recall the following:

Lemma 5.2. Let {F,} be a sequence of real-valued continuous functiondfothat con-
verges toF : M — R uniformly on bounded sets. Lét,} be a sequence of probability
measures that converges weaklytolf sup, || F, || < 00, then

lim /Fndu,,:/de,.
n—od

Proof. Sincew, — n weakly, we havel F du, — [ F du asn — oo. Moreover, by Pro-
horov’s theorem (Breiman, 1968) there exists, for each0, a compact sek such that
wn(K) > 1— €. Thus, for all sufficiently large € N we obtain

Jronfra

<‘/(F—Fn)dun

+‘/F(d//‘n_dﬂ)‘

< 25Upl| Fy lloortn (K€) + ‘ / (F — F)dyun| + ‘ / F(dutn — dm'
K
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< 28Up| Fy lloc€ + SUP| Fy (x) — F(x)| +¢
n xeK
< 2¢(supl| Fylloo + 1).
n
This proves the assertion because, U, |- < oo and because > 0 is arbitrary. O
We are now ready to prove Corollary 2.13.

Proof of Corollary 2.13. Let7,,: B,(M,,RY) — B,(M,,RY) be defined by

(T ) &) =(1-B)U (5, g,) + B / £ man (€, g7, ), n)p(dn).
Mll

Here, gy, (£) denotes the unique equilibrium in the one-shot gaine with average con-
tinuation functionf, € B, (M,, R") and densitieg, . Let F,, be a fixed point off},. Due to
our Lemmas 4.1 and 5.1, the mappings : M,, — X andF, : M, — R (n e N) are Lip-
schitz continuous with common Lipschitz constants. In particular, the seqi@ng¢eF,)}
is equicontinuous, and so the theorem by Arzela and Ascoli yields a subsequgnaad
Lipschitz continuous functions : M — R andg: M — X such that

lim |F,, (&)= F(&)|=0 and lim|gg, (¢§)—g&)|=0
k—00 k—o00
uniformly on compact sets

Since the utility functions are uniformly bounded, weak convergence of the sequence of
probability measurefu,, (€, x; -)} defined in (14) tqu(§, x; -) yields

Jm [ F o €. 5, @n)udn = [ Fina (e 2@, n)c.
H H
due to Lemma 5.2. We deduce that

Fi&) =(1-B)U'"(t.86)+p / F'(mq(&, g&), n)u(dn).
H

Itis easily seen that(&) is an equilibrium in the one-shot gamig- with densities;. Thus,
g is a Lipschitz continuous Nash equilibrium of the stochastic garmeith unbounded
state space. O

6. Conclusion

We established existence of Lipschitz continuous equilibria in stationary strategies for
a class of stochastic games with weakly interacting players. Unlike the method in Curtat
(1996), our proof did not need Topkis’ (1978) monotonicity theorem. This allowed us to go
beyond the class of supermodular games analyzed in Amir (1996) and Curtat (1996). In-
stead, our approach was based on an extension dddlderate Social Influenceondition
in Glaeser and Scheinkman (2000) to dynamic games. We reduced the dynamic decision
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problem to a static game through the introduction of average continuation functions in or-
der to view an agent’s decision problem as a parameter dependent optimization problem.
Using a result by Montrucchio (1987), we proved that the optimization problems have op-
timal solutions that are Lipschitz continuous functions of the parameters. Combining these
results with our weak interaction condition, we showed that the reduced one shot game has
a unique equilibrium that is Lipschitz continuous in the state variable. Since the Lipschitz
constant could be chosen independently of the specific average continuation function, the
existence of Lipschitz continuous equilibria could be established using standard results
from the theory of dynamic programming. For the case of compact state spaces we also
proved existence of ergodic equilibria. Our results provide a general framework for ana-
lyzing dynamic models of non-market interactions.

Several avenues are open for future research. Firstly, our goal was to provide a general
and flexible mathematical framework within which existence of continuous equilibria can
be shown. But it is clearly desirable to weaken Maderate Social Influenogondition by
analyzing special classes of stochastic games where the set of average continuation func-
tions can a priori be restricted to a proper subse®afM, RV). In such a situation, much
weaker conditions may actually apply. Secondly, there is no reason to expect uniqueness of
equilibria. For the dynamic growth model studied in Section 3.2 this means that the econ-
omy may well get stuck in an inefficient equilibrium. In general it would be interesting to
study welfare properties of different equilibria in the context of specific models. Thirdly,
the class of local interaction games analyzed in Section 3.1 should be generalized to games
where an agent'’s utility does not only depend on his current action, but also on past choices
as in Bisin et al. (2002). Such a situation cannot be analyzed by our method.
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Appendix A. «-concavity and parameterized optimization problems

In this appendix we recall the notion afconcave functions and a characterization of
a-concavity in terms of partial derivatives. We also recall a result on Lipschitz continu-
ous dependence of solutions on parameterized optimization problems, due to Montrucchio
(1987). ThroughoutY denotes a convex subset of a Hilbert spaeanda > 0.

A function f: Y — R is calleda-concavef the mapy — f(y) + %oz||y||2 is concave
onY. In the differentiable case, there are simple criteria to verifyoncavity. For example,
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if f is concave and twice differentiable on an openrgetontainingy’, then f is «-concave
whenever

|y D?f(y1)y| > ally|® forally; € Yrandy €Y.

A twice differentiable functionf : [a, b] — R is a-concave if f”/ < —a. More generally,
a-concavity can be characterized in terms of directional derivatives.

To this end, recall that a finite functiofi: ¥ — R is called differentiable at € Y in the
feasible directiorh € H if y +th € Y for somer > 0 and if the limit

"(y; h ~—Iim1 h
(s ).—tw;(f(y+t )= f()

exists and is finite. The map is called differentiable if it is differentiable at afl€ Y in
all feasible directiong: € H. By Propositions 4.8 and 4.12 in Vival (1983), a finite and
differentiable functionf is a-concave if and only if

f is Lipschitz continuous and
£ 1y —y2) — /(2 y1— y2) < —erlly1 — y2ll?. (A.1)
The proof of our main theorem uses the following results which appears as Theorem 3.1
in Montrucchio (1987).

Theorem A.1. Let X be a closed and convex subset of some Hilbert spHgg| - ||1) and
let Y be a convex subset of a normed spégk, || - ||2). Let F: X x Y — R be a finite
function which satisfies the following conditiochs

(i) Forall y eY,the mapx — F(x,y) is a-concave and upper-semicontinuousXn
(i) For all feasibleh € H, the directional derivativeF;(x, y; k) of F at (x, y) in the
direction’ satisfies the Lipschitz continuity condition

| Fi(x, y15 h) — F1(x, y2: b)| < Llly1 — y2ll2llhll1
forall y1,y2eY andallx € X.

Under the above assumptions there exists a uniquedndp— X that satisfiesup, .y =
F(x,y)=F((y),y). Moreoverg is Lipschitz continuous and

L
|0(y1) —0(y2)| < E”)’l —y2ll2

forall y1,y2 €Y.
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