
The Annals of Applied Probability
2022, Vol. 32, No. 1, 80–123
https://doi.org/10.1214/21-AAP1672
© Institute of Mathematical Statistics, 2022

PORTFOLIO LIQUIDATION UNDER FACTOR UNCERTAINTY

BY ULRICH HORST1, XIAONYU XIA2 AND CHAO ZHOU3

1Department of Mathematics, and School of Business and Economics, Humboldt-Universität zu Berlin,
horst@math.hu-berlin.de

2Department of Mathematics, Wenzhou University, xiaonyu.xia@gmail.com
3Department of Mathematics, City University of Hong Kong, chaozhou@cityu.edu.hk

We study an optimal liquidation problem under the ambiguity with re-
spect to price impact parameters. Our main results show that the value func-
tion and the optimal trading strategy can be characterized by the solution
to a semilinear PDE with superlinear gradient, monotone generator and sin-
gular terminal value. We also establish an asymptotic analysis of the robust
model for small amounts of uncertainty and analyze the effect of robustness
on optimal trading strategies and liquidation costs. In particular, in our model
ambiguity aversion is observationally equivalent to increased risk aversion.
This suggests that ambiguity aversion increases liquidation rates.

1. Introduction. Starting with the work of Almgren and Chriss [1] optimal portfolio
liquidation strategies under various market regimes and price impact functions have been an-
alyzed by many authors. Single player models have been analyzed by [3, 7, 25–27, 31, 39]
among many others; multiplayer models were analyzed in, for example, [6, 22, 30]. From a
mathematical perspective, the main characteristic of optimal liquidation models is the singu-
lar terminal condition of the value function that is induced by the liquidation constraint. The
singularity becomes a major challenge when determining the value function and applying
verification arguments.

In this paper, we study a class of Markovian single-player portfolio liquidation problems
where the investor is uncertain about the factor dynamics driving trading costs. The liquida-
tion problem leads to a stochastic control problem of the form

(1.1) inf
ξ

sup
Q∈Q

(
EQ

[∫ T

0
η(Ys)|ξs |p + λ(Ys)|Xs |p ds

]
− ϒ(Q)

)

subject to the state dynamics

dYt = b
(
Yt

)
dt + σ

(
Yt

)
dWt, Y0 = y,

dXt = −ξt dt, X0 = x
(1.2)

and the terminal state constraint

(1.3) XT = 0,

where ξ denotes the trading rate, X denotes the portfolio process, Y denotes a factor process
that drives trading costs and Q is a set of probability measures that are absolutely continuous
with respect to a benchmark measure P. The functions η and λ specify the instantaneous
market impact from trading and the market risk of a portfolio holding, respectively. Instead
of restricting the set of probability measures ex ante, we add a penalty term ϒ(Q) to the
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objective function. This approach was first introduced by Hansen and Sargent [28] and has
since become a popular approach in both the economics and financial mathematics literature
when analyzing optimal decision problems under model uncertainty.

The benchmark case where Q contains a single element has been analyzed in [27, 29]. In
this case, the value function can be described in terms of the unique nonnegative viscosity
solution of polynomial growth of a semilinear PDE with singular terminal value. The proof
is based on an asymptotic expansion of the solution around the terminal time that shows that
the value function converges to the instantaneous impact factor at the terminal time when
properly rescaled.

If Q contains more than one element, then the investor is uncertain about the dynamics of
the factor process. For instance, the process η(Yt ) may be viewed as describing the inverse
market depth, whose dynamics the investor may not be able to specify correctly. The market
risk factor λ(Yt ), on the other hand, can be linked to the volatility of the reference price
process. If the price dynamics follows a stochastic volatility model, then factor uncertainty
amounts to uncertainty about the volatility of the reference price.

Under factor uncertainty, additional regularity assumptions on the penalty function ϒ(Q)

are required to guarantee that the optimization problem is tractable analytically. In order
to guarantee analytical tractability, we follow an approach that had first been introduced
by Maenhout [35] when analyzing a class of portfolio allocation models for Merton-type
investors under model uncertainty.1 Specifically, we consider penalty functions with state-
dependent ambiguity aversion parameters that satisfy a scaling property corresponding to ho-
mothetic preferences. The assumption of homothetic preferences does not only facilitate the
mathematical analysis but it also has a clear economic implication. Our model with ambiguity
aversion is observationally equivalent to a model without ambiguity aversion but increased
risk aversion. An approach that is similar in spirit to the ones in [35] and in this paper has
been followed by Björk et al. [9]. They studied an equilibrium model with mean-variance
preferences and a (state-dependent) dynamic risk aversion parameter that is inversely propor-
tional to wealth. For their choice of risk aversion, the equilibrium monetary amount invested
in the risky asset is proportional to current wealth.

Under our scaling property on the penalty function, we prove that the value function to our
control problem can be characterized by the solution to a semilinear PDE with superlinear
gradient, monotone generator and singular terminal value. Our first main result is to show
that this PDE admits a unique nonnegative viscosity solution of polynomial growth under
standard assumptions on the factor process and the cost coefficients. Many authors including
[4, 5, 13] studied the Lipschitz and Hölder regularity of viscosity solutions. In our setting,
Hölder continuity and even C0,1-regularity of the value function is not sufficient to guarantee
admissibility of our martingale measure control. A particular asymptotic behavior of both the
value function and its gradient at the terminal time is key to carry out the verification argu-
ment. Our second main result guarantees that, under an additional assumption on the penalty
function and an additional boundedness condition on the market impact term, the viscosity
solution to the HJB equation is of class C0,1 and that both the solution and its derivative have
the desired asymptotic behavior at the terminal time. The proof is based on an asymptotic
expansion of the solution near the terminal time as in [27, 29]. The difficulty is that now not
only the value function but also its derivative needs to converge to the market impact term,
respectively its derivative when properly rescaled. The precise asymptotic behavior of the
solution allows us to obtain not only the optimal trading strategy but also the least favor-
able martingale measure in feedback form. It also allows us to establish our third main result,

1The approach has been adapted by many authors, including [11, 18, 21, 36, 43], partly due to its analytical
tractability but also due to the “embedded” equivalence between ambiguity and risk aversion.



82 U. HORST, X. XIA AND C. ZHOU

namely a first order approximation of both the value function and the optimal trading strategy
in terms of the solution to the benchmark model without uncertainty. The result shows that we
can approximate the optimal strategy in a model with small uncertainty parameter in terms of
the optimal strategy of the benchmark model and the first-order approximation of the value
function. As a byproduct, we show that our model with factor uncertainty is observationally
equivalent to a model without factor uncertainty but increased market risk. This suggests that
factor uncertainty increases the rate of liquidation.

To the best of our knowledge, only few papers have studied the optimal liquidation problem
under model uncertainty. Nyström et al. [37] and Cartea et al. [14, 15] considered problems
of optimal liquidation with limit orders for a CARA, respectively a risk-neutral investor.
In [37] it is assumed that the investor is uncertain about both the drift and the volatility of
the underlying reference price process. They show that uncertainty may increase the bid-
ask spread and hence reduce liquidity. In [14, 15], the investor is uncertain about the arrival
rate of market orders, the fill probability of limit orders and the dynamics of the asset price.
They show that ambiguity aversion with respect to each model factor has a similar effect on
the optimal strategy, but the magnitude of the effect depends on time and inventory position
in different ways depending on the source of uncertainty. In both papers, strict liquidation
is not required; instead open positions at the terminal time are penalized. This avoids the
mathematical challenges resulting from the singular terminal value.

Lorenz and Schied [33] studied the drift dependence of optimal trade execution strate-
gies under transient price impact with exponential resilience and strict liquidation constraint.
They find an explicit solution to the problem of minimizing the expected liquidation costs
when the unaffected price process is a square-integrable semimartingale. Later, Schied [42]
analyzed the impact on optimal trading strategies with respect to misspecification of the law
of the unaffected price process in a model, which only allows instantaneous price impact.
Both papers studied the dependence of optimal liquidation strategies on model dynamics but
did not consider the resulting robust control problem. Bismuth et al. [8] considered a portfo-
lio liquidation model for a CARA investor that is uncertain about the drift of the reference
price process but did not require a strict liquidation constraint. They do not consider a robust
optimization problem either but dealt with the uncertainty by a general Bayesian prior for
the drift, which allows them to solve the problem by dynamic programming techniques. All
three papers focused on misspecification of the reference price process and assumed that the
market impact parameters are known. Our model is different; we analyze the effect of uncer-
tainty about the model parameters, for example, the market depth that we consider the most
important impact factor.

In a recent paper, Popier and Zhou [40] analyzed the optimal liquidation problem under
drift and volatility uncertainty in a non-Markovian setting and characterized the value func-
tion by the solution of a second-order BSDE with monotone generator and singular terminal
condition. In contrast to [40], we focus on the drift uncertainty about the factor model and add
a penalty function in the spirit of convex risk measure theory. We also obtain much stronger
regularity properties of the value function, which allows us to study the effect of uncertainty
on optimal trading strategies and costs in greater detail.

The remainder of this paper is organized as follows. In Section 2, we describe the mod-
elling set-up, introduce the stochastic control problem and state our main results. The exis-
tence of viscosity solution to the HJBI equation is established in Section 3; the regularity
of the viscosity solution is proved in Section 4. The verification argument is carried out in
Section 5. Finally, Section 6 is devoted to an asymptotic analysis of the value function as well
as the optimal trading strategy for small amounts of uncertainty.

Notation and notational conventions. We put

〈y〉 := (
1 + |y|2)1/2

.
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Let I be a compact subset of R. We denote by Cb(R
d),Cb(I × R

d) the spaces of bounded
continuous functions on R

d , respectively, I ×R
d . For a given n ≥ 0, we define Cn(R

d) (resp.,
Cn(I ×R

d)) to be the set of functions φ ∈ C(Rd) (resp., C(I ×R
d)) such that

ψ := φ(y)

1 + |y|n ∈ Cb

(
R

d) (
resp. ψ := φ(t, y)

1 + |y|n ∈ Cb

(
I ×R

d)).

A function φ belongs to USCn(I × R
d) (or LSCn(I × R

d)) if it has at most polynomial
growth of order n in the second variable uniformly with respect to t ∈ I and is upper (lower)
semicontinuous on I × R

d . We denote by C1
b(Rd) the set of all functions φ : Rd → R

which are bounded, continuous and continuously differentiable with bounded first deriva-
tive. C0,1(I ×R

d) denotes the set of all functions φ : I ×R
d → R, which are continuous and

continuously differentiable with respect to the second variable on I ×R
d .

We denote by L∞
F (0, T ;Rd) the set of progressively measurable R

d -valued processes that
are essentially bounded. The spaces L

q
F (0, T ;Rd),H

q
F (0, T ;Rd) denote the sets of all pro-

gressively measurable R
d -valued processes (Zt )t∈[0,T ] satisfying that E[∫ T

0 |Zt |q dt] < ∞,
E[(∫ T

0 |Zt |2 dt)q/2] < ∞, respectively; the subset of processes with continuous paths satis-
fying E[supt∈[0,T ] |Zt |q] < ∞ is denoted by Sq

F (	;C([0, T ];Rd)). Whenever the notation
T − appears in the definition of a function space, we mean the set of all functions whose
restrictions satisfy the respective property when T − is replaced by any s < T , for example,

Cn

([
0, T −]×R

d)= {
u : [0, T ) ×R

d → R : u|[0,s]×Rd ∈ Cn

([0, s] ×R
d) for all s ∈ [0, T )

}
.

Throughout, all equations and inequalities are to be understood in the a.s. sense. We adopt
the convention that C is a constant that may vary from line to line and the operator D denotes
the gradient with respect to the space variable.

2. Problem formulation and main results. Let T ∈ (0,∞) and let (	,F, (Ft )t∈[0,T ],
P) be a filtered probability space that satisfies the usual conditions and carries an d̃-
dimensional standard Brownian motion W and an independent one-dimensional standard
Brownian motion B .

In this paper, we consider the problem of a large investor that needs to liquidate a given
portfolio x ∈ R within the time horizon [0, T ]. Let t ∈ [0, T ) be a given point in time and
x ∈ R be the portfolio position of the trader at time t . We denote by ξs ∈ R the rate at which
the agent trades at time s ∈ [t, T ). Given a trading strategy ξ , the portfolio position at time
s ∈ [t, T ) is given by

Xs = x −
∫ s

t
ξr dr, s ∈ [t, T ]

and the liquidation constraint is

(2.1) XT = 0.

In what follows, we assume that all trading costs are driven by a factor process given by the
d-dimensional Itô diffusion{

dY t,y
s = b

(
Y t,y

s

)
ds + σ

(
Y t,y

s

)
dWs, s ∈ [t, T ],

Y
t,y
t = y.

Our goal is to analyze the impact of uncertainty about the factor dynamics on optimal
liquidation strategies and trading costs.
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2.1. The benchmark model. In this section, we briefly recall the liquidation model with-
out factor uncertainty analyzed by Graewe et al. [27] against which our results shall be
benchmarked. Following [27], we assume that the investor’s transaction price Ps ∈ R at time
s ∈ [t, T ] can additively decomposed into a fundamental asset price P̃s and an instantaneous
price impact term f (ξs) as

Ps = P̃s − f (ξs),

where the fundamental asset price process P̃ is given by a one-dimensional square-integrable
Brownian martingale, which we assume to be of the form2

dP̃s = σ̃
(
Y t,y

s

)
dBs

for some function σ̃ . The investor aims at minimizing the difference between the book value
of the portfolio and the expected proceeds from trading plus risk cost. We assume that the
instantaneous impact factor is given by f (ξs) = η(Y

t,y
s )|ξs |p−1 sgn(ξs) for some p > 1 and

some bounded function η that describes the inverse market depth and that the risk is measured
by the integral of the pth power of the value at risk of an open position over the trading period.
We assume furthermore that any admissible trading strategy ξ belongs to L

2p
F (t, T ;R). The

resulting cost functional is then given by

(2.2)

J (t, y, x, ξ) = book value − expected proceeds from trading + risk costs

= EP

[∫ T

t
η
(
Y t,y

s

)|ξs |p ds +
∫ T

t
Xs dP̃s +

∫ T

t
λ
(
Y t,y

s

)|Xs |p ds

]

= EP

[∫ T

t

(
η
(
Y t,y

s

)|ξs |p + λ
(
Y t,y

s

)|Xs |p)ds

]
,

where the last equality follows from the facts that X ∈ S2
F (	;C([t, T ];R)) and that P̃ is a

square-integrable martingale under P.
For each initial state (t, y, x) ∈ [0, T )×R

d ×R, the value function of the investor’s control
problem is defined by

(2.3) V0(t, y, x) := inf
ξ∈A(t,x)

J (t, y, x, ξ),

where the infimum is taken over the set A(t, x) of all admissible controls, that is, over all
the controls ξ that belong to L

2p
F (t, T ;R) and that satisfy the liquidation constraint (2.1).

Under suitable assumptions on the model parameters it was shown in [27, 29] that the
value function is given by V0 = v0|x|p and that the optimal trading strategy is given by

ξ∗
0 (t, y, x) = v0(t,y)β

η(y)β
x where β = 1

p−1 and where v0 is the unique nonnegative viscosity so-
lution of polynomial growth to the following PDE:

(2.4)

⎧⎨
⎩

−∂tv(t, y) −Lv(t, y) − F
(
y, v(t, y)

)= 0, (t, y) ∈ [0, T ) ×R
d,

lim
t→T

v(t, y) = +∞ locally uniformly on R
d

where

L := 1

2
tr
(
σσ ∗D2)+ 〈b,D〉, F (y, v) := λ(y) − |v|β+1

βη(y)β
.

2See Example 2.3 below for a stochastic volatility model with uncertainty about the driver of the volatility
process.
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2.2. The liquidation model under uncertainty. In order to analyze the impact of factor
uncertainty on optimal liquidation strategies, we introduce the class Q of all probability mea-
sures Q 	 P whose density with respect to the benchmark measure P is given by

dQ

dP
= E

(∫
t
ϑs dWs

)
T

, Q-a.s.

for some progressively measurable process ϑ satisfying that
∫ T
t |ϑs |2 ds < ∞,Q-a.s. Here,

E(M)t = exp(Mt − 〈M〉t
2 ) denotes the Doléans–Dade exponential of a continuous semimartin-

gale M .
Since our focus is on the impact of uncertainty about the factor dynamics on the optimal

trading rules, we assume that the Brownian motions B and W are independent. In this case,
the unaffected price process is still a square-integrable martingale under every probability
Q ∈ Q. In view of (2.2), we thus obtain the same form for the cost function for every given
probability Q in the set Q:

JQ(t, y, x, ξ) = EQ

[∫ T

t

(
η
(
Y t,y

s

)|ξs |p + λ
(
Y t,y

s

)|Xs |p)ds

]
.

Following a standard approach in optimal decision making under model uncertainty in-
troduced by Hansen and Sargent [28], we do not restrict the set of measures a priori but
add a penalty term to the objective function. Specifically, every probability measure Q ∈ Q
receives a penalty

ϒ(Q) := EQ

[∫ T

t

1

θ̂s

|ϑs |m ds

]
.

The nonnegative process θ̂ = (θ̂s) measures the degree of confidence in the reference model:
the larger the process, the less deviations from the reference model are penalized. The case
θ̂s ≡ 0 corresponds to the benchmark model without factor uncertainty. The case θ̂s ≡ θ̂ and
m = 2 corresponds to the entropic penalty function; see, for example, [2, 10].

To the best of our knowledge, Maenhout [35] was the first to propose a state-dependent
parameter θ̂ when considering the robust portfolio optimization problem of a power-utility
investor. He considered an uncertainty-tolerance parameter of the θ̂s = θ

W1−r
s

where θ is a

positive constant, Ws denotes the wealth of the investor at time s and r ∈ (0,1) denotes the
exponent in the power utility function. This choice of θ̂ essentially corresponds to scaling the
uncertainty-tolerance parameter by the value function. In his model, this leads to a solution
that is invariant to the scale of wealth and is amenable to a rigorous mathematical analysis.
Among other things, he found that for this choice of homothetic preferences the optimal
solution under model uncertainty is observationally equivalent to the optimal solution without
model uncertainty but increased risk aversion.

In our context, the approach of Maenhout [35] corresponds to the choice

θ̂s := θ

a|Xξ
s |p

and thus to the penalty functional3

ϒ(Q) := EQ

[∫ T

t

1

θ
a|ϑs |m

∣∣Xξ
s

∣∣p ds

]
,

3We may have ϒ(Q) = +∞ since Q is not equivalent but merely absolutely continuous with respect to P.
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where m ≥ 2, θ > 0. The constant a := (m−1)m−1

mm is chosen for analytical convenience; this
will become more clear in the following section. We thus model the costs associated with an
admissible trading strategy ξ and probability measure Q ∈ Q by

J̃ (t, y, x; ξ,ϑ) := EQ

[∫ T

t

(
η
(
Y t,y

s

)|ξs |p + λ
(
Y t,y

s

)∣∣Xξ
s

∣∣p − 1

θ
a|ϑs |m

∣∣Xξ
s

∣∣p)ds

]
.

We define the value function of the stochastic control problem for each initial state (t, y, x) ∈
[0, T ) ×R

d ×R as

(2.5) V (t, y, x) := inf
ξ∈A(t,x)

sup
Q∈Q

J̃ (t, y, x; ξ,ϑ).

We assume throughout that p > 1,m ≥ 2. Before presenting the main results, we first list
our assumptions on the factor process in terms of some positive constants c, C̄.

ASSUMPTION 2.1 (On the factor process).

(L.1) The drift function b :Rd →R
d is Lipschitz continuous and of linear growth, that is,

for each y, y′ ∈R
d ,∣∣b(y) − b

(
y′)∣∣≤ C̄

∣∣y − y′∣∣, ∣∣b(y)
∣∣≤ C̄

(
1 + |y|).

(L.2) The volatility function σ : Rd →R
d×d̃ is Lipschitz continuous and of linear growth,

that is, for each y, y′ ∈R
d , ∣∣σ(y) − σ

(
y′)∣∣≤ C̄

∣∣y − y′∣∣.
(L.3) The volatility function σ is uniformly bounded by C̄.
(L.4) The drift and volatility functions b,σ belong to C1 and σσ ∗ is uniformly positive

definite.

Next, we list conditions on the cost coefficients. Conditions (F.1) and (F.2) are required to
prove the existence of a viscosity solution to the HJB equation; the stronger condition (F.3)
is required to establish differentiability of the viscosity solution and the verification result.

ASSUMPTION 2.2 (On the cost coefficients).

(F.1) The coefficients η,λ,1/η : Rd → [0,∞) are continuous. Moreover, there exists a
constant k0 ∈ (0,1] such that for y ∈R

d ,

λ(y) ≤ C̄〈y〉(1−k0)m

and

c〈y〉(1−pk0)m ≤ η(y) ≤ C̄〈y〉(1−k0)m.

Let m̃ := (1 − k0)m.

(F.2) The function η is twice continuously differentiable, and ‖Lη
η

‖ ≤ C̄,‖|Dη|α+1

η
‖ ≤ C̄

where α := 1
m−1 .

(F.3) The function λ belongs to C1
b(Rd) and 0 < c ≤ η ≤ C̄.

The assumptions on the diffusion coefficients are standard. Assumption (F.1) states that
λ is of polynomial growth and that η can be bounded from below and above by polyno-
mial growth functions, whose order may be negative. Under this assumption, we have that
〈y〉m̃(β+1)/ηβ is of polynomial growth of order m. Conditions similar to (F.2) and (F.3) have
also been made in [29] and [27], respectively.
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EXAMPLE 2.3. The assumptions on the diffusion coefficients are satisfied for the two-
dimensional diffusion process Y = (Y 1, Y 2) given by

dY 1
t = −Y 1

t dt + dW 1
t and dY 2

t = μdt + σ dW 2
t .

The Ornstein–Uhlenbeck process Y 1 drives the market impact term while the arithmetic
Brownian motion Y 2 drives the market risk. Specifically, if we choose η = tanh(−Y 1) + 2,
then this process can be viewed as describing a stochastic liquidity process that fluctuates
around a stationary level. Moreover, for the stochastic volatility model

dP̃t = σ̃
(
Y 2

t

)
dBt

for the reference price process the instantaneous variance of the portfolio process is given by
σ̃ 2(Y 2

t )|Xt |2. Hence, if σ̃ is bounded and continuously differentiable with bounded derivative,
then λ := σ̃ 2 satisfies the preceding assumptions.

2.3. The main results. If all the processes ϑ take values in a compact set �, then all
probability measures Q in Q are equivalent to P. In this case, the dynamic programming
principle suggests that the value function satisfies the following Hamilton–Jacobi–Bellman–
Isaacs equation; cf. [20], Theorem 2.6,

−∂tV (t, y, x) −LV (t, y, x) − inf
ξ∈R sup

ϑ∈�

H(t, y, x, ξ,ϑ,V ) = 0,

(t, y, x) ∈ [0, T ) ×R
d ×R,

(2.6)

where H is given by

H(t, y, x, ξ,ϑ,V ) := 〈
σϑ, ∂yV (t, y, x)

〉− ξ∂xV (t, y, x) + c(y, x, ξ) − 1

θ
a|ϑ |m|x|p,

and

c(y, x, ξ) := η(y)|ξ |p + λ(y)|x|p.

In our case, the set of probability measures is not restricted a priori. This suggests to
characterize the value function (2.5) in terms of the solution to the modified HJBI equation

−∂tV (t, y, x) −LV (t, y, x) − inf
ξ∈R sup

ϑ∈Rd̃

H(t, y, x, ξ,ϑ,V ) = 0,

(t, y, x) ∈ [0, T ) ×R
d ×R.

(2.7)

Since the function H separates additively into two terms that depend on ϑ only and into two
terms that depend ξ only,

inf
ξ∈R sup

ϑ∈Rd̃

H(t, y, x, ξ,ϑ,V ) = sup
ϑ∈Rd̃

{〈
σϑ, ∂yV (t, y, x)

〉− 1

θ
a|ϑ |m|x|p

}

+ inf
ξ∈R

{−ξ∂xV (t, y, x) + c(y, x, ξ)
}
.

The structure of cost function suggests an ansatz of the form V (t, y, x) = v(t, y)|x|p . In this
case,

ϑ∗(t, y) := arg max
ϑ∈Rd̃

{〈
σϑ,Dv(t, y)

〉− 1

θ
a|ϑ |m

}

= θα(1 + α)
∣∣σ ∗(y)Dv(t, y)

∣∣α−1
σ ∗(y)Dv(t, y),

(2.8)
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and

ξ∗(t, y) := arg min
ξ∈R

{−pξv(t, y)|x|p−1 sgn(x) + η(y)|ξ |p}

= |v(t, y)|β
η(y)β

x,

(2.9)

where α = 1
m−1 , β = 1

p−1 . Thus,

inf
ξ∈R sup

ϑ∈Rd̃

H(t, y, x, ξ,ϑ,V ) =(H (
y,Dv(t, y)

)+ F
(
y, v(t, y)

))|x|p,

where

(2.10) F(y, v) := λ(y) − |v|β+1

βη(y)β
, H(y, q) := θα

∣∣σ ∗(y)q
∣∣α+1

.

Similar to the discussion in [27], Section 2.2, we expect the value function to be charac-
terized by the following terminal value problem:

(2.11)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−∂tv(t, y) −Lv(t, y) − H
(
y,Dv(t, y)

)− F
(
y, v(t, y)

)= 0

(t, y) ∈ [0, T ) ×R
d,

lim
t→T

v(t, y) = +∞
locally uniformly on R

d .

The problem reduces to the terminal value problem (2.4) in the absence of model uncertainty
(H = 0).

The following theorem guarantees the existence of a unique nonnegative viscosity solution
to this singular problem under conditions (L.1)–(L.3), (F.1), (F.2) and β > α, which corre-
sponds to m > p. The additional assumption β > α can also be found in [24] where the
authors study the entire solutions of a similar kind of elliptic equation. The proof is given in
Section 3.

THEOREM 2.4. Let m > p. Under Assumptions (L.1)–(L.3), (F.1) and (F.2), the singular
terminal value problem (2.11) admits a unique nonnegative viscosity solution v in

Cm̃

([
0, T −]×R

d),
where m̃ is introduced in condition (F.1).

Since the maximizer ϑ∗ in (2.8) depends on Dv, we expect the verification theorem to
require the candidate value function v to be of class C0,1. As it turns out, the verification
argument does not only require C0,1-regularity of v but also requires the gradient to have a
particular asymptotic behavior near the terminal time. In fact, we prove that uniformly in y

as t → T the function v satisfies

(T − t)1/βv(t, y) = η(y) + O
(
(T − t)1−α/β)

and

(T − t)1/βDv(t, y) = Dη(y) + O
(
(T − t)

1
2 −α/β).

Thus, under the additional assumption that β > 2α, which corresponds to m > 2p − 1, we
obtain that

lim
t→T

(T − t)1/βv(t, y) = η(y),

lim
t→T

(T − t)1/βDv(t, y) = Dη(y) uniformly on R
d .

(2.12)

The proof of the following theorem is given in Section 4.
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THEOREM 2.5. Let m > 2p − 1. Under Assumptions (L.1)–(L.4), (F.2)–(F.3), the unique
nonnegative viscosity solution v to the singular terminal value problem (2.11) belongs to
C0,1([0, T −] ×R

d) and satisfies the asymptotics (2.12).

The previously established regularity of the candidate value function is enough to carry
out the verification argument, which is proven in Section 5.

THEOREM 2.6. Let m > 2p − 1. Under Assumptions (L.1)–(L.4), (F.2)–(F.3), let v ∈
C0,1([0, T −]×R

d) be the nonnegative viscosity solution to the singular terminal value prob-
lem (2.11). Then the value function of the control problem (2.5) is given by V (t, y, x) =
v(t, y)|x|p , and the optimal control (ξ∗, ϑ∗) is given in feedback form by

ξ∗
s = v(s, Y

t,y
s )β

η(Y
t,y
s )β

X∗
s and

ϑ∗
s = θα(1 + α)

∣∣σ ∗(Y t,y
s

)
Dv

(
s, Y t,y

s

)∣∣α−1
σ ∗(Y t,y

s

)
Dv

(
s, Y t,y

s

)
.

(2.13)

In particular, the resulting optimal portfolio process (X∗
s )s∈[t,T ] is given by

(2.14) X∗
s = x exp

(
−
∫ s

t

v(r, Y
t,y
r )β

η(Y
t,y
r )β

dr

)
.

REMARK 2.7. The preceding results show that—as in [35]—the model with factor un-
certainty is equivalent to the benchmark model (2.2) when the market risk factor λ is replaced

λH := λ + H
(
y,Dv(t, y)

)
.

In particular, under model uncertainty the investor liquidates the asset at a faster rate.

We close this section with first-order approximations of the value function and the opti-
mal trading strategy for the model with uncertainty in terms of the solutions to the bench-
mark model without uncertainty. These results allow us to obtain the value function and op-
timal trading strategy based only on the benchmark model in the case of a small uncertainty-
tolerance parameter. We first state our approximation result for the value function. The proof
is given in Section 6.

THEOREM 2.8. Let m > 2p − 1. Let w = (T − t)1/βv and w0 = (T − t)1/βv0 where v0
denotes the value function of the benchmark model. Under Assumptions (L.1)–(L.4), (F.2)–
(F.3), we have that

(2.15) lim
θ→0

w − w0

θα
= w1,

on [0, T ] ×R
d , where w1 is a unique nonnegative solution to the PDE,

(2.16)

{−∂tv(t, y) −Lv(t, y) − f1
(
t, y, v(t, y)

)= 0, (t, y) ∈ [0, T ) ×R,

v(T , y) = 0, y ∈ R
d,

whose driver

f1(t, y, v) = ∣∣σ ∗Dv0
∣∣1+α

(T − t)1/β − (β + 1)v
β
0

βηβ
v + 1

β

v

(T − t)

depends on the solution to the benchmark model without factor uncertainty.
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FIG. 1. Relative error of the first-order approximation: value function.

Theorem 2.8 allows us to derive a first order approximation of the optimal trading strategy
under model uncertainty in terms of the solution to the benchmark model and the first-order
approximation to the value function.

COROLLARY 2.9. Let m > 2p − 1. Let v1 = w1
(T −t)1/β and let v0 and ξ0,∗ be the value

function and the optimal strategy in the benchmark model, respectively. Under Assumptions
(L.1)–(L.4), (F.2)–(F.3),

(2.17) lim
θ→0

ξ∗ − ξ0,∗

θα
= ξ̃ , locally uniformly on [t, T ),

where ξ̃ ∈ L∞
F (t, T ;R) is defined by

(2.18) ξ̃s := βξ0,∗
s

(
v1(s, Y

t,y
s )

v0(s, Y
t,y
s )

−
∫ s

t
v0
(
r, Y t,y

r

)β−1
v1
(
r, Y t,y

r

)
dr

)
, s ∈ [t, T ).

The dependence of the relative error ‖v−v0−θαv1
v

‖∞ of the first-order approximation for
the value function is shown in Figure 1. Parameters are chosen as

b(y) = −y, σ ≡ 1, η(y) = tanh(−y) + 2, σ (y) = e−y2
, p = 2,

m = 5, x = 1, y = 1, T = 1.

Figure 2 displays the expected relative error E[maxt∈[0,τ ] | ξ
∗
t −ξ

0,∗
t −θαξ̃t

ξ∗
t

|] for the trading
strategy where τ = 0.9. The simulations suggest that both the value function and the optimal
strategy are well approximated, even for relatively large uncertainty tolerance parameters
with the relative errors staying within a 5% range for θ ≤ 0.5. The reason we consider the
relative error for the trading strategy only away from the terminal time is the singularity that
arises in the absolute error and leads to the locally uniform convergence.

3. Viscosity solution. In this section, we prove Theorem 2.4. The proof uses modifi-
cations of arguments given in [29]. In a first step, we establish a comparison principle for
semicontinuous viscosity solutions to (2.11). Due to the terminal state constraint, we cannot
follow the usual approach of showing that if a l.s.c. supersolution dominates an u.s.c. subso-
lution at the boundary, then it also dominates the subsolution on the entire domain. Instead,
we prove that if some form of asymptotic dominance holds at the terminal time, then it holds
near the terminal time.
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FIG. 2. Relative error of the first-order approximation: trading strategy.

In a second step, we construct a smooth sub and a supersolution to (2.11) satisfying the
required assumptions. Using Perron’s method, we can then establish the existence of an upper
semicontinuous subsolution and of a lower semicontinuous supersolution, which are bounded
by the respective smooth solutions. In particular, the semicontinuous solutions can be applied
to the comparison principle. This establishes the existence of the desired continuous solution.

We start with the following comparison principle. The proof is given in Appendix B. We
emphasize that the comparison principle will only be used to prove the existence of a viscosity
solution. This justifies the rather strong assumptions (3.1) and (3.2) below.

PROPOSITION 3.1. Assume that Assumptions (L.1)–(L.3), (F.1) and (F.2) hold. Let
m̃ be as in condition (F.1). Fix δ ∈ (0, T ]. Let u ∈ LSCm̃([T − δ, T −] × R

d) and u ∈
USCm̃([T − δ, T −] × R

d) be a nonnegative viscosity super- and a viscosity subsolution to
(2.11), respectively. If, uniformly on R

d ,

(3.1) lim sup
t→T

u(t, y)(T − t)1/β − η(y)

〈y〉m̃ ≤ 0 ≤ lim inf
t→T

u(t, y)(T − t)1/β − η(y)

〈y〉m̃ ,

and

β

√√√√ 1
2β + 1

β + 1
η(y) ≤ u(t, y)(T − t)1/β,

u(t, y)(T − t)1/β ≤ C〈y〉m̃, t ∈ [T − δ, T ),

(3.2)

for a constant C, then

u ≤ u on [T − δ, T ) ×R
d .

We are now going to construct smooth sub and supersolutions to (2.11) that satisfy the
conditions (3.1) and (3.2) of the above proposition. The supersolution will be defined in
terms of the function

(3.3) ĥ(t, y) := L(T − t)〈y〉m̃,

where m̃ is introduced in condition (F.1), and where the constant L will be determined later.
Using the condition (F.1), we can find a constant C0 > 0 such that

−∂t ĥ(t, y) −Lĥ(t, y) − 2αθαC̄α+1∣∣Dĥ(t, y)
∣∣α+1 − λ(y)

≥ L〈y〉m̃ − C0L(T − t)〈y〉m̃ − C0L
α+1(T − t)α+1〈y〉m̃ − C0〈y〉m̃.

(3.4)
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Choosing L > 3C0 and then τ = 1
L

, we get that

(3.5) −∂t ĥ(t, y)−Lĥ(t, y)−2αC̄α+1∣∣Dĥ(t, y)
∣∣α+1 −λ(y) ≥ 0, (t, y) ∈ [T −τ, T )×R

d .

LEMMA 3.2. Suppose that Assumptions (L.1)–(L.3), (F.1) and (F.2) hold. Let ε := 1 −
α/β . There exist constants K > 0, δ ∈ (0, T ] such that

(3.6) v̌(t, y) := η(y) − η(y)‖Lη
η

‖(T − t)

(T − t)1/β

and

(3.7) v̂(t, y) := η(y) + η(y)K(T − t)ε

(T − t)1/β
+ ĥ(t, y)

are a nonnegative classical sub and supersolution to (2.11) on [T − δ, T ) ×R
d , respectively.

Furthermore, v̌, v̂ satisfy the conditions (3.1) and (3.2).

PROOF. In view of (F.2), the quantity ‖Lη
η

‖ is well defined and finite; hence δ0 :=
1/‖Lη

η
‖ > 0. It has been shown in [29] that v̌ is a subsolution to (2.11) on [T − δ0, T ) ×R

d

when H = 0. Since H is nonnegative, we know that v̌ is still a subsolution on [T −
δ0, T ) × R

d . We now verify that v̂ is a nonnegative classical supersolution to (2.11) on
[T − δ1, T ) ×R

d for small δ1. To this end, we first obtain by a direct computation that

−∂t v̂(t, y) −Lv̂(t, y)

= −η(y) + K(1 − βε)η(y)(T − t)ε + βLη(y)(T − t)(1 + K(T − t)ε)

β(T − t)(β+1)/β

− ∂t ĥ(t, y) −Lĥ(t, y).

Assuming that Kδε
1 ≤ 1 and δ1 ≤ 1, we see that K(T − t)ε ≤ 1 and (T − t)1−ε ≤ 1 for

t ∈ [T − δ1, T ). Thus,

(3.8)
−∂t v̂(t, y) −Lv̂(t, y) ≥ −η(y) + K(1 − βε)η(y)(T − t)ε + 2βC̄η(y)(T − t)ε

β(T − t)(β+1)/β

− ∂t ĥ(t, y) −Lĥ(t, y).

Recalling the definition of H and F in (2.10),

(3.9)

−H
(
y,Dv̂(t, y)

)
≥ −2αθαC̄α+1 |Dη|α+1[1 + K(T − t)ε]α+1

(T − t)(1+α)/β
− 2αθαC̄α+1∣∣Dĥ(t, y)

∣∣α+1

≥ −2αθαC̄α+1
∥∥∥∥ |Dη|α+1

η

∥∥∥∥η(y)
[1 + K(T − t)ε]α+1

(T − t)(1+α)/β
− 2αθαC̄α+1∣∣Dĥ(t, y)

∣∣α+1

≥ −22α+1θαC̄α+2 η(y)

(T − t)(1+α)/β
− 2αθαC̄α+1∣∣Dĥ(t, y)

∣∣α+1
.

Applying Bernoulli’s inequality in the form (u + v + w)β+1 ≥ uβ+1 + (β + 1)uβv for
u, v,w ≥ 0 to the term |v̂(t, y)|β+1 in F , we obtain

(3.10) −F
(
y, v̂(t, y)

)≥ −λ(y) + η(y)β+1 + (β + 1)η(y)βη(y)K(T − t)ε

βη(y)β(T − t)(β+1)/β
.
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Hence, adding (3.8), (3.9) and (3.10) and using (3.5) yields

(3.11)

−∂t v̂(t, y) −Lv̂(t, y) − H
(
y,Dv̂(t, y)

)− F
(
y, v̂(t, y)

)
≥ η(y)

(1 + ε)K − 2C̄ − 22α+1θαC̄α+2

(T − t)(1+α)/β
,

−∂t ĥ(t, y) −Lĥ(t, y) − 2αθαC̄α+1∣∣Dĥ(t, y)
∣∣α+1 − λ(y)

≥ η(y)
(1 + ε)K − 2C̄ − 22α+1θαC̄α+2

(T − t)(1+α)/β
.

Choosing K ≥ 2C̄+22α+1θαC̄α+2

1+ε
and then δ1 = min{1, 1

L
, ε

√
1
K

}, we conclude that

−∂t v̂(t, y) −Lv̂(t, y) − H
(
y,Dv̂(t, y)

)− F
(
y, v̂(t, y)

)≥ 0, (t, y) ∈ [T − δ1, T ) ×R
d .

Next, we prove that v̌, v̂ satisfy the asymptotic behavior (3.1) and (3.2). Recalling the defini-
tion of v̌, v̂ and using the condition (F.1), we have

(3.12)
(T − t)1/β v̌(t, y) = η(y) + 〈y〉m̃O(T − t), uniformly in y as t → T ,

(T − t)1/β v̂(t, y) = η(y) + 〈y〉m̃O
(
(T − t)ε

)
, uniformly in y as t → T .

From this, we see that

(3.13)

lim
t→T

v̌(t, y)(T − t)1/β − η(y)

〈y〉m̃

= lim
t→T

v̂(t, y)(T − t)1/β − η(y)

〈y〉m̃ = 0 uniformly on R
d,

which verifies the condition (3.1). The upper bound in (3.2) can be obtained using the
condition (F.1) again. Moreover, for the lower bound in (3.2), choosing δ := min{δ0(1 −
β

√
1
2 β+1
β+1 ), δ1}, we have that for all (t, y) ∈ [T − δ, T ) ×R

d ,

v̂(t, y)(T − t)1/β ≥ η(y) ≥ v̌(t, y)(T − t)1/β = η(y) − η(y)

∥∥∥∥Lη

η

∥∥∥∥(T − t)

≥ β

√√√√ 1
2β + 1

β + 1
η(y). �

REMARK 3.3. Due to the presence of the gradient term H , an additional term (3.9) needs
to be dominated, and thus we make the choice that ε = 1 − α/β . If H = 0, we can choose
ε = 1 as in [29].

We are now ready to prove the existence result.

PROOF OF THEOREM 2.4. In order to apply Perron’s method, we set

S = {
u|u is a subsolution of (2.11) on [T − δ, T ) ×R

d and u ≤ v̂
}
.

Since v̌ ∈ S , the set S is nonempty. Thus, the function

v(t, y) = sup
{
u(t, y) : u ∈ S

}
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is well defined and satisfies that v̌ ≤ v. Classical arguments4 show that the upper semicontin-
uous envelope v∗ of v is a viscosity subsolution to (2.11). From [44], Lemma A.2, the lower
semicontinuous envelope v∗ of v is a viscosity supersolution to (2.11). Since v̌ ≤ v∗ ≤ v∗ ≤ v̂,
we have for all (t, y) ∈ [T − δ, T ) ×R

d that

β

√√√√ 1
2β + 1

β + 1
η(y) ≤ v∗(t, y)(T − t)1/β, v∗(t, y)(T − t)1/β ≤ C〈y〉m̃,

and

v̌(t, y)(T − t)1/β − η(y)

〈y〉m̃ ≤ v∗(t, y)(T − t)1/β − η(y)

〈y〉m̃ ≤ v∗(t, y)(T − t)1/β − η(y)

〈y〉m̃

≤ v̂(t, y)(T − t)1/β − η(y)

〈y〉m̃ .

Hence, it follows from (3.13) that

lim
t→T

v∗(t, y)(T − t)1/β − η(y)

〈y〉m̃ = lim
t→T

v∗(t, y)(T − t)1/β − η(y)

〈y〉m̃ = 0 uniformly on R
d .

From our comparison principle [Proposition 3.1], we can thus conclude that v∗ ≤
v∗ on [T − δ, T ) × R

d , which shows that v is the desired viscosity solution to (2.11) that
belongs to Cm̃([T − δ, T −] ×R

d).
Next, we find a sub and supersolution to (2.11) on [0, T − δ] × R

d with terminal value
v(T − δ, ·) at t = T − δ. Obviously, 0 is a subsolution of (2.11). We now conjecture that there
exists a constant L > 0 such that w := L〈y〉m̃ is a viscosity supersolution to (2.11). In fact,
since v ≤ v̂ at t = T − δ, we see that

v(T − δ, y) ≤ C̄

δ1/β
η(y) + 〈y〉m̃ ≤

(
C̄2

δ1/β
+ 1

)
〈y〉m̃, y ∈R

d .

Let h(y) := 〈y〉m̃. In view of the condition (F.1), we have that

−∂tw(t, y) −Lw(t, y) − H(y,Dw) − F
(
y,w(t, y)

)
≥ −LLh(y) − θαC̄α+1L

α+1|Dh|α+1 − λ(y) + L
β+1 h(y)β+1

βη(y)β

≥ h(y)

(
1

βC̄β
L

β+1 − C0L − C0L
α+1 − C0

)
,

where the constants C0 and C̄ are chosen as in (3.4) and (F.1), respectively. Choosing L large
enough, we have that

−∂tw(t, y) −Lw(t, y) − H(y,Dw) − F
(
y,w(t, y)

)
> 0.

Furthermore, wβ+1/ηβ is of polynomial growth of order m. Combining the general com-
parison principle [Proposition A.1] with Perron’s method, we obtain a viscosity solution
v ∈ Cm̃([0, T − δ] × R

d). From the comparison principle for continuous viscosity solutions
[Lemma A.3], we get a unique global viscosity solution v ∈ Cm̃([0, T −] ×R

d). �

4The standard Perron method of finding viscosity solutions for elliptic PDEs can be found in [16]. We refer to
[44], Appendix A, for the proof of this method for parabolic equations.
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4. Regularity of the viscosity solution. This section is devoted to the proof of Theo-
rem 2.5. We assume throughout that Assumptions (L.1)–(L.4) and (F.2)–(F.3) are satisfied
and that β > 2α. In this case, m̃ = 0 and the viscosity solution v obtained in the previous
section belongs to Cb([0, T −] ×R

d).
Unlike in [29], continuity is not enough to carry out our verification argument. We need

to prove that v is of class C0,1 and satisfies (2.12). The desired regularity of the viscosity
solution away from the terminal time can be established using classical PDE results or the
standard link between viscosity solutions and forward–backward SDEs once the desired reg-
ularity near the terminal time has been established. The key challenge is thus to prove that
there exists some δ > 0 such that for (t, y) ∈ [T − δ, T ) × R

d the gradient Dv(t, y) exists
and satisfies ∣∣Dv(t, y)

∣∣≤ C

(T − t)1/β
.

4.1. Regularity near the terminal time. In view of the definition of ε in Lemma 3.2, we
know that ε = 1 − α

β
∈ (1

2 ,1). Recalling the asymptotic behavior (3.12) of the super and
subsolution, the viscosity solution v constructed in the previous section is of the form

(4.1) v(T − t, y) = η(y) + ũ(t, y)

t1/β
,

for some function ũ that satisfies

ũ(t, y) = O
(
tε
)

uniformly in y as t → 0.

We choose the following equivalent ansatz:

(4.2) v(T − t, y) = η(y)

t1/β
+ u(t, y)

t1+1/β
, u(t, y) = O

(
t1+ε) uniformly in y as t → 0.

It is worth pointing out that if H = 0, we can choose ε = 1 in (4.1) and (4.2). Plugging
the asymptotic ansatz into (2.11) results in a semilinear parabolic equation for u with finite
initial condition. The proof of the following lemma is similar to [27], Lemma 4.1, and hence
omitted.

LEMMA 4.1. If, for some δ > 0,5 a function u satisfies

(4.3)
∣∣u(t, y)

∣∣≤ tη(y), (t, y) ∈ [0, δ] ×R
d,

and solves the equation

(4.4)

{
∂tu(t, y) = Lu(t, y) + F0

(
t, y, u(t, y),Du(t, y)

)
, (t, y) ∈ (0, δ] ×R

d,

u(0, y) = 0, y ∈R
d,

where

F0(t, y, u,Du) = tLη(y) + tpλ(y) − η(y)

β

∞∑
k=2

(
β + 1

k

)(
u

tη(y)

)k

+ θαtε
∣∣∣∣σ ∗(y)

(
Du

t
+ Dη

)∣∣∣∣α+1
,

then a local solution v ∈ C0,1([T − δ, T −] ×R
d) to problem (2.11) is given by

v(t, y) = η(y)

(T − t)1/β
+ u(T − t, y)

(T − t)1+1/β
.

5For convenience, we use here the same symbol as in Section 3. We can always choose the smaller one to define
δ.
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The case H = 0 has been solved under additional regularity assumptions in [27] using an
analytic semigroup approach. Due to the presence of H in our case, we need to choose ε < 1,
which renders the analysis more complex. In particular, the locally Lipschitz continuity in
[27], Lemma 4.5, no longer holds in our case. Instead, we solve equation (4.4) using the weak
continuous semigroup approach introduced in [19], Section 4, in order to obtain a solution in
a space of functions with the desired asymptotic behavior near the initial time.

In a first step, we introduce the transition semigroup. Under Assumptions (L.1) and (L.2),
the operator

Pt,s[ϕ](y) = E
[
ϕ
(
Y t,y

s

)]
, ϕ ∈ Cb

(
R

d),0 ≤ t ≤ s

is well defined and satisfies the Markov property Pt,r = Pt,sPs,r for 0 ≤ t ≤ s ≤ r . Since b

and σ are independent of the time variable,

Pt,s[ϕ](y) = P0,s−t [ϕ](y).

For convenience, we denote

Pt [ϕ](y) = E
[
ϕ
(
Y

0,y
t

)]
, ϕ ∈ Cb

(
R

d).
For every ϕ ∈ Cb(R

d),

(4.5)
∣∣Pt [ϕ](y)

∣∣≤ ‖ϕ‖, (t, y) ∈ [0, T ] ×R
d .

Furthermore, from [19], Theorem 4.65, we have the following proposition.

PROPOSITION 4.2. Suppose that Assumptions (L.1)–(L.4) hold and let ϕ ∈ Cb(R
d).

Then for every 0 ≤ t ≤ T , the function y → Pt [ϕ](y) is continuously differentiable on R
d .

Moreover, there exists a constant M > 0 such that for every ϕ ∈ Cb(R
d) and for 0 ≤ t ≤ T ,

(4.6)
∣∣DPt [ϕ](y)

∣∣≤ M

t1/2 ‖ϕ‖, y ∈R
d .

Next, we introduce the notion of a mild solution of our modified PDE.

DEFINITION 4.3. We say that a function u : [0, δ] × R
d → R is a mild solution of the

PDE (4.4) if the following conditions are satisfied:

(i) u ∈ C
0,1
b ([0, δ] ×R

d).
(ii) for every t ∈ [0, T ] and y ∈ R

d ,

(4.7) u(t, y) =
∫ t

0
Pt−s

[
F0
(
s, ·, u(s, ·),Du(s, ·))](y) ds.

We prove the existence of a mild solution to (4.4) by a contraction argument. To this
end, we need to choose an appropriate weighted norm on C

0,1
b ([0, δ] ×R

d) to cope with the
singularity in F0. Recalling the ansatz (4.2) and the property (4.6), we consider the space

(4.8) � := {
u ∈ C

0,1
b

([0, δ] ×R
d) : ∥∥u(t, ·)∥∥+ ∥∥t1/2Du(t, ·)∥∥= O

(
t1+ε) as t → 0

}
endowed with the weighted norm

‖u‖� = sup
(t,y)∈(0,δ]×Rd

( |u(t, y)|
t1+ε

+ |Du(t, y)|
t1/2+ε

)
.

It is easy to verify that the vector space � endowed with the norm ‖ · ‖� is a Banach space.
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LEMMA 4.4. Suppose that β > 2α and that Assumptions (L.1)–(L.4) and (F.2)–(F.3)
hold. Let R > 0 and δ ∈ (0, ε− 1

2
√

c/R ∧ 1]. Define the closed ball B�(R) := {u ∈ � : ‖u‖� ≤
R}. For every u ∈ B�(R), the function

f0(t, y) := F0
(
t, y, u(t, y),Du(t, y)

)
is continuous on [0, δ] ×R

d .

PROOF. For u ∈ B�(R), we may decompose f0(t, y) in the following way:

(4.9) f0(t, y) = tLη(y) + tpλ(y) − (p − 1)η(y)g0(t, y) + θαtεg1(t, y),

where

g0(t, y) =
∞∑

k=2

(
β + 1

k

)(
u(t, y)

tη(y)

)k

and g1(t, y) =
∣∣∣∣σ ∗(y)

(
Du(t, y)

t
+ Dη(y)

)∣∣∣∣α+1
.

The assumption δ ≤ ε− 1
2
√

c/R ∧ 1 guarantees that the series converges since∣∣∣∣u(t, y)

tη(y)

∣∣∣∣≤ t1+εR

tc
≤ δεR

c
≤ 1, (t, y) ∈ [0, δ] ×R

d .

Moreover,

(4.10)
∣∣∣∣Du(t, y)

t

∣∣∣∣≤ t
1
2 +εR

t
≤ δε− 1

2 R ≤ c, (t, y) ∈ [0, δ] ×R
d .

In view of (4.9), it is sufficient to prove that g0 and g1 are continuous in t , uniformly with
respect to y on every compact subset of Rd . In fact, by the mean value theorem, we have for
0 ≤ t ≤ s ≤ δ, y ∈ R

d that∣∣g1(t, y) − g1(s, y)
∣∣

≤
∣∣∣∣
∣∣∣∣σ ∗(y)

(
Du(t, y)

t
+ Dη(y)

)∣∣∣∣α+1
−
∣∣∣∣σ ∗(y)

(
Du(s, y)

s
+ Dη(y)

)∣∣∣∣α+1∣∣∣∣
≤ (α + 1)C̄α+1(c + C̄)α

∣∣∣∣Du(t, y)

t
− Du(s, y)

s

∣∣∣∣.
In order to establish the continuity of g0, notice that for every k ≥ 2 and 0 ≤ t ≤ s ≤ δ, y ∈ R

d

it holds that ∣∣∣∣
(

u(t, y)

tη(y)

)k

−
(

u(s, y)

sη(y)

)k∣∣∣∣
≤ 1

ck

∣∣∣∣u(t, y)

t
− u(s, y)

s

∣∣∣∣
k−1∑
l=0

∣∣∣∣u(t, y)

t

∣∣∣∣l
∣∣∣∣u(s, y)

s

∣∣∣∣k−1−l

≤ Rk−1

ck

∣∣∣∣u(t, y)

t
− u(s, y)

s

∣∣∣∣
k−1∑
l=0

tεlsε(k−1−l)

≤ kRk−1

ck

∣∣∣∣u(t, y)

t
− u(s, y)

s

∣∣∣∣s(k−1)ε

≤ k

c

(
Rsε

c

)k−1∣∣∣∣u(t, y)

t
− u(s, y)

s

∣∣∣∣.
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Using the identity k

(
β + 1

k

)
= (β + 1)

(
β

k − 1

)
, we get that

∣∣g0(t, y) − g0(s, y)
∣∣≤ (β + 1)max

{
2β − 1, β

}Rsε

c2

∣∣∣∣u(t, y)

t
− u(s, y)

s

∣∣∣∣.
The claim now follows from the fact that the maps (t, y) �→ u(t,y)

t
,

Du(t,y)
t

are continuous on
[0, δ] ×R

d . �

The following lemma can be established using similar arguments as above.

LEMMA 4.5. Suppose that β > 2α and that Assumptions (L.1)–(L.4) and (F.2)–(F.3)
hold. For every R > 0, there exists a constant L > 0 independent of δ ∈ (0, ε− 1

2
√

c/R] such
that ∣∣F0

(
t, y, u(t, y),Du(t, y)

)− F0
(
t, y, v(t, y),Dv(t, y)

)∣∣
≤ Ltε

( |u(t, y) − v(t, y)|
t

+ |Du(t, y) − Dv(t, y)|
t

)
,

u, v ∈ B�(R), (t, y) ∈ [0, δ] ×R
d .

We are now ready to carry out the fixed-point argument.

THEOREM 4.6. Let β > 2α. Under Assumptions (L.1)–(L.4) and (F.2)–(F.3), there exists
a constant δ > 0 such that equation (4.4) admits a mild solution u in the space � defined in
(4.8).

PROOF. Let us define the operator

(4.11) �[u](t, y) :=
∫ t

0
Pt−s

[
F0
(
s, ·, u(s, ·),Du(s, ·))](y) ds

STEP 1: THE MAP � IS WELL DEFINED ON THE CLOSED BALL B�(R). Let u ∈ B�(R).
By Lemma 4.4 and [19], Proposition 4.67,6 we see that �[u] ∈ Cb([0, δ] ×R

d) and D�[u] ∈
Cb((0, δ] × R

d). In order to see the continuity of D�[u] at t = 0, we differentiate (4.11) to
obtain that

(4.12) D�[u](t, y) =
∫ t

0
DPt−s

[
F0
(
s, ·, u(s, ·),Du(s, ·))](y) ds, (t, y) ∈ [0, δ] ×R

d .

By Proposition 4.2,

∣∣D�[u](t, y)
∣∣≤ ∫ t

0
M

‖f0‖
(t − s)1/2 ds = 2

√
tM‖f0‖.

From this, we conclude that the map (t, y) �→ D�[u](t, y) belongs to Cb([0, δ] ×R
d).

STEP 2: CONTRACTION PROPERTY OF � ON B�(R) FOR A SUITABLE CHOICE OF R,δ.
Let

B(a, b) :=
∫ 1

0
ra−1(1 − r)b−1 dr

be the Beta function with a, b > 0. We choose

R = 2(1 + MB0)
(‖Lη‖ + ‖λ‖ + θα

∥∥σ ∗Dη
∥∥α+1)

,

6The strong continuity in this proposition is equivalent to the standard continuity in finite-dimensional space.
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and

δ = min
{

ε− 1
2

√
c/R, ε− 1

2

√
1/
(
2L(1 + MB1)

)
,1
}
,

where L > 0 is the Lipschitz constant given by Lemma 4.5 and

B0 := B

(
1 + ε,

1

2

)
, B1 := B

(
2ε + 1

2
,

1

2

)
.

Let u, v ∈ B�(R). By Lemma 4.5, we have for (t, y) ∈ [0, δ] ×R
d that∣∣�[u](t, y) − �[v](t, y)

∣∣
=
∣∣∣∣
∫ t

0
Pt−s

[
F0
(
s, ·, u(s, ·),Du(s, ·))− F0

(
s, ·, v(s, ·),Dv(s, ·))](y) ds

∣∣∣∣
≤
∫ t

0

∥∥F0
(
s, y, u(s, ·),Du(s, ·))− F0

(
s, ·, v(s, ·),Dv(s, ·))∥∥ds

≤
∫ t

0
Lsε

(‖u(s, ·) − v(s, ·)‖
s

+ ‖Du(s, ·) − Dv(s, ·)‖
s

)
ds

=
∫ t

0
L

(
s2ε ‖u(s, ·) − v(s, ·)‖

s1+ε
+ s2ε−1/2 ‖Du(s, ·) − Dv(s, ·)‖

s1/2+ε

)
ds

≤ Lt2ε+1/2‖u − v‖�.

Similarly,∣∣D�[u](t, y) − D�[v](t, y)
∣∣

=
∣∣∣∣
∫ t

0
DPt−s

[
F0
(
s, ·, u(s, ·),Du(s, ·))− F0

(
s, ·, v(s, ·),Dv(s, ·))](y) ds

∣∣∣∣
≤ M

∫ t

0

1

(t − s)1/2

∥∥F0
(
s, y, u(s, ·),Du(s, ·))− F0

(
s, ·, v(s, ·),Dv(s, ·))∥∥ds

≤
∫ t

0
ML

1

(t − s)1/2

(
s2ε−1/2‖u − v‖�

)
ds

≤ MLB1t
2ε‖u − v‖�.

Hence
∥∥�[u] − �[v]∥∥� ≤ 1

2
‖u − v‖�.

STEP 3: � MAPS B�(R) INTO ITSELF. Note that sk ≤ 1 for all k > 0 and s ∈ [0, δ] since
δ ≤ 1. Hence, it holds for every t ∈ [0, δ] that

∣∣�[0](t, y)
∣∣= ∣∣∣∣

∫ t

0
Pt−s

[
F0(s, ·,0,0)

]
(y) ds

∣∣∣∣
≤
∫ t

0

∥∥sLη + spλ + θαsε
∣∣σ ∗Dη

∣∣α+1∥∥ds

≤ t1+ε(‖Lη‖ + ‖λ‖ + ∥∥σ ∗Dη
∥∥α+1‖)

and
∣∣D�[0](t, y)

∣∣= ∣∣∣∣
∫ t

0
DPt−s

[
F0(s, ·,0,0)

]
(y) ds

∣∣∣∣
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≤
∫ t

0

1

(t − s)1/2 M
∥∥sLη + spλ + θαsε

∣∣σ ∗Dη
∣∣α+1∥∥ds

≤ t1+ε−1/2MB0
(‖Lη‖ + ‖λ‖ + θα

∥∥σ ∗Dη
∥∥α+1)

.

Thus, ∥∥�[u]∥∥� ≤ ∥∥�[u] − �[0]∥∥� + ∥∥�[0]∥∥� ≤ R.

Hence, � is a contraction from B�(R) to itself and has a unique fixed point u in B�(R). �

4.2. Regularity away from the terminal time. In this section, we complete the proof of
Theorem 2.5. We also provide a standard link between our viscosity solution and a class of
singular FBSDEs that will be useful for proving the verification argument.

PROOF OF THEOREM 2.5. Combining Lemma 4.1 with Theorem 4.6, we know that there
exists a mild solution w ∈ C

0,1
b ([T − δ, T −] ×R

d) defined by

w(t, y) := η(y)

(T − t)1/β
+ u(T − t, y)

(T − t)1+1/β
on [T − δ, T ) ×R

d

to the equation (2.11). By [12], Theorem 15, this implies the existence of a solution w in the
space C

0,1
b ([0, T − δ] ×R

d) to the PDE

(4.13)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−∂tv(t, y) −Lv(t, y) − H
(
y,Dv(t, y)

)− F
(
y, v(t, y)

)= 0,

(t, y) ∈ [0, T − δ) ×R
d,

v(T − δ, y) = w(T − δ, y),

y ∈ R
d .

Altogether, this yields a solution w ∈ C
0,1
b ([0, T −] × R

d) to the PDE (2.11). Since u be-
longs to the space � defined in (4.8), it follows from the boundedness of Dη derived from
(F.2) and (F.3) and the fact that ε − 1

2 = 1
2 − α/β > 0 that w satisfies (2.12). Since v is a

viscosity solution to the PDE (2.11), we deduce from Lemma A.3 that v ≡ w on [0, T )×R
d .

Hence v satisfies the desired regularity properties. �

REMARK 4.7. Our global regularity result uses [12], Theorem 15, whose proof is based
on probabilistic arguments. Alternatively, one can use PDE arguments to obtain the existence
of a global smooth solution. Classical a priori estimates in [32] show that the gradient of v is
bounded if it exists. Under the additional assumption that the diffusion operator L generates
an analytic semigroup in C(Rd) (which excludes Ornstein–Uhlenbeck processes), one can
then use results established in [34], Chapter 7, to show that the solution to our HJB equation
is a classical solution away from the terminal time; see [27], Proof of Theorem 2.9, for details.

Since the gradient of the terminal condition of the PDE (4.13) is bounded, classical PDE
results show that the gradient of the solution is uniformly bounded on the entire domain
[0, T −δ]×R

d . The same result follows from the classical link between viscosity solutions to
PDEs and FBSDEs. The next result is standard, see [12], Theorem 15, and [41], Theorem 3.6,
for details. Both the FBSDE representation of our viscosity solution and the global gradient
bound will be very useful when proving the verification argument.

COROLLARY 4.8. Suppose that β > 2α and that Assumptions (L.1)–(L.4) and (F.2)–
(F.3) hold. There exist processes (Ut,y,Zt,y) ∈ S∞

F (t, T −;R)×H
q
F (t, T −;R1×d̃ ) for all q ≥

2 satisfying

(4.14) Ut,y
s = v

(
s, Y t,y

s

)
, Zt,y

s = Dv
(
s, Y t,y

s

)
σ
(
s, Y t,y

s

)
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and for any t ≤ r ≤ s < T ,

(4.15) Ut,y
r = Ut,y

s +
∫ s

r

(
F
(
Y t,y

ρ ,Ut,y
ρ

)+ θα
∣∣Zt,y

ρ

∣∣1+α)
dρ −

∫ s

r
Zt,y

ρ dWρ.

Furthermore, there exists a constant C > 0 such that

(4.16)
∣∣Zt,y

r

∣∣≤
⎧⎪⎨
⎪⎩

C

(T − r)1/β
, r ∈ [T − δ, T );

C, r ∈ [t, T − δ].

5. Verification. This section is devoted to the verification argument. We first prove ad-
missibility of the strategy ξ∗ by using the estimates of the nonnegative viscosity solution
v derived from the proof of Theorem 2.4. Subsequently, we show that (ξ∗, ϑ∗) is a saddle
point of the cost function and is indeed optimal. The proof uses a change of measure argu-
ment. Since the viscosity solution belongs to C

0,1
b ([0, T −]×R

d) and satisfies the asymptotics
(2.12), the optimal density ϑ∗ has sufficient integrability for the corresponding stochastic ex-
ponential to be a true martingale.

LEMMA 5.1. The feedback control ξ∗ given by (2.13) is admissible, and the portfolio
process (X∗

s )s∈[t,T ] is monotone.

PROOF. From the construction of the viscosity solution in the proof of Theorem 2.4,
we have that v̌ ≤ v ≤ v̂ on [T − δ, T ) where v̌ and v̂ were introduced in (3.6) and (3.7),
respectively. Moreover, under condition (F.3) the function ĥ introduced in (3.3) reduces to
ĥ(r, y) = L(T − r) because m̃ = 0. Hence, for r ∈ [T − δ, T ),

1 − ‖Lη
η

‖(T − r)

(T − r)1/β
η
(
Y t,y

r

)≤ v
(
r, Y t,y

r

)≤ 1 + K(T − r)ε

(T − r)1/β
η
(
Y t,y

r

)+ ĥ
(
r, Y t,y

r

)
.

For s ∈ [T − δ, T ),

∣∣X∗
s

∣∣≤ |x| exp
(
−
∫ s

t

v(r, Y
t,y
r )β

η(Y
t,y
r )β

dr

)

≤ |x| exp
(
−
∫ s

T −δ

(1 − ‖Lη
η

‖(T − r))β

(T − r)
dr

)

≤ |x| exp
(∫ s

T −δ

1 − (1 − ‖Lη
η

‖(T − r))β

(T − r)
dr

)
· exp

(
−
∫ s

T −δ

1

T − r
dr

)

≤ C|x|T − s

δ

s→T−−−→ 0.

The last inequality holds because limr→T
1−(1−‖Lη

η
‖(T −r))β

(T −r)
= β‖Lη

η
‖. As a result, X∗

T = 0.
For controls ξ∗ given by (2.13), the process (X∗

s )s∈[t,T ] is obviously monotone. It remains
to establish the integrability of ξ∗. In fact, since 1/η, v are bounded on R

d and [0, T − δ] ×
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R
d , respectively, we see that

sup
t≤s<T

∣∣ξ∗
s

∣∣≤ sup
t≤s≤T −δ

∣∣ξ∗
s

∣∣+ sup
T −δ≤s<T

∣∣ξ∗
s

∣∣

= sup
t≤s≤T −δ

v(s, Y
t,y
s )β

η(Y
t,y
s )β

∣∣X∗
s

∣∣+ sup
T −δ≤s<T

v(s, Y
t,y
s )β

η(Y
t,y
s )β

∣∣X∗
s

∣∣

≤ |x| sup
t≤s≤T −δ

v(s, Y
t,y
s )

η(Y
t,y
s )

+ sup
T −δ≤s<T

(1 + KT ε + LT 1+1/β

η(Y
t,y
s )

)β

T − s
· C|x|T − s

δ

< + ∞.

It follows that ξ∗ ∈ L∞
F (t, T ;R), and hence that ξ∗ is admissible. �

The following lemma shows that for any ξ ∈ A(t, x) the expected residual costs vanish as
s → T under a particular class of equivalent measure.

LEMMA 5.2. For every ξ ∈ A(t, x) and every Q ∈Q satisfying

E
[
eq

∫ T
t |ϑr |2 dr ]< ∞ for every q > 0,

it holds that

(5.1) EQ

[
v
(
s, Y t,y

s

)∣∣Xξ
s

∣∣p]−→ 0, s → T .

PROOF. Set πs = E(
∫ s
t ϑr dWr). For k > 1, s ∈ [t, T ], by the Hölder inequality, we have

that

E
[
(πs)

k]= E
[
ek

∫ s
t ϑr dWr−k2 ∫ s

t |ϑr |2 dr · e(k2−k/2)
∫ s
t |ϑr |2 dr ]

≤
(
E

[
E
(

2k

∫ s

t
ϑr dWr

)])1/2
· (E[e(2k2−k)

∫ s
t |ϑr |2 dr ])1/2

< ∞.

Since X
ξ
s = X

ξ
T + ∫ T

s ξr dr = ∫ T
s ξr dr , using Hölder inequality again, we obtain

∣∣Xξ
s

∣∣p ≤ (T − s)1/β
∫ T

s
|ξr |p dr.

Close to the terminal time the upper estimate v(s, Y
t,y
s ) ≤ C

(T −s)1/β holds; away from the
terminal time, v is bounded. Hence this estimate holds everywhere and so

EQ

[
v
(
s, Y t,y

s

)∣∣Xξ
s

∣∣p]= E
[
πsv

(
s, Y t,y

s

)∣∣Xξ
s

∣∣p]
≤ CE

[
πs

∫ T

s
|ξr |p dr

]

≤ C

(
(T − s)E

[
(πs)

2]
E

[∫ T

s
|ξr |2p dr

])1/2
.

Letting s → T , the desired result (5.1) follows since ξ ∈ L
2p
F (t, T ;R). �

Our verification argument will be based on the following probabilistic representation of
the viscosity solution to (2.11).

We are now ready to carry out the verification argument. We will show that v(·, ·)| · |p is
indeed equal to the value function of our control problem and that the candidate strategy is
optimal on the whole time interval.
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PROOF OF THEOREM 2.6. For fixed t ≤ s < T , by Corollary 4.8 we have that

U
t,y
t =Ut,y

s +
∫ s

t

(
F
(
Y t,y

r ,U t,y
r

)+ ∣∣Zt,y
r

∣∣1+α)
dr −

∫ s

t
Zt,y

r dWr.

This allows us to apply to U
t,y
r |Xξ

r |p the integration by parts formula on [t, s] and to get that

U
t,y
t |x|p = Ut,y

s

∣∣Xξ
s

∣∣p +
∫ s

t

{(
F
(
Y t,y

r ,U t,y
r

)+ θα
∣∣Zt,y

r

∣∣1+α)∣∣Xξ
r

∣∣p
+ pξrU

t,y
r sgn

(
Xξ

r

)∣∣Xξ
r

∣∣p−1
)
}
dr −

∫ s

t
Zt,y

r

∣∣Xξ
r

∣∣p dWr.

Denote Wϑ
r = Wr − ∫ r

t ϑρ dρ. Thus,

U
t,y
t |x|p = Ut,y

s

∣∣Xξ
s

∣∣p +
∫ s

t

{(
F
(
Y t,y

r ,U t,y
r

)+ θα
∣∣Zt,y

r

∣∣1+α − ϑrZ
t,y
r

)∣∣Xξ
r

∣∣p
+ pξrU

t,y
r sgn

(
Xξ

r

)∣∣Xξ
r

∣∣p−1
)
}
dr −

∫ s

t
Zt,y

r

∣∣Xξ
r

∣∣p dWϑ
r .

(5.2)

In what follows, we show that (ξ∗, ϑ∗) is a saddle point of the functional J̃ , that is,

J̃
(
t, y, x; ξ∗, ϑ

)≤ J̃
(
t, y, x; ξ∗, ϑ∗)≤ J̃

(
t, y, x; ξ,ϑ∗).

STEP 1: J̃ (t, y, x; ξ∗, ϑ∗) ≤ J̃ (t, y, x; ξ,ϑ∗) for every ξ .
Set π∗

s = E(
∫ s
t ϑ∗

r dWr). From the definition of ϑ∗ in (2.13), we see that |ϑ∗
r | ≤ (1 +

α)θα|Zt,y
r |α . Using the estimate in (4.16),

(5.3)

∫ T

t

∣∣ϑ∗
s

∣∣2 ds ≤
∫ T

T −δ

∣∣ϑ∗
s

∣∣2 ds +
∫ T −δ

t

∣∣ϑ∗
s

∣∣2 ds

≤ (1 + α)2θ2α

(∫ T

T −δ

C2α

(T − s)2α/β
ds +

∫ T −δ

t
C2α ds

)

≤ (1 + α)2θ2αC2α(δ1−2α/β + T
)
< +∞.

Hence E[(π∗
s )k] < +∞ for every k > 1 and the Novikov condition implies that π∗ is indeed a

positive martingale. Setting dQ∗ = π∗
T dP, by the Girsanov theorem Wϑ∗

is a Brownian mo-
tion under Q∗. This allows us to show that the stochastic integral in (5.2) is a Q∗-martingale.
Since Zt,y is bounded away from the terminal time from (4.16) and

E

[
sup

t≤r≤s

∣∣Xξ
r

∣∣2p
]
≤ CE

[∫ T

t
|ξr |2p dr

]
,

we have that

EQ∗
[∫ s

t

∣∣Zt,y
r

∣∣2∣∣Xξ
r

∣∣2p
dr

]1/2
= E

[(
π∗

s

)2 ∫ s

t

∣∣Zt,y
r

∣∣2∣∣Xξ
r

∣∣2p
dr

]1/2

≤ E

[(
π∗

s

)2 · T sup
t≤r≤s

∣∣Zt,y
r

∣∣2 sup
t≤r≤s

∣∣Xξ
r

∣∣2p
]1/2

≤ C
√

T

(T − s)1/β
E

[
(π∗

s )2

2
+ supt≤r≤s |Xξ

r |2p

2

]

< + ∞.

Set

c(y, x, ξ) := η(y)|ξ |p + λ(y)|x|p, C(y, x, ξ,ϑ) := c(y, x, ξ) − 1

θ
|ϑ |m|x|p.
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By (2.9), we have that

U
t,y
t |x|p = EQ∗

[
Ut,y

s

∣∣Xξ
s

∣∣p]+EQ∗
[∫ s

t
C
(
Y t,y

r ,Xξ
r , ξr , ϑ

∗
r

)
dr

]

+EQ∗
[∫ s

t

{
F
(
Y t,y

r ,U t,y
r

)∣∣Xξ
r

∣∣p + pξrU
t,y
r sgn

(
Xξ

r

)∣∣Xξ
r

∣∣p−1

− c
(
Y t,y

r ,Xξ
r , ξr

)}
dr

]

≤ EQ∗
[
Ut,y

s

∣∣Xξ
s

∣∣p]+EQ∗
[∫ s

t
C
(
Y t,y

r ,Xξ
r , ξr , ϑ

∗
r

)
dr

]
.

(5.4)

Since U
t,y
t is nonnegative, we can obtain that

EQ∗
[∫ s

t

1

θ

∣∣ϑ∗
r

∣∣m∣∣Xξ
r

∣∣p dr

]
≤ EQ∗

[
Ut,y

s

∣∣Xξ
s

∣∣p]+EQ∗
[∫ s

t
c
(
Y t,y

r ,Xξ
r , ξr

)
dr

]
.

The right-hand side is finite as s goes to T by Lemma 5.2 together with the admissibility of
ξ and the boundedness of η,λ. In view of Lemma 5.2, letting s → T in (5.4) we get

v(t, y)|x|p ≤ J̃
(
t, y, x; ξ,ϑ∗).

Finally, note that the equality holds in (5.4) if ξ = ξ∗. This yields

v(t, y)|x|p = EQ∗
[
v
(
s, Y t,y

s

)∣∣Xξ∗
s

∣∣p]+EQ∗
[∫ s

t
C
(
Y t,y

r ,Xξ∗
r , ξ∗

r , ϑ∗
r

)
dr

]

→ J̃
(
t, y, x; ξ∗, ϑ∗) as s → T .

Thus,

v(t, y)|x|p = J̃
(
t, y, x; ξ∗, ϑ∗)≤ J̃

(
t, y, x; ξ,ϑ∗).

STEP 2. J̃ (t, y, x; ξ∗, ϑ) ≤ J̃ (t, y, x; ξ∗, ϑ∗) for every ϑ .
Let us introduce the sequence of stopping times

τn := inf
{
r ∈ [t, T ] :

∫ r

t
|ϑρ |2 dρ > n

}
.

Put ϑn
r = ϑrIr≤τn and define Wn

r = Wr + ∫ r
t ϑn

r dr . From the definition of τn, it follows that∫ T

t

∣∣ϑn
r

∣∣2 dr =
∫ τn

t
|ϑr |2 dr ≤ n.

Therefore, defining πn
s = E(

∫ s
t ϑn

r dWr), the Novikov condition implies that E[πn
T ] = 1. Set-

ting dQn = πn
T dP, by the Girsanov theorem Wϑn

is a Brownian motion under Qn. Moreover,
E[(πn

s )k] < +∞ for every k > 1.

As discussed before, we can show that the stochastic integrals
∫ s
t Z

t,y
r |Xξ∗

r |p dWϑn

r are
Qn-martingales for any n ∈ R. Together with (2.8), we have that

U
t,y
t |x|p = EQn

[
Ut,y

s

∣∣Xξ∗
s

∣∣p]+EQn

[∫ s

t
C
(
Y t,y

r ,Xξ∗
r , ξ∗

r , ϑn
r

)
dr

]

+EQn

[∫ s

t

{(
θα
∣∣Zt,y

r

∣∣1+α − ϑn
r Zt,y

r + 1

θ

∣∣ϑn
r

∣∣m)∣∣Xξ∗
r

∣∣p}dr

]
(5.5)

≥ EQn

[
Ut,y

s

∣∣Xξ∗
s

∣∣p]+EQn

[∫ s

t
C
(
Y t,y

r ,Xξ∗
r , ξ∗

r , ϑn
r

)
dr

]
.
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Letting s → T we get

(5.6) U
t,y
t |x|p ≥ EQn

[∫ T

t
C
(
Y t,y

r ,Xξ∗
r , ξ∗

r , ϑn
r

)
dr

]
by Lemma 5.2. We are now going to show that

(5.7)

U
t,y
t |x|p ≥ EQ

[∫ T

t
C
(
Y t,y

r ,Xξ∗
r , ξ∗

r , ϑr

)
dr

]

= EQ

[∫ T

t
c
(
Y t,y

r ,Xξ∗
r , ξ∗

r

)
dr

]
−EQ

[∫ T

t

1

θ
|ϑr |m

∣∣Xξ∗
r

∣∣p dr

]
.

If EQ[∫ T
t

1
θ
|ϑr |m|Xξ∗

r |p dr] is infinite, this inequality holds naturally since c(Y
t,y· ,X

ξ∗
· , ξ∗· )

is bounded on [t, T ]. Hence, we assume w.l.o.g. that EQ[∫ T
t

1
θ
|ϑr |m|Xξ∗

r |p dr] is finite. For
r ∈ [t, T ], we have that

E
[
πn

r

∣∣ϑn
r

∣∣m∣∣Xξ∗
r

∣∣p]≥ E
[
E
[
πn

r

∣∣ϑn−1
r

∣∣m∣∣Xξ∗
r

∣∣p|Fr∧τn−1

]]
≥ E

[
E
[
πn

r |Fr∧τn−1

]∣∣ϑn−1
r

∣∣m∣∣Xξ∗
r

∣∣p]
= E

[
πn−1

r

∣∣ϑn−1
r

∣∣m∣∣Xξ∗
r

∣∣p].
The monotone convergence theorem thus yields

EQn

[∫ T

t

1

θ

∣∣ϑn
r

∣∣m∣∣Xξ∗
r

∣∣p dr

]
n→∞−−−→ EQ

[∫ T

t

1

θ
|ϑr |m

∣∣Xξ∗
r

∣∣p dr

]
.

Using the boundedness of c(Y
t,y· ,X

ξ∗
· , ξ∗· ) on [t, T ] again, we apply the dominated conver-

gence theorem to get that

EQn

[∫ T

t
c
(
Y t,y

r ,Xξ∗
r , ξ∗

r

)
dr

]
n→∞−−−→ EQ

[∫ T

t
c
(
Y t,y

r ,Xξ∗
r , ξ∗

r

)
dr

]
.

Letting n goes to infinity in (5.6), we obtain the inequality (5.7). Recall that J̃ (t, y, x; ξ∗,
ϑ∗) = v(t, y)|x|p , we conclude that

J̃
(
t, y, x; ξ∗, ϑ

)≤ J̃
(
t, y, x; ξ∗, ϑ∗). �

REMARK 5.3. It was shown that (ξ∗, ϑ∗) is a saddle point of the functional J̃ , thus
(ξ∗, ϑ∗) is indeed a solution of the robust control problem (2.5). However, J̃ is not convex in
ξ for fixed ϑ . So the saddle point (ξ∗, ϑ∗) may not be unique.

6. Asymptotic analysis. In Section 2, we provided both theoretical results and numeri-
cal examples on the first-order approximations of the value function and the optimal trading
strategy for the model with uncertainty. In this section, we give the proofs of Theorem 2.8 and
Corollary 2.9. The main idea is to construct a super and subsolution to (2.11) by an asymp-
totic expansion around the benchmark solution and then to apply the comparison principle
[Lemma A.3].

The following lemma extends the results in [27], Theorem 2.9. The proof is given in the
Appendix C.

LEMMA 6.1. Let β > 2α. Under Assumptions (L.1)–(L.4), (F.2)–(F.3), the terminal value
problem (2.4) admits a unique nonnegative solution v0 in C0,1([0, T −] × R

d). The solution
satisfies the following estimates:

c

(T − t)1/β
≤ v0 ≤ C0

(T − t)1/β
, |Dv0| ≤ C0

(T − t)1/β
, (t, y) ∈ [0, T ) ×R

d,

for some constant C0 > 0.
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The next lemma establishes the existence of a unique nonnegative solution to the terminal
value problem (2.16) and provides a priori estimates on the solution and its derivative.

LEMMA 6.2. Let β > 2α. Under Assumptions (L.1)–(L.4), (F.2)–(F.3), the terminal value
problem (2.16) admits a unique nonnegative viscosity solution w1 in C0,1([0, T ]×R

d). More-
over, the following estimates hold:

0 ≤ w1 ≤ C1(T − t)1−α/β, |Dw1| ≤ C1(T − t)1/2−α/β, (t, y) ∈ [0, T ) ×R
d,

for some constant C1 > 0.

PROOF. Set A := |σ ∗Dv0|1+α and B := (β+1)v
β
0

βηβ . Let δ0 := 1/‖Lη
η

‖. Using similar ar-
guments to [27], Corollary 3.2, and [29], Proposition 3.5, we know that for (t, y) ∈ [T −
δ0, T ) ×R

d ,

v0(t, y)β

η(y)β
≥ 1 − ‖Lη

η
‖(T − t)

T − t
.

Hence, for δ := β
2(β+1)

δ0,

(6.1) B(t, y) = (β + 1)v0(t, y)β

βη(y)β
≥ 1 + β/2

β(T − t)
, (t, y) ∈ [T − δ, T ) ×R

d,

and so

−B(t, y) + 1

β(T − t)
≤ 1

βδ
It∈[0,T −δ] − 1

2(T − t)
It∈[T −δ,T )

≤ 1

βδ
, (t, y) ∈ [0, T ) ×R

d .

(6.2)

Using the estimates on Dv0 in Lemma 6.1 along with the fact that β > 2α, we have that

(6.3) E

[∫ T

0

(
A
(
s, Y t,y

s

)
(T − s)1/β)2 ds

]
≤
∫ T

0

C

(T − s)2α/β
ds < +∞.

By (6.2) and (6.3), it follows from the Feynman–Kac formula [38], Theorem 3.2, that

w1(t, y) := E

[∫ T

t
exp

(∫ s

t

(
−B

(
r, Y t,y

r

)+ 1

β(T − r)

)
dr

)
A
(
s, Y t,y

s

)
(T − s)1/β ds

]

is the unique viscosity solution to the terminal value problem (2.16) on [0, T ] × R
d . More-

over, we have for (t, y) ∈ [0, T ) ×R
d that

(6.4)

w1(t, y) ≤ E

[∫ T

t
exp

(∫ s

t

1

βδ
dr

)
A
(
s, Y t,y

s

)
(T − s)1/β ds

]

≤
∫ T

t
eT /(βδ) C

(T − s)α/β
ds

≤ C1(T − t)1−α/β

for some constant C1.
Next, we study the derivative of w1. For any ε ∈ (0, T ), restricting the PDE (2.16) to

[0, T − ε],{−∂tv(t, y) −Lv(t, y) − f1
(
t, y, v(t, y)

)= 0, (t, y) ∈ [0, T − ε) ×R
d,

v(T − ε, y) = w1(T − ε, y) y ∈ R
d,
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Since A,B are bounded on [0, T − ε], it follows from the Bismut–Elworthy formula [23],
Theorem 4.2, that w1(t, ·) is differentiable for t ∈ [0, T − ε] and∣∣Dw1(t, y)

∣∣≤ C

(T − ε − t)1/2

∥∥w1(T − ε, ·)∥∥+
∫ T −ε

t

C

(s − t)1/2

(
(T − s)1/β

∥∥A(s, ·)∥∥
+
(∥∥B(s, ·)∥∥+ 1

β(T − s)

)∥∥w1(s, ·)
∥∥)ds

for (t, y) ∈ [0, T − ε) ×R
d . Using the estimates on v0,w1, we get that

∣∣Dw1(t, y)
∣∣≤ C

(T − ε − t)1/2 ε1−α/β + C

∫ T

t

1

(s − t)1/2 (T − s)−α/β ds

≤ C

(T − ε − t)1/2 (T − t)1−α/β + C(T − t)1/2−α/β, (t, y) ∈ [0, T − ε) ×R
d,

where C is independent of ε. By letting ε go to zero, we see that (by an adjustment of C1 if
necessary)

(6.5)
∣∣Dw1(t, y)

∣∣≤ C1(T − t)1/2−α/β, (t, y) ∈ [0, T ) ×R
d . �

By the transformation v1 = 1
(T −t)1/β w1, we know that v1 is a solution to the equation

(6.6) −∂tv(t, y) −Lv(t, y) − |σDv0|1+α + (β + 1)v
β
0

βηβ
v = 0, (t, y) ∈ [0, T ) ×R.

Moreover, since β > 2α, there exists a constant C2 > 0 such that for (t, y) ∈ [0, T ) ×R
d ,

(6.7)
0 ≤ v1 ≤ C1(T − t)1−(1+α)/β ≤ C2(T − t)−1/β,

|Dv1| ≤ C1(T − t)1/2−(1+α)/β ≤ C2(T − t)−1/β.

Armed with these estimates, we are now ready to prove the asymptotic result.

PROOF OF THEOREM 2.8. Let δ be as in (6.1) and set b := C̄β

(β+1)cβδ1/β . Our goal is to
find two constants L1 > 0,L2 < 0 such that

ui = v0 + θαv1 + θ2αLi

(
b + 1

(T − t)1/β

)
, i = 1,2

is a supersolution (i = 1), respectively a subsolution (i = 2) to (2.11). For i = 1,2,

−θα
∣∣σ ∗Dui

∣∣1+α + u
β+1
i

βηβ
− λ

= −θα
∣∣σ ∗(Dv0 + θαDv1

)∣∣1+α +
(v0 + θαv1 + θ2αLi(b + 1

(T −t)1/β ))β+1

βηβ
− λ

= −θα
∣∣σ ∗Dv0

∣∣1+α + v
β+1
0 + (β + 1)θαv

β
0 v1

βηβ
− λ + θ2α Li

β(T − t)1/β+1 + Ii ,

where Ii := I0
i + I1

i + I2
i and I0

i ,I1
i ,I2

i are given by

I0
i := −θ2αLi

1

β(T − t)1/β+1 ;

I1
i :=

(v0 + θαv1 + θ2αLi(b + 1
(T −t)1/β ))β+1

βηβ
− v

β+1
0 + (β + 1)θαv

β
0 v1

βηβ
;

I2
i := θα

∣∣σ ∗Dv0
∣∣1+α − θα

∣∣σ ∗(Dv0 + θαDv1
)∣∣1+α

.
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It is sufficient to prove that I1 > 0 (supersolution) and that I2 < 0 (subsolution) on [0, T ) ×
R

d .
The second-order Taylor approximation around v0 in the first summand of I1

i yields a
function ζ satisfying min{v0, ui} ≤ ζ ≤ max{v0, ui} such that

I1
i = θ2αLi

1

βηβ
(β + 1)v

β
0

(
b + 1

(T − t)1/β

)

+ 1

2ηβ
(β + 1)ζ β−1

(
θαv1 + θ2αLi

(
b + 1

(T − t)1/β

))2
.

The mean value theorem along with the triangle inequality also yields a constant C̃0 > 0
such that ∣∣I2

i

∣∣≤ θ2αC̄α(|Dv0|α + ∣∣Dv0 + θαDv1
∣∣α)|Dv1|

≤ θ2αC̃0(T − t)(1+α)/β

≤ θ2α C̃0T
1−α/β

(T − t)1/β+1 .

STEP 1: CONSTRUCTION OF SUPERSOLUTION. Using the lower bound of v0 in Lemma 6.1,
we have that for t ∈ [0, T − δ],

η(y)β

(β + 1)v0(t, y)β(T − t)1/β+1 ≤ C̄β

(β + 1)cβ(T − t)1/β
≤ C̄β

(β + 1)cβδ1/β
= b.

Set c := min{1
2 ,

(β+1)cβ

βC̄β }. The preceding inequality along with the inequality (6.1) yields that

for t ∈ [0, T ),

(6.8) − 1

β(T − t)1/β+1 + 1

βηβ
(β + 1)v

β
0

(
b + 1

(T − t)1/β

)
≥ c

1

(T − t)1/β+1 .

Since the second term in the definition of I1
1 is nonnegative, we have that

I1 ≥ cθ2α L1

(T − t)1/β+1 − θ2α C̃0T
1−α/β

(T − t)1/β+1 .

Choosing L1 > C̃0T
1−α/β

c
, we obtain that I1 > 0.

STEP 2: CONSTRUCTION OF SUBSOLUTION. Using the lower bound of v0 in Lemma 6.1
again and choosing L2 < 0, θ > 0 such that θ2α|L2|(T 1/βb + 1) ≤ c

2 , we obtain that
u2 ≥ c

2(T −t)1/β ≥ 0. Different from Step 1, an additional estimate on the second term in the

definition of I1
2 is needed to obtain that I2 < 0. Since min{v0, u2} ≤ ζ ≤ max{v0, u2}, we

see that ζ(T − t)1/β can be bounded both from below and above. Therefore, there exists a
constant C̃1 > 0 such that

1

2ηβ
(β + 1)ζ β−1

(
θαv1 + θ2αLi

(
b + 1

(T − t)1/β

))2
≤ θ2α C̃1

(T − t)1/β+1 .

By the inequality (6.8) and the nonpositivity of L2, we have that

− L2

β(T − t)1/β+1 + 1

βηβ
(β + 1)v

β
0 L2

(
b + 1

(T − t)1/β

)
≤ c

L2

(T − t)1/β+1 .

Thus,

I2 ≤ cθ2α L2

(T − t)1/β+1 + θ2α C̃0T
1−α/β

(T − t)1/β+1 + θ2α C̃1

(T − t)1/β+1 < 0



PORTFOLIO LIQUIDATION UNDER FACTOR UNCERTAINTY 109

if we first choose

L2 < − C̃1 + C̃0T
1−α/β

c

and then

θ < min
{
1, 2α

√
c/
(
2|L2|(T 1/βb + 1

))}
.

Hence u2 is a nonnegative viscosity subsolution to (2.11). By Lemma A.3, we then have that
u2 ≤ v ≤ u1. Thus, the desired equality (2.15) follows from

θαw1 + θ2αL2
(
b(T − t)1/β + 1

)≤ w − w0 ≤ θαw1 + θ2αL1
(
b(T − t)1/β + 1

)
. �

Based on Theorem 2.8, we can now derive the first-order approximation of the optimal
trading strategy.

PROOF OF COROLLARY 2.9. From the preceding result, we have that on [0, T ) ×R
d ,

v − v0 = θαv1 + θ2αṽθ ,

where for some small θ0 ∈ (0,1) there exists a constant K0 > 0 satisfying that |ṽθ (t, y)| ≤
K0

(T −t)1/β for (t, y) ∈ [0, T ) ×R
d, θ < θ0. Assume that θ < θ0 in the sequel.

The second-order Taylor approximation of the power function around v0 yields a function
ζ satisfying v0 ≤ ζ ≤ v such that

vβ − v
β
0 = βv

β−1
0

(
θαv1 + θ2αṽθ )+ 1

2
β(β − 1)ζ β−2(θαv1 + θ2αṽθ )2

= θαβv
β−1
0 v1 + θ2α

(
βv

β−1
0 ṽθ + 1

2
β(β − 1)ζ β−2(v1 + θαṽθ )2).

Recalling the estimates in Lemma 6.1 and (6.7), we have that on [0, T ) ×R
d ,

(6.9)

v ≤ C0 + C2 + K0

(T − t)1/β
,

v
β−1
0 v1 ≤ max{Cβ−1

0 , cβ−1}C2

T − t
,

v
β−1
0

∣∣ṽθ
∣∣≤ max{Cβ−1

0 , cβ−1}K0

T − t
,

ζ β−2(v1 + θαṽθ )2 ≤ max{(C0 + C2 + K0)
β−2, cβ−2}(C2 + K0)

2

T − t
.

Therefore, we obtain that for r ∈ [t, T ),

(6.10) v
(
r, Y t,y

r

)β − v0
(
r, Y t,y

r

)β = θαβv0
(
r, Y t,y

r

)β−1
v1
(
r, Y t,y

r

)+ θ2αO

(
1

T − r

)
.

Let

�(s) :=
∫ s

t

v(r, Y
t,y
r )β − v0(r, Y

t,y
r )β

η(Y
t,y
r )β

dr ≥ 0.
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Using the second-order Taylor approximation of the exponential function around 0 yields a
function ζ̃ satisfying 0 ≤ ζ̃ ≤ � such that

exp
(−�(s)

)− 1

= −�(s) + 1

2
exp

(−ζ̃ (s)
)(−�(s)

)2
= −

∫ s

t

(
θαβv0

(
r, Y t,y

r

)β−1
v1
(
r, Y t,y

r

)+ θ2αO

(
1

T − r

))
dr

+ 1

2
exp

(−ζ̃ (s)
)(∫ s

t

(
βθαv0

(
r, Y t,y

r

)β−1
v1
(
r, Y t,y

r

)+ θ2αO

(
1

T − r

))
dr

)2
.

In view of the estimate (6.9), we have that

(6.11)

exp
(−�(s)

)− 1

= θα

(
−
∫ s

t
βv0

(
r, Y t,y

r

)β−1
v1
(
r, Y t,y

r

)
dr

)
+ θ2αO

(
ln

T − t

T − s
+
(

ln
T − t

T − s

)2)
.

We know that the optimal strategies ξ∗, ξ0,∗ belong to L∞
F (t, T ;R) and are given by

ξ∗
s = v(s, Y

t,y
s )β

η(Y
t,y
s )β

X∗
s = x

v(s, Y
t,y
s )β

η(Y
t,y
s )β

exp
(
−
∫ s

t

v(s, Y
t,y
r )β

η(Y
t,y
r )β

dr

)
,

ξ0,∗
s = x

v0(s, Y
t,y
s )β

η(Y
t,y
s )β

exp
(
−
∫ s

t

v0(s, Y
t,y
r )β

η(Y
t,y
r )β

dr

)
.

Similar to the proof of Lemma 5.1, we obtain that

exp
(
−
∫ s

t

v0(s, Y
t,y
r )β

η(Y
t,y
r )β

dr

)
= O(T − s).

Together with (6.10) and (6.11), it follows that

ξ∗
s − ξ0,∗

s

= x
v(s, Y

t,y
s )β

η(Y
t,y
s )β

exp
(−�(s)

)
exp

(
−
∫ s

t

v0(s, Y
t,y
r )β

η(Y
t,y
r )β

dr

)

− x
v0(s, Y

t,y
s )β

η(Y
t,y
s )β

exp
(
−
∫ s

t

v0(s, Y
t,y
r )β

η(Y
t,y
r )β

dr

)

= θαx
βv0(s, Y

t,y
s )β−1

η(Y
t,y
r )β

exp
(
−
∫ s

t

v0(s, Y
t,y
r )β

η(Y
t,y
r )β

dr

)

×
(
v1
(
s, Y t,y

s

)− v0
(
s, Y t,y

s

) ∫ s

t
v0
(
r, Y t,y

r

)β−1
v1
(
r, Y t,y

r

)
dr

)

+ θ2αO

(
1 + ln

T − t

T − s
+
(

ln
T − t

T − s

)2)

= θαβξ0,∗
s

(
v1(s, Y

t,y
s )

v0(s, Y
t,y
s )

−
∫ s

t
v0
(
r, Y t,y

r

)β−1
v1
(
r, Y t,y

r

)
dr

)

+ θ2αO

(
1 + ln

T − t

T − s
+
(

ln
T − t

T − s

)2)

= θαξ̃s + θ2αO

(
1 + ln

T − t

T − s
+
(

ln
T − t

T − s

)2)
,
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where ξ̃ is defined in (2.18). Hence, we conclude that

lim
θ→0

ξ∗ − ξ0,∗

θ
= ξ̃ locally uniformly on [t, T ).

The fact that ξ̃ ∈ L∞
F (t, T ;R) follows from the estimates in Lemma 6.1 and (6.7) since

sup
s∈[t,T )

|ξ̃s | ≤ sup
s∈[t,T )

βξ0,∗
s

(
v1(s, Y

t,y
s )

v0(s, Y
t,y
s )

+
∫ T

t
v0
(
r, Y t,y

r

)β−1
v1
(
r, Y t,y

r

)
dr

)

≤ β
∥∥ξ0,∗∥∥∞

(
C2

c
+ max

{
C

β−1
0 , cβ−1}C1

∫ T

t
(T − r)−α/β dr

)

= β
∥∥ξ0,∗∥∥∞

(
C2

c
+ max

{
C

β−1
0 , cβ−1}C1(T − t)1−α/β

)
< ∞. �

APPENDIX A: COMPARISON PRINCIPLE

In this section, we state and prove comparison principles for solutions to PDEs with super-
linear gradient term. Both finite and singular terminal values will be considered. We refer to
[17] as an important reference for PDEs with superlinear gradient term. Let us now consider
the general PDE

(A.1)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−∂tv(t, y) −Lv(t, y) − H
(
y,Dv(t, y)

)− F
(
y, v(t, y)

)= 0,

(t, y) ∈ [0, T ) ×R
d,

v(T , y) = φ(y),

y ∈ R
d .

A comparison principle for such PDEs is obtained in [17] under a Lipschitz continuity as-
sumption of F on v. This condition is not satisfied in our case; we only have monotonicity.
Additional assumptions on the solution are thus required to establish a comparison principle.
However, we can make a weaker assumption on the coefficients than (F.1) and (F.2).

(F.4) The coefficients η,λ,1/η : Rd → [0,∞) are continuous and λ is of polynomial
growth of order m.

We first introduce two subsets of functions having superlinear growth. For a given r > 0, a
function h : I ×R

d →R
d belongs to SSG±

r if and only if

lim inf|y|→∞
±h(t, y)

|y|r ≥ 0.

Notice that h ∈ SSG+
r (resp., SSG−

r ) if, for any ε > 0, there exists Cε = Cε(h) > 0 such that

h(t, y) ≥ −ε|y|r − Cε

(
resp., h(t, y) ≤ ε|y|r + Cε

)
, (t, y) ∈ I ×R

d .

We define SSGr = SSG+
r ∩ SSG−

r . Notice that h ∈ SSGr if and only if

lim|y|→∞
|h(t, y)|

|y|r = 0

for every t ∈ I .

PROPOSITION A.1. Assume that (L.1)–(L.3) and (F.4) hold and that φ ∈ Cm(Rd). Let
v ∈ LSC([0, T ] × R

d) ∩ SSG+
m and u ∈ USC([0, T ] × R

d) ∩ SSG−
m be a nonnegative vis-

cosity super and a nonnegative viscosity subsolution to (A.1). Suppose that there exists Ĉ > 0
such that for all (t, y) ∈ [0, T ] ×R

d ,

(A.2) uβ+1(t, y), vβ+1(t, y) ≤ Ĉηβ(y)〈y〉m.
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Then

u ≤ v on [0, T ] ×R
d .

PROOF. STEP 1: LINEARIZATION. For ρ ∈ (0,1), it is easy to verify that ṽ := ρv is a
viscosity supersolution of the following PDE:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−∂t ṽ(t, y) −Lṽ(t, y) − ρH

(
y,

Dṽ(t, y)

ρ

)
− ρF

(
y,

ṽ(t, y)

ρ

)
= 0,

(t, y) ∈ [0, T ) ×R
d,

ṽ(T , y) = ρφ(y),

y ∈R
d .

In what follows, we show that w := u− ṽ is a viscosity subsolution of the following extremal
PDE:

−∂tw(t, y) −Lw(t, y) −
(

1 − ρ

2

)−α

C̄α+1|Dw|α+1

− (1 − ρ)

[
λ(ȳ) + 1 + β

β
Ĉ〈y〉m

]
= 0,

(A.3)

for (t, y) ∈ [0, T ) ×R
d ∩ {w > 0}.

Let ϕ ∈ C2([0, T ) × R
d) be a test function and (t̄ , ȳ) ∈ [0, T ) × R

d ∩ {w > 0} be a local
maximum of w − ϕ. We may assume that this maximum is strict in the set [t̄ − r, t̄ + r] ×
B̄r (ȳ) ⊂ [0, T ) ×R

d for small r ∈ (0,1); we choose [0, r] × B̄r (ȳ) if t̄ = 0. Let

�(t, x, y) := |x − y|2
2ε

+ ϕ(t, y)

and

Mε := max
t∈[t̄−r,t̄+r],x,y∈B̄r (ȳ)

(
u(t, x) − ṽ(t, y) − �(t, x, y)

)
.

This maximum is attained at a point (tε, xε, yε) and is strict. We know that

|xε − yε|2
2ε

→ 0 and Mε → u(t̄, ȳ) − ṽ(t̄ , ȳ) − ϕ(t̄, ȳ) as ε → 0.

We now apply [16], Theorem 8.3. In terms of their notation we have that k = 2, u1 =
u,u2 = −ṽ, ϕ(t, x, y) = �(t, x, y). Moreover, we recall the property that P̄2,−(ṽ) =
−P̄2,+(−ṽ). Then, setting pε = xε−yε

ε
, we have that

∂x�(tε, xε, yε) = pε,

−∂y�(tε, xε, yε) = pε − Dϕ(tε, yε)

and that

A = D2�(tε, xε, yε) =
⎛
⎜⎝

I

ε
−I

ε

−I

ε

I

ε
+ D2ϕ(tε, yε)

⎞
⎟⎠ .

From this, we conclude that for every ι > 0, there exist a1, a2 ∈ R,X,Y ∈ Sd such that

(a1,pε,X) ∈ P̄2,+u(tε, xε),
(
a2,pε − Dϕ(tε, yε), Y

) ∈ P̄2,−ṽ(tε, yε),
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such that a1 − a2 = ∂t�(tε, xε, yε) = ϕt(tε, xε) and such that

(A.4) −
(

1

ι
+ ‖A‖

)
I ≤

(
X 0
0 −Y

)
≤ A + ιA2.

From the definition of viscosity solution, we obtain that

−a1 − b(xε)pε − 1

2
tr
[
σσ ∗(xε)X

]− F
(
xε, u(xε)

)≤ H(xε,pε)

and that

−a2 − b(yε)
(
pε − Dϕ(tε, yε)

)− 1

2
tr
[
σσ ∗(yε)Y

]− ρF

(
yε,

ṽ(yε)

ρ

)

≥ ρH

(
yε,

pε − Dϕ(tε, yε)

ρ

)
.

Subtracting the two inequalities, we have

−∂tϕt (tε, yε) + b(yε)
(
pε − Dϕ(tε, yε)

)− b(xε)pε

+ 1

2
tr
[
σσ ∗(yε)Y

]− 1

2
tr
[
σσ ∗(xε)X

]

+ ρF

(
yε,

ṽ(yε)

ρ

)
− F

(
xε, u(xε)

)≤ H(xε,pε) − ρH

(
yε,

pε − Dϕ(tε, yε)

ρ

)
.

We are now going to estimate the terms involving the drift, the volatility and the functions F

and H separately.

• Since b is Lipschitz continuous,

b(yε)
(
pε − Dϕ(tε, yε)

)− b(xε)pε = −b(yε)Dϕ(tε, yε) + (
b(yε) − b(xε)

)
pε

≥ −b(yε)Dϕ(tε, yε) − C̄ε−1|xε − yε|2.
• In order to estimate the volatility term, we denote by (ei)1≤i≤d̃

the canonical basis of Rd̃ .
By using (A.4) and the Lipschitz continuity of σ , we obtain

tr
[
σσ ∗(xε)X

]− tr
[
σσ ∗(yε)Y

]

=
d̃∑

i=1

〈
Xσ(xε)ei, σ (xε)ei

〉− d̃∑
i=1

〈
Yσ(yε)ei, σ (yε)ei

〉

≤
d̃∑

i=1

〈
D2ϕ(tε, yε)σ (yε)ei, σ (yε)ei

〉+ 1

ε

∣∣σ(xε) − σ(yε)
∣∣2 + ω

(
ι

ε2

)

≤ tr
[
σσ ∗(yε)D

2ϕ(tε, yε)
]+ C̄2ε−1|xε − yε|2 + ω

(
ι

ε2

)
,

where ω is a modulus of continuity which is independent of ι and ε.
• We now estimate F̃ := ρF(yε,

ṽ
ρ
) − F(xε, u). To this end, we first observe that

u(tε, xε) − ṽ(tε, yε) − ϕ(tε, yε) ≥ Mε ≥ u(t̄, ȳ) − ṽ(t̄ , ȳ) − ϕ(t̄, ȳ).

Since (t̄ , ȳ) ∈ {w > 0} and ϕ is continuous, we can fix r small enough to obtain that

u(tε, xε) − ṽ(tε, yε) ≥ 0.
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Recalling the definition of F in (2.10), the fact that F(y, ·) is decreasing on R+ and the
fact that ρ(1 − ρβ) < (1 + β)(1 − ρ) for 0 < ρ < 1, this yields

F̃ = ρF

(
yε,

ṽ

ρ

)
− F(yε, u) + F(yε, u) − F(xε, u)

≥ (ρ − 1)λ(yε) + |u|β+1

βη(yε)β
− ρ−β |ṽ|β+1

βη(yε)β

− ωR

(|xε − yε|)
= (ρ − 1)λ(yε) + |u|β+1

βη(yε)β
− |ṽ|β+1

βη(yε)β

− ρ
(
1 − ρβ) |v|β+1

βη(yε)β
− ωR

(|xε − yε|)

≥ −(1 − ρ)λ(yε) − (1 + β)(1 − ρ)
|v|β+1

βη(yε)β
− ωR

(|xε − yε|)

≥ −(1 − ρ)

[
λ(yε) + 1 + β

β
Ĉ〈yε〉m

]
− ωR

(|xε − yε|),

(A.5)

where ωR denotes the modulus of continuity with R := |ȳ| + r .
• We finally estimate H̃ := H(xε,pε) − ρH(yε,

pε−Dϕ(tε,yε)
ρ

). By convexity, we have for

z1, z2 ∈ R
d , that

|z1|α+1 − ρ

∣∣∣∣z2

ρ

∣∣∣∣α+1
≤ (1 − ρ)

∣∣∣∣z1 − z2

1 − ρ

∣∣∣∣α+1
.

Hence,

H(xε,pε) − ρH

(
yε,

pε − Dϕ(tε, yε)

ρ

)

≤ (1 − ρ)θα

∣∣∣∣σ(xε)pε − σ(yε)(pε − Dϕ(tε, yε))

1 − ρ

∣∣∣∣α+1

≤
(

1 − ρ

2

)−α

C̄α+1(∣∣Dϕ(tε, yε)
∣∣α+1 + (|xε − yε| · |pε|)α+1)

,

where (L.2), (L.3) are used in the last inequality. If necessary, we can choose C̄ large
enough to satisfy that θα|σ |α+1 ≤ C̄α+1.

Denoting a generic modulus of continuity independent of ι and ε by ω, we thus get

−∂tϕ(tε, yε) −Lϕ(tε, yε) −
(

1 − ρ

2

)−α

C̄α+1∣∣Dϕ(tε, yε)
∣∣α+1

− (1 − ρ)

[
λ(yε) + 1 + β

β
Ĉ〈yε〉m

]
≤ ω(ε) + ω

(
ι

ε2

)
.

Letting first ι go to 0 and then sending ε to 0, we finally conclude the desired viscosity
subsolution property of w.

STEP 2: SMOOTH STRICT SUPERSOLUTION. We are now going to construct smooth strict
supersolutions to (A.3) on [T − τ, T ) for some small τ > 0. To this end, let

ψ(t, y) := (1 − ρ)C〈y〉meL(T −t),



PORTFOLIO LIQUIDATION UNDER FACTOR UNCERTAINTY 115

where L,C > 0 will be chosen later. Since λ,φ ∈ Cm(Rd) and u ∈ SSG−
m([0, T ] ×R

d), we
choose a large enough constant C̄ such that for ζ = λ,φ,

ζ(y) ≤ C̄〈y〉m, y ∈R
d,

and such that

(A.6) u(t, y) ≤ C̄〈y〉m, (t, y) ∈ [0, T ] ×R
d .

Note that

D〈y〉m = m〈y〉m−2y, D2〈y〉m = m〈y〉m−4(〈y〉2I + (m − 2)y ⊗ y
)
.

Since b,σ grow at most linearly,

Lψ(t, y) ≤ (1 − ρ)CeL(T −t)[C̄(1 + |y|)∣∣D〈y〉m∣∣+ C̄2(1 + |y|)2∣∣D2〈y〉m∣∣]
≤ (1 − ρ)CeL(T −t)[2mC̄〈y〉m + 2m(m − 1)C̄2〈y〉m]
≤ [

2mC̄ + 2m(m − 1)C̄2]ψ(t, y).

Recalling that (m − 1)(α + 1) = m, we have(
1 − ρ

2

)−α

C̄α+1∣∣Dψ(t, y)
∣∣α+1

=
(

1 − ρ

2

)−α

C̄α+1 · (1 − ρ)α+1Cα+1e(α+1)L(T −t)
∣∣D〈y〉m∣∣α+1

≤ [
2αmα+1C̄α+1CαeαL(T −t)]ψ(t, y)

By condition (F.4),

(1 − ρ)

[
λ(y) + 1 + β

β
Ĉ〈y〉m

]
≤ (1 − ρ)

1 + 2β

β
C̄〈y〉m ≤ 1 + 2β

β

C̄

C
ψ(t, y)

Choosing C > max{2mC̄ + 2m(m − 1)C̄2,2αmα+1C̄α+1,
1+2β

β
C̄}, we have

−∂tψ(t, y) −Lψ(t, y) −
(

1 − ρ

2

)−α

C̄α+1∣∣Dψ(t, y)
∣∣α+1

− (1 − ρ)

[
λ(y) + 1 + β

β
Ĉ〈y〉m

]

> ψ(t, y)
[
L − C − 1 − Cα+1eαL(T −t)].

Then taking L > C + 1 + Cα+1e, we get

−∂tψ(t, y) −Lψ(t, y) −
(

1 − ρ

2

)−α

C̄α+1∣∣Dψ(t, y)
∣∣α+1

− (1 − ρ)

[
λ(y) + 1 + β

β
Ĉ〈y〉m

]
> 0

for all y ∈ R
d and t ∈ [T − τ, T ), where τ = 1

αL
.

STEP 3: CONCLUSIONS. Since w ∈ USC([T − τ, T ] ×R
d) ∩SSG−

m, the function w − ψ

attains its maximum at some point (t, y) ∈ [T − τ, T ] × R
d . We claim that t = T . Indeed,
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suppose to the contrary that t < T . Then, since w is a viscosity subsolution of (A.3), by
taking ψ as a test function,

−∂tψ(t, y) −Lψ(t, y) −
(

1 − ρ

2

)−α

C̄α+1∣∣Dψ(t, y)
∣∣α+1

− (1 − ρ)

[
λ(y) + 1 + β

β
Ĉ〈y〉m

]
≤ 0.

This contradicts the fact that ψ is a strict supersolution. Thus, for all (t, y) ∈ [T −τ, T ]×R
d ,

w(t, y) − ψ(t, y) ≤ w(T ,y) − ψ(T ,y) ≤ (1 − ρ)φ(y) − (1 − ρ)C〈y〉m ≤ 0,

where the last inequality follows from C > C̄. In particular, w(t, y) ≤ ψ(t, y). Letting ρ → 1,
we get u ≤ v on [T − τ, T ] ×R

d .
The preceding argument can be iterated on time intervals of the same length τ . Indeed, let

us choose C,L, τ as in Step 2 and put

ψ(t, y) := (1 − ρ)C〈y〉meL(T −τ−t)

on [T − 2τ, T − τ ]. It follows by (A.6) and the previously established inequality u ≤ v on
[T − τ, T ] ×R

d that for all y ∈ R
d ,

w(T − τ, y) = u(T − τ, y) − ṽ(T − τ, y) ≤ (1 − ρ)u(T − τ, y) ≤ (1 − ρ)C̄〈y〉m.

Following the same arguments as above, we obtain that for all (t, y) ∈ [T − 2τ, T − τ ]×R
d ,

w(t, y) − ψ(t, y) ≤ w(T − τ, y) − ψ(T − τ, y) ≤ (1 − ρ)C̄〈y〉m − (1 − ρ)C〈y〉m ≤ 0.

These arguments can be iterated to complete the proof. �

REMARK A.2. It is worth noting that the constant Ĉ in (A.3) is exactly derived from
the upper bound of v in (A.2) when estimating F̃ in (A.5). We show below that using the
constant derived from the upper bound of u instead is also feasible. To this end, we estimate
F̃ in the following way:

F̃ = ρF

(
xε,

ṽ

ρ

)
− F(xε, u) + ρF

(
yε,

ṽ

ρ

)
− ρF

(
xε,

ṽ

ρ

)

≥ (ρ − 1)λ(xε) + |u|β+1

βη(xε)β
− ρ−β |ṽ|β+1

βη(xε)β
− ωR

(|xε − yε|)

≥ −(1 − ρ)λ(xε) − (1 − ρ)
1 + β

β
Ĉ〈xε〉m − ωR

(|xε − yε|),
In the last inequality, we used the facts that uβ+1(t, y) ≤ Ĉηβ(y)〈y〉m on [0, T ] × R

d and

ρ−β − 1 ≤ (β + 1)(1 − ρ) for ρ ∈ ( β+1
√

β
β+1 ,1).

The next lemma establishes a comparison principle for continuous solutions to (2.11) when
imposed with a singular terminal time. The proof uses the shifting argument given in [27].

LEMMA A.3. Assume that (L.1)–(L.3), (F.1) and (F.2) hold. Let m̃ be as in condition
(F.1). Let v, v ∈ Cm̃([0, T −]×R

d) be a nonnegative viscosity sub and a nonnegative viscosity
supersolution to (2.11), respectively, such that

lim
t→T

v(t, y) = +∞ locally uniformly on R
d .
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Then,

v ≤ v in [0, T ) ×R
d .

In particular, there exists at most one nonnegative viscosity solution in Cm̃([0, T −] ×R
d) to

(2.11).

PROOF. Due to the time-homogeneity of the PDE in (2.11), viscosity (super/sub) solu-
tions stay viscosity (super/sub)solutions when shifted in time. For any δ > 0, we define the
difference function w : [0, T − δ) ×R

d →R by

w(t, y) := v(t, y) − ρv(t + δ, y).

Under assumptions (F.1) and (F.2), we have that v, v belong to SSGm and satisfy the condi-
tion (A.2) in Proposition A.1 on [0, T ) × R

d . Hence, we can use the similar argument as in
the proof of Proposition A.1 to obtain that w is a viscosity subsolution of the following PDE:

−∂tu(t, y) −Lu(t, y) −
(

1 − ρ

2

)−α

C̄α+1|Du|α+1

− (1 − ρ)

[
λ(ȳ) + 1 + β

β
Ĉ〈y〉m

]
= 0,

(A.7)

for (t, y) ∈ [0, T −δ)×R
d ∩{w > 0} and limt→T −δ w(t, y) ≤ (1−ρ)v(T −δ, y) for y ∈ R

d .
In fact, Remark A.2 shows that we can get around the difficulty of the singularity of v(·+δ, ·)
at time t = T − δ in this step. Following Steps 2 and 3 in the proof of Proposition A.1, we
have that v(t, y) ≤ v(t + δ, y) on [0, T − δ] ×R

d . Finally, by letting δ → 0 we conclude that
v ≤ v on [0, T ) ×R

d by continuity of v. �

APPENDIX B: PROOF OF PROPOSITION 3.1

Under assumptions (F.1), (F.2) and (3.2), the functions (t, y) �→ (T − t)1/βu(t, y), (T −
t)1/βu(t, y) satisfy the condition (A.2) in Proposition A.1. Let us fix ρ ∈ ( β

√
1
4 β+1
1
2 β+1

,1) and

consider the difference

w := u − ρu ∈ USCm̃

([
T − δ, T −]×R

d)⊂ SSGm

([
T − δ, T −]×R

d).
The proof of the following lemma is similar to that of Proposition A.1.

LEMMA B.1. The function w is a viscosity subsolution to

−∂tw(t, y) −Lw(t, y) −
(

1 − ρ

2

)−α

C̄α+1|Dw|α+1 − l(t, y)w(t, y)

− (1 − ρ)

[
λ(y) + 1 + β

β

Ĉ〈y〉m
(T − t)1/β+1

]
= 0, (t, y) ∈ [T − δ, T ) ×R

d,

(B.1)

where

l(t, y) := F(y,u(t, y)) − F(y,ρu(t, y))

u(t, y) − ρu(t, y)
Iu(t,y) �=ρu(t,y).

The next lemma constructs a local smooth strict supersolution to (B.1).



118 U. HORST, X. XIA AND C. ZHOU

LEMMA B.2. There exists L,C, τ > 0 such that

χ(t, y) := (1 − ρ)
eL(T −t)C〈y〉m

(T − t)1/β

satisfies

J [χ ] := −∂tχ(t, y) −Lχ(t, y) −
(

1 − ρ

2

)−α

C̄α+1∣∣Dχ(t, y)
∣∣α+1 + 1 + 1

4β

β(T − t)
χ(t, y)

(B.2)

− (1 − ρ)

[
λ(y) + 1 + β

β

Ĉ〈y〉m
(T − t)1/β+1

]
> 0, (t, y) ∈ [T − τ, T ) ×R

d .

PROOF. Set ψ(t, y) := (1−ρ)eL(T −t)C〈y〉m. Analogous to the proof of Proposition A.1,
we have

Lχ(t, y) ≤ [
2mC̄ + 2m(m − 1)C̄2] ψ(t, y)

(T − t)1/β
,

(
1 − ρ

2

)−α

C̄α+1∣∣Dχ(t, y)
∣∣α+1 ≤ [

2αmα+1C̄α+1CαeαL(T −t)] ψ(t, y)

(T − t)(1+α)/β
,

(1 − ρ)

[
λ(y) + 1 + β

β

Ĉ〈y〉m
(T − t)1/β+1

]
≤ C̄

C
ψ(t, y) + 1 + β

β

C̄

C

ψ(t, y)

(T − t)1/β+1 .

Choosing C > max{2mC̄ + 2m(m − 1)C̄2,2αmα+1C̄α+1,81+β
β

C̄}, we obtain that

J [χ ] >
Lψ

(T − t)1/β
− ψ

β(T − t)1/β+1 − Cψ

(T − t)1/β
− Cα+1eαL(T −t) ψ

(T − t)(1+α)/β

+ 1 + 1
4β

β(T − t)1/β+1 ψ − ψ − ψ

8(T − t)1/β+1

> ψ

[
L − C − T 1/β

(T − t)1/β
+ 1 − 8Cα+1eαL(T −t)(T − t)1−α/β

8(T − t)1/β+1

]

Taking L > C +T 1/β and then choosing τ = min{ 1
αL

, (8Cα+1e1)(α−β)/α}, we get J [χ ] >

0 for all (t, y) ∈ [T − τ, T ) ×R
d . �

The following lemma is key to the proof of the comparison principle.

LEMMA B.3. Let τ be as in Lemma B.2. The function

�(t, y) := w(t, y) − χ(t, y)

is either nonpositive or attains its supremum at some point (t̄ , ȳ) in [T − τ, T ) ×R
d .

PROOF. Suppose that the supremum of � on [T − τ, T ) ×R
d is positive and denote by

(tk, yk) a sequence in [T − τ, T ) ×R
d approaching the supremum point. For the choice of C

in Lemma B.2, η(y) < C〈y〉m for all y ∈ R
d . Thus, the representation

�(t, y) =
[u(t,y)(T −t)1/β

〈y〉m̃ − ρu(t,y)(T −t)1/β

〈y〉m̃ ]〈y〉m̃ − (1 − ρ)eL(T −t)C〈y〉m
(T − t)1/β

,

along with Condition (3.1) and the fact that m̃ < m yields

lim sup
t→T

�(t, y) = −∞ uniformly on R
d .
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Hence limk tk < T . Furthermore, limk |yk| < ∞ because w ∈ SSG−
m. As a result, the supre-

mum is attained at some point (t̄ , ȳ) because � is upper semicontinuous. This proves the
assertion. �

We are now ready to prove the comparison principle.

PROOF OF PROPOSITION 3.1. STEP 1: COMPARISON ON [T − τ, T ). Let τ be as in
Lemma B.2. We claim that the function � introduced in Lemma B.3 is nonpositive. It then
follows that u ≤ u in [T − τ, T ) ×R

d by letting ρ → 1. In view of Lemma B.3, we just need
to consider the case where � attains its supremum at some point (t̄ , ȳ) ∈ [T − τ, T ) × R

d .
Since χ is smooth and w is a viscosity subsolution to (B.1),

−∂tχ(t̄, ȳ) −Lχ(t̄, ȳ) −
(

1 − ρ

2

)−α

C̄α+1|Dχ |α+1 − l(t̄ , ȳ)w(t̄, ȳ)

− (1 − ρ)

[
λ(ȳ) + 1 + β

β

Ĉ〈y〉m
(T − t)1/β+1

]
≤ 0.

(B.3)

By the mean value theorem and in view of condition (3.2),

l(t, y) = F(y,u(t, y)) − F(y,ρu(t, y))

u(t, y) − ρu(t, y)
Iu(t,y) �=u(t,y)

≤ ∂uF

(
y,ρ

β

√√√√ 1
2β + 1

β + 1

η(y)

(T − t)1/β

)

≤ − 1 + 1
4β

β(T − t)
.

(B.4)

Thus, comparing (B.2) with (B.3) yields

l(t̄ , ȳ)w(t̄, ȳ) > − 1 + 1
4β

β(T − t)
χ(t̄, ȳ) ≥ l(t̄ , ȳ)χ(t̄, ȳ).

Since l ≤ 0, we can conclude that �(t̄, ȳ) ≤ 0, and so � ≤ 0.
STEP 2: COMPARISON ON [T − δ, T ). If τ > δ, then the proof is complete. Else, we can

proceed as follows. From the condition (3.2),

u(t, y), u(t, y) ≤ Ĉ

τ 1/β
η(y), t ∈ [T − δ, T − τ ].

Since we have already shown that u(T − τ, ·) ≤ u(T − τ, ·), an application of our general
comparison principle [Proposition A.1] shows that u ≤ u on [T − δ, T ) ×R

d . �

APPENDIX C: PROOF OF LEMMA 6.1

The existence of a classical solution v0 to (2.4) along with the stated estimates on v0 has
been proved in [27]; the gradient was not given in [27]. In what follows, we analyze the C0,1

regularity of v0 under weaker assumptions. As discussed in [27], we can plug the asymptotic
ansatz,

(C.1) v(T − t, y) = η(y)

t1/β
+ u(t, y)

t1+1/β
, u(t, y) = O

(
t2) uniformly in y as t → 0

into (2.4) and consider instead the PDE

(C.2)

{
∂tu(t, y) = Lu(t, y) + f

(
t, y, u(t, y)

)
, t > 0, y ∈R

d,

u(0, y) = 0, y ∈R
d,



120 U. HORST, X. XIA AND C. ZHOU

where

f (t, y, u) := tLη(y) + tpλ(y) − η(y)

β

∞∑
k=2

(
β + 1

k

)(
u

tη(y)

)k

.

We now show that this PDE admits a mild solution in C0,1([0, δ] × R
d). To this end, we

consider the space

E := {
u ∈ C

0,1
b

([0, δ] ×R
d) : ∥∥u(t, ·)∥∥+ ∥∥t1/2Du(t, ·)∥∥= O

(
t2) as t → 0

}
endowed with the weighted norm

‖u‖E = sup
0<t≤δ,y∈Rd

∥∥t−2u(t, y)
∥∥

and define the operator

�[u](t, y) =
∫ t

0
Pt−s

[
f
(
s, ·, u(s, ·))](y) ds.

Let R > 0 and δ ∈ (0, c/R]. Using arguments given in [27], Section 4, we see that for ev-
ery u in the closed ball BE(R) := {u ∈ E : ‖u‖E ≤ c/δ}, the function f (·, u(·)) belongs to
Cb([0, δ] ×R

d). In particular, the map � is well defined on BE(R). Moreover, there exists a
constant L > 0 independent of δ such that∣∣f (t, y, u(t, y)

)− f
(
t, y, v(t, y)

)∣∣≤ L
∣∣u(t, y) − v(t, y)

∣∣,
u, v ∈ B̄E(R), (t, y) ∈ [0, δ] ×R

d .

Now we are ready to carry out the fixed-point argument.
Let B(a, b) := ∫ 1

0 ra−1(1 − r)b−1 dr be the Beta function with a, b > 0. We choose

R = 2(1 + MB0)
(‖Lη‖ + ‖λ‖),

and

δ = min
{
c/R,

(
2L(1 + MB1)

)
,1
}
,

where L > 0 is the Lipschitz constant given by Lemma 4.5 and B0 := B(2, 1
2),B1 := B(3, 1

2).
Let u, v ∈ B�(R). For (t, y) ∈ [0, δ] ×R

d ,
∣∣�[u](t, y) − �[v](t, y)

∣∣= ∣∣∣∣
∫ t

0
Pt−s

[
f
(
s, ·, u(s, ·))− f

(
s, ·, v(s, ·))](y) ds

∣∣∣∣
≤
∫ t

0

∥∥f (s, ·, u(s, ·))− f
(
s, ·, v(s, ·))∥∥ds

≤
∫ t

0
L
∥∥u(s, ·) − v(s, ·)∥∥ds

≤ δLt2‖u − v‖E ds.

Similarly,
∣∣D�[u](t, y) − D�[v](t, y)

∣∣= ∣∣∣∣
∫ t

0
DPt−s

[
f
(
s, ·, u(s, ·))− f

(
s, ·, v(s, ·))](y) ds

∣∣∣∣
≤ M

∫ t

0

1

(t − s)1/2

∥∥f (s, ·, u(s, ·))− f
(
s, ·, v(s, ·))∥∥ds

≤
∫ t

0
ML

1

(t − s)1/2

(
s2‖u − v‖E

)
ds

≤ δt3/2MLB1|u − v‖E.
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Hence ∥∥�[u] − �[v]∥∥� ≤ 1

2
‖u − v‖E.

To show that � maps BE(R) into itself, note that δ ≤ 1 implies sk ≤ 1 for all k > 0 and
s ∈ [0, δ]. Hence, for every t ∈ [0, δ]

∣∣�[0](t, y)
∣∣= ∣∣∣∣

∫ t

0
Pt−s

[
f (s, ·,0)

]
(y) ds

∣∣∣∣
≤
∫ t

0

∥∥sLη + spλ
∥∥ds

≤ t2(‖Lη‖ + ‖λ‖)
and ∣∣D�[0](t, y)

∣∣= ∣∣∣∣
∫ t

0
DPt−s

[
F0(s, ·,0)

]
(y) ds

∣∣∣∣
≤
∫ t

0

1

(t − s)1/2 M
∥∥sLη + spλ

∥∥ds

≤ t3/2MB0
(‖Lη‖ + ‖λ‖)

Thus, ∥∥�[u]∥∥E ≤ ∥∥�[u] − �[0]∥∥E + ∥∥�[0]∥∥E ≤ R.

The operator � is therefore a contraction from BE(R) to itself. Hence, it has a unique fixed-
point u in BE(R). We conclude that equation (C.2) admits a mild solution in C

0,1
b ([0, δ] ×

R
d).
In view of the ansatz (C.1), v0 is a solution to (2.4) in C

0,1
b ([T − δ, T −] × R

d) and there
exists a constant C > 0 such that for (t, y) ∈ [T − δ, T ) ×R

d ,

|Dv0| ≤ C

(T − t)1/β
.

The C0,1-regularity of v0 along with the boundedness of Dv0 on [0, T − δ] × R
d can be

obtained by [12], Theorem 15. To conclude, for a constant C0 > 0,

|Dv0| ≤ C0

(T − t)1/β
, (t, y) ∈ [0, T ) ×R

d .
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