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Abstract

We use a model with agency frictions to analyze the structure of a dealer market that faces com-
petition from a crossing network. Traders are privately informed about their types (e.g. their
portfolios), which is something the dealer must take into account when engaging his counter-
parties. Instead of participating in the dealer market, the traders may take their business to
a crossing network. The dealer must take into consideration that traders have this alternative
when choosing a pricing schedule. We show that the presence of a crossing network may benefit
traders even if they do not trade in it. Furthermore, it results in more traders being serviced
by the dealer and the book’s spread shrinking (under certain conditions). We allow for the
pricing on the dealer market to determine the structure of the crossing network, which itself in-
fluences the structure of the dealer market. This results in a feedback look that, under the same
conditions that lead to a reduction of the spread, yields an equilibrium book/crossing network
pair.

Keywords: Asymmetric information, crossing networks, dealer markets, non-linear pricing,
principal-agent games.
JEL: D42, D53, G12, G14.

Introduction

In traditional dealer markets (DM for short), liquidating large portfolios may lead to an
unfavorable price impact. In response to this problem, alternative trading venues such as crossing
networks (CNs for short), in which no price generation takes place but trading is opaque, have
been established.1 These two types of venues compete for liquidity, which leads to the question
of how the prices and traded volumes in DMs are affected by the emergence of CNs.2 Moreover,
prices in a CN are a function of the prices in the competing DM, which in turn depend on the
volume traded in the CN. In this paper we analyze the interplay between DMs and CNs within
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1For instance, Liquidnet and POSIT, among others.
2The European MiFID 2, approved in 2014 and to be implemented by January 3, 2018, introduced the new

category “organized trading facility (OTF)”. Among others, the OTF regime captures broker CNs. Given the
increased regulatory scrutiny to which CNs are subject, analyzing their effect on primary markets is a current,
relevant issue.
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a principal-agent framework with private information. The principal represents a monopolistic
DM run by a profit-maximizing dealer. The agents correspond to traders who choose between
engaging the dealer, trading the CN or abstain from trading all together. They trade for liquidity
reasons, are privately informed about their inventories and have (possibly idiosyncratic) beliefs
about the probabilities of trade execution in the CN. The price in the CN depends in a pre-
specified manner on the price schedule offered by the dealer and, simultaneously, it determines
the traders’ outside options. Within our model the CN leads to a positive externality on agents
trading in the DM: independently of the distribution of types, a trader may benefit from the
CN even if he takes his business to the DM. For the benchmark case of uniformly distributed
types, we find that if the CN benefits only agents with larger inventories, then, in equilibrium,
its introduction shrinks the spread in the DM. These effects can already be inferred from the
linear adverse selection model of Mussa and Rosen (1978), where both the spread and the lowest
type serviced are linearly increasing functions of the highest agent type (the one with the highest
inventory in our setting). When high-type traders take their business to the CN, the highest type
transacting with the dealer decreases. As a result, the spread shrinks and the dealer increases
the number of low-type traders he services. In particular, more types earn positive rents. On
the other hand, we show via a simple example that if the CN benefits “small traders” then the
spread may widen in equilibrium.3 This effect may be avoided if access to the CN is costly.

There are basically two branches of the literature that deal with issues related to optimal
simultaneous trading in DMs and CNs by means of almost orthogonal approaches. On the one
hand, starting with the contributions of Almgren and Chriss (2001) and Obizhaeva and Wang
(2013), the mathematical-finance literature has extensively analyzed models of optimal trading
under market impact in recent years. In this literature, it is typically assumed that trading is
liquidity-driven and that it takes place under an exogenous, non-linear pricing schedule in the
DM. Horst and Naujokat (2014) and Kratz and Schöneborn (2015) were the first to allow orders
to be simultaneously submitted to a DM and a CN. In their models, arbitrary amounts can be
submitted to CNs; order executions in CNs are exogenous. The assumption of exogenous order
execution in a CN seems reasonable when trading is liquidity-driven. However, it is undesirable
that there is no feedback from CN trading to the price setting in the DM. We extend the
mathematical-finance literature on simultaneous trading in DMs and CNs by allowing for an
impact of off-exchange trading on the prices in an associated monopolistic DM and vice versa.
Since our focus is the nonlinear pricing (i.e. market impact) in the DM and not the matching
mechanism in the competing CN, we do not model the latter explicitly but assume instead that
the traders act on their (possibly private) beliefs about the probability of order execution.

On the other hand, the financial-economics literature is rife with equilibrium models analyz-
ing the impact of alternative trading venues on DMs and trading behavior. For example, Parlour
and Seppi (2003), study competition for order flow between heterogeneous exchanges and estab-

3Buti et al. (2011) provide empirical evidence that high CN activity is indeed associated with narrower spreads.
Whether or not CNs lead to narrower spreads and/or welfare improvements is still subject to a controversial
discussion, though.
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lish that different trading architectures, such as pure limit-order and hybrid specialist/limit-order
markets, can be supported in equilibrium. Glosten (1994) studies electronic limit-order books
and the characteristics that other trading venues should have to successfully compete with an
electronic exchange. Degryse et al. (2009) build a dynamic model of a dark pool and analyze
how various transparency requirements for dark-pool orders affect traders’ behavior and welfare.
Daniëls et al. (2013) investigate the allocation of order flow between a DM and a CN and show
how differences in traders’ liquidity preferences generate a unique equilibrium in which patient
traders use the CN while impatient traders submit orders directly to the DM. Buti et al. (2016)
model the competition between an open limit order book and a dark pool, and focus on the in-
teraction between dark-pool trading and characteristics of the limit order book. To simplify the
analysis of market impact, this literature typically assumes that the market participants trade
only a single unit of the stock. This is the main point of divergence with our model: whereas we
allow for differently-sized trades but do not endogenize matching probabilities, most if not all
of this literature targets the equilibrium workings of the off-exchange venues at the cost of only
considering unitary trades. In particular, pricing rules are linear. For instance, in their seminal
paper, Hendershott and Mendelson (2000) use a setup where multiple dealers play a Bertrand
game against each other, but are passive in equilibrium. Information asymmetry corresponds
to private information about the common value of the asset, which may be short or long-lived
(in the sense that it may be used sequentially) and not all traders have. All traders may first
submit unitary orders to the CN and, if unexecuted, may then move on to the DMs. The timing
of the actions of uninformed traders depend on an exogenously-given impatience factor. This,
together with the duration of private information, determines the number of trading counterpar-
ties in the CN; thus, the probability of execution and, ultimately, the equilibrium spread. The
authors identify two counteracting effects of larger trading volumes in the CN. On the one hand,
a liquidity externality : a higher trading volume in the CN increases liquidity, which benefits all
traders. On the other hand, a crowding effect : low- and high-liquidity preference trades may
compete against each other on the same side of the market. We do not find the aforementioned
probability endogenously, as we do not model the matching mechanism in the CN explicitly.
Instead, we assume each trader computes her expected utility of trading in each venue and then
chooses which one to use. This takes into account the possibility of finding a match in the CN,
as well as the price at which trades are executed there. The said expected utilities contemplate
trading multiple units of the stock according to possibly non-linear pricing rules.

The remainder of this paper is organized as follows: First, in the spirit of Biais et al. (2000),
we formulate the dealer’s optimization problem for given execution prices in the CN. We assume
each trader computes her expected utility of trading in the different venues and then chooses
which one to use. This takes into account the possibility of finding a match in the CN, as well
as the price at which unitary units are traded there. The dealer’s objective is then to devise
a pricing schedule so as to maximize his expected profits from trading, roughly defined as the
gains from trading certain positions net of the associated costs. We show that this problem has
a unique solution on the set of traders participating in the DM.
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Second, we study the qualitative influence of a CN on an existing market, as introducing
a CN adds constraints to the dealer’s optimization problem. We gauge the impact of these
constraints using the Lagrangian techniques introduced in Jullien (2003). This allows us to
identify traders who defect the DM and those who previously did not trade in it but, by virtue
of more appealing conditions, now engage the dealer. As a consequence, we fully describe the
DM via a non-linear pricing rule and determine the volume of trading in each venue. We prove
that, under certain conditions, the presence of the CN results in a positive externality on agents
trading in the DM: more traders earn positive rents and the spread in the DM shrinks. We
illustrate these results by means of several examples with and without a CN.

Finally, having understood the dealer’s problem with exogenous CN prices, we proceed to
show the existence of equilibrium prices. The first step is to specify a price generation mechanism
via which prices in the DM determine those in the CN. Given an exogenous sell/buy price pair
(π−, π+) in the CN, the dealer optimally chooses his pricing schedule, which will most likely not
induce (π−, π+) through the price generation mechanism. We identify conditions under which
this iterative procedure converges to a fixed point: an equilibrium price schedule is such that
the optimal reaction of the dealer to the prices (π−, π+) in the CN induces again (π−, π+).4

Our study of such a feedback loop is novel and it is a crucial component in our analysis of the
interactions between DMs and CNs, which is typically not unidirectional. As an application we
consider a problem of optimal portfolio liquidation where traders can chose between a DM and
a CN (in this particular case a dark pool). We show the presence of the DP leads to a shrinkage
of the spread and prove the existence of an equilibrium price .

Summarizing, our main results are: i) identifying sufficient conditions for the spread in the
DM to shrink in the presence of a CN, and ii) identifying sufficient conditions for the existence of
equilibrium prices. We conclude this introduction with a statement from Section 7.3 in Gomber
et al. (2017), which coincides with our findings:

“It is also possible that all types of dark pool trading activity may not have a uniform
impact on the markets, given the different types of market structure that are clubbed
in its definition.”

1. The model

We consider a quote-driven market for an asset, in which a risk-neutral dealer engages a group of
privately-informed traders. The dealer market (DM for short) is described by a pricing schedule
T : R → R, where q units of the asset are offered to be traded for the amount T (q). As long
as q = 0 is traded in the DM, we may follow the standard approach in Biais et al. (2000) and

4Put differently, this work is based on a particular setting, in which the competitor to the monopoly is not
modeled, and instead adopts an automatic quotation system inspired by some existing financial markets.
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assume that T (0) = 0 and that there is an increasing function t(·) such that

T (q) =

∫ q

0
t(s)ds, q ≥ 0, (1)

and analogously for q ≤ 0. In other words, the marginal price at which the s-th unit is traded
is t(s), which justifies the monotonicity assumption on t(·). However, there may be situations
where the smallest positive quantity traded in the DM, say q0, is strictly positive.5 In that case
there exists T > 0 such that, for q ≥ q0,

T (q) = T +

∫ q

q0

t(s)ds,

and analogously for q ≤ q
0
. T cannot be decomposed as an integral because we have no precise

information about non-traded quantities. In general, pricing schedules are not differentiable at
q

0
and q0. We have that the spread is

S(T ) :=
∣∣T ′(q0+)− T ′(q

0
−)
∣∣ =

∣∣t(q
0
+)− t(q

0
−)
∣∣,

where t(q
0
−) and t(q

0
+) are the best-bid and best-ask prices for traded quantities, respectively.6

In particular, if q0 = q
0

= 0 then the spread is S(T ) = |T ′(0+) − T ′(0−)| = |t(0+) − t(0−)|,
with corresponding best-bid and best-ask prices t(0−) and t(0+). Below we establish conditions
under which small quantities are traded in the DM and mostly focus in this case.

The dealer is exposed the inventory or risk costs C(q) associated with each position q and her
corresponding profits from trading are T (q)−C(q). We assume that C is convex and C(0) = 0.
An archetypical example are quadratic costs: C(q) = α · q2, with α > 0.

The traders’ idiosyncratic characteristics are indexed by θ ∈ Θ := [θ, θ]. Saying that a
trader’s type is θ means that if she trades q shares for T (q) dollars, his utility is given by the
smooth function

u(θ, q)− T (q) := θψ1(q) + ψ2(q)− T (q),

with ψ1(0) = ψ2(0) = 0.7 Having both buyers and sellers requires us to assume θ < 0 < θ.

Besides participating in the DM, each trader may submit an order to a crossing network (CN
for short). This is an alternative trading venue where trades take place at fixed bid/ask prices
π :=

(
π−, π+

)
, but where execution is not guaranteed. For a specific π, the quantity w(θ;π),

which may be negative, represents the expected utility of the θ-type investor who decides to
trade in the CN.8 Following Daniëls et al. (2013) and H-M we focus on the case where a trader

5See Assumption 1.1 and the discussion that follows it.
6We use the notation q0+ and q

0
− to denote right and left limits, respectively.

7The linearity in θ of the traders’ utility is necessary for the convex-analytic techniques that we use below.
Although not without loss of generality, many interesting cases can be phrased in this framework (see Section 4
for and example where θ represents an inventory position in a portfolio-liquidation setting). Striving for more
generality would require the use of u-convex analysis as in Carlier (2001).

8Given that w(·;π) corresponds to an expected utility, it incorporates the probability of non-execution.
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chooses exclusively between abstaining from trading or doing it either in the DM or the CN,
i.e., we do not allow for simultaneous participation in the DM and the CN. We initially take π
as given but later analyze how it is endogenously determined through a feedback loop between
the DM and the CN. It is key to our analysis that the dealer is able to match the utilities that
traders enjoy in the CN, even if this comes at a loss. As we show below, this requires w(·;π) to
be a convex function. Finally, we assume there is a fixed cost of entry κ > 0 to the CN such that
“small” traders do not benefit from off-market participation.9 More precisely, we work under the
following technical assumption:

Assumption 1.1. The traders’ expected utilities from participating in the CN have the form
w(·;π) = w̃(·;π) − κ, where w̃(·;π) is a convex function that satisfies w̃(0;π) = 0 and κ > 0 is
the fixed cost of accessing the CN.

We can see the way in which the execution price π of the CN enters the traders’ expected
utility from trading in it. When π itself is a function of the pricing schedule T of the DM, which
the dealer chooses taking w(·;π) into account, we obtain the aforementioned feedback loop. We
prove in Lemma B.1 that under Assumption 1.1 the pricing schedules are as in Expression 1.

Remark 1.2. The cost of entry κ plays a crucial role in our result concerning the narrowing of
the spread in the presence of a CN. In its absence, we observe that the spread may actually widen
(see Example 2.7). This result is not dissimilar to Proposition 16 in H-M, where no cost of access
plus short-lived information lead to a higher spread in the presence of the CN. Our analysis then
suggests that having a cost of access is in fact desirable, as otherwise the CN may harm price
discovery. We may conclude that CNs may or may not harm price discovery, depending on who
trades in them.

The traders’ third option is to abstain from trading altogether, which can only be the case
for types such that w(θ;π) < 0. Given that, in terms of utilities and costs, this is equivalent
to trading the quantity q = 0 at zero price in the DM, we assume that abstaining types trade
“nothing for nothing” with the dealer. This simplifies the modeling without having any impact on
incentives. In the sequel we refer to u0(·;π) := max{w(·;π), 0} as the traders’ outside option(s).

Trading in the DM is anonymous: the dealer is unable to determine a trader’s type before
he engages her. However, the dealer has ex-ante beliefs about is the distribution of types over
Θ, which are described by density f : Θ → R+. Below we specify the traders’ and the dealer’s
optimization problems and analyze the impact of the CN on the DM, especially on its spread
and the rents earned by agents who trade in it.

Admittedly, we do not consider the case where this probability depends on the orders submitted by other traders.
9Having direct costs of trading the CN is not an uncommon assumption. For instance, the model in H-M

contemplates an access cost c0 and an execution one ce.
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1.1. The traders’ problem

Until further notice we consider π to be fixed. Given the pricing schedule T , the problem of
a trader of type θ is to determine,

qm(θ) := argmax
q∈R

{
u(θ, q)− T (q)

}
and then choose, for qm ∈ qm(θ), between his indirect-utility v(θ) := u

(
θ, qm

)
− T

(
qm
)
from

trading in the DM and his outside option u0(θ;π). As the supremum of affine functions, the
indirect utility function is convex (thus the need for u0 to be convex if we wish to analyze a
situation where the dealer can match the CN). Each pricing schedule induces a segmentation of
the type space. A trader of type θ participates in the DM if v(θ) ≥ u0(θ;π), assuming that ties
are broken in the dealer’s favor. Conversely, a trader of type θ is excluded from trading in the
DM if v(θ) < u0(θ;π). For a given schedule T, we denote the set of excluded types by Θe(T ;π).

A trader is fully serviced if she earns strictly positive profits from interacting with the dealer.

1.2. The dealer’s problem

There is no loss of generality in assuming that the DM is described by books of the form
(q, τ) =

{(
q(θ), τ(θ)

)
, θ ∈ Θ

}
, where τ : Θ → R is absolutely continuous.10 We then write

Θe(q, τ ;π) instead of Θe(T ;π) for the set of excluded types. A trader of type θ could misrepresent
his type by choosing a contract

(
q(θ̃), τ(θ̃)

)
intended for traders of type θ̃ 6= θ. The dealer strives

to avoid this situation because he wants to exploit the information contained in the density of
types. This requires that he offers incentive-compatible books, i.e. those that satisfy

max
θ̃∈Θ

{
u
(
θ, q(θ̃)

)
− τ(θ̃)

}
= u

(
θ, q(θ)

)
− τ(θ),

which we shorthand by writing (q, τ) ∈ IC.

The dealer’s objective is to maximize his expected income from engaging the traders. Taking
into account the impact of the CN on the traders’ optimal actions, his problem is to devise (q∗, τ∗)

so as to solve
P(π) := sup

(q,τ)∈IC

∫
Θc

e(q,τ ;π)

(
τ(θ)− C

(
q(θ)

))
f(θ)dθ.

Remark 1.3. The dealer’s cons function depends on traded quantities but not on the trader’s
type. As a result, our model should be viewed as one where trading is liquidity-driven and where
traders have no private information on the value of the stock.

From the Envelope Theorem, if a book
{

(q(θ), τ(θ)
)
, θ ∈ Θ

}
is incentive compatible, then

q(θ) = ψ−1
1

(
v′(θ)

)
for almost all θ ∈ Θ. Therefore, starting from a convex indirect-utility

10The Revelation Principle (see, e.g. Myerson (1991)) states that, when studying outcomes in hidden-
information, monoplolistic games such as ours, there is no loss of generality in focusing on direct-revelation
mechanisms, i.e. those mechanisms where the set of types indexes the books. Furthermore, from the Taxation
Principle (see e.g. Rochet (1985)) there is also no loss of generality in writing τ(θ) instead of T (q(θ)).
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function we can recover the quantities in the incentive-compatible book that generated. This
allows us to write

v(θ) = θ v′(θ) + ψ2 ◦ ψ−1
1

(
v′(θ)

)
− τ(θ). (2)

We see that the traders’ indirect utility function contains all the information about the quantities
and the pricing schedule and Θc

e(q, τ ;π) = Θc
e(v;π). Introducing the functions

K̃(q) := C
(
ψ−1

1 (q)
)
− ψ2 ◦ ψ−1

1 (q) and i(θ, v, q) := θ · q − v − K̃(q)

and denoting by C the set of all real-valued convex functions over Θ, we can restate the dealer’s
problem as

P(π) = sup
v∈C

∫
Θc

e(v;π)
i
(
θ, v(θ), v′(θ)

)
f(θ)dθ.

We prove in Appendix A that, under suitable assumptions, Problem P(π) admits a solution
that is unique on the set of participating types (we say that it is quasi-unique). Even though
there is no uniqueness on the set of excluded types, from the traders’ point of view there is no
ambiguity: they either trade in the DM or they take their outside option. The non-uniqueness is
also a non-issue for the dealer because it only pertains types that he does service. In the sequel
we denote by v(·;π) “the” solution to Problem P(π). For any v ∈ C, we refer to

Θ0(π) :=
{
θ ∈ Θ | v(θ;π) = 0

}
as the set of reserved traders. By convexity Θ0(π) coincides with some interval [θ0(π), θ0(π)]

and it is precisely at its endpoints where t(0−) and t(0+) are determined.

Remark 1.4. There are several instances where the proofs of our results concern conditions on
points to the left of θ0(π) or to the right of θ0(π) that are analogous. So as to streamline the
presentation, whenever we find ourselves in one of these “either-or” situations, we deal only with
the positive case. Below we compare scenarios with and without the presence of a CN and use
the subindexes “m” and “o” to distinguish between structures or quantities with and without a
CN, respectively.

2. The impact of a crossing network

In this section we look at the impact that a CN has on the spread, on participation and on
the traders’ welfare.

2.1. A benchmark without a CN
We first analyze the benchmark case where the traders do not have access to a CN. The

corresponding dealer’s problem is denoted by Po. The dealer’s income for a given indirect utility
function v ≥ 0 is

I[v] :=

∫
Θ
i
(
θ, v(θ), v′(θ)

)
f(θ)dθ.

8



The Lagrangian for the dealer’s problem incorporates the non-negativity constraint:

L(v, γ) := I[v] +

∫
Θ
v(θ)dγ(θ)︸ ︷︷ ︸
:=〈v,γ〉

, v ∈ C.

The complementary-slackness conditions 〈v, γ〉 = 0 and dγ(θ) = 0 ⇒ v(θ) > 0 tell us that
identifying the types for which dγ(θ) > 0 is equivalent to determining those traders who do
not engage the dealer. In the upcoming sections, the analysis of the market’s segmentation and
the spread ensues by determining the optimal γ, which can be assumed to satisfy γ(θ) = 1.11

Integrating by parts, we may rewrite L(v, γ) as

L(q, γ) =

∫
Θ

((
θ +

F (θ)− γ(θ)

f(θ)

)
ψ1

(
q(θ)

)
− C̃

(
q(θ)

))
f(θ)dθ,

where q(θ) = ψ−1
1

(
v′(θ)

)
and C̃(q) := C(q)−ψ2(q). The first step in determining the optimal γ

is to maximize
q 7→ σ(θ, q,Γ) :=

(
θ +

F (θ)− Γ

f(θ)

)
ψ1(q)− C̃

(
q
)

pointwise for a fixed Γ.12 The sought-after maximizer is13

l(θ,Γ) := K−1
(F (θ) + θ f(θ)− Γ

f(θ)

)
, where K(q) := C̃ ′(q)/ψ′1(q).

For each θ ∈ Θ and Γ ∈ [0, 1], the quantity l(θ,Γ) is a candidate for the optimal q(θ) and
incentive compatibility is verified if the mapping θ 7→ l(θ,Γ) is increasing. This showcases the
connection between q and γ.

Regularity properties of the solutions to variational problems subject to convexity constraints
were studied in Carlier and Lachand-Robert (2001). Their methodology can be directly adapted
to prove the following result, which formalizes the vox populi saying “quality does not jump”.

Proposition 2.1. If v ∈ C is a stationary point of L(v, γ), then it is continuously differentiable.

The fact that, at the optimum, the mapping θ 7→ v′(θ) is continuous, implies that q is also a
continuous function of the types. From Lemma A.3 we have that the quantity q(θ) < 0. Given
that quality does not jump, the complementary-slackness condition implies there is some θ̃ > θ

such that γ(θ) = 0 for θ ∈ [θ, θ̃). We determine θ0 by identifying the type where γ starts to
grow. This requires solving the equation

K−1
(
θ +

F (θ)

f(θ)

)
= 0.

11In technical terms the Lagrange multiplier γ belongs to the space of non-negative functions of bounded
variation BV+(Θ). It follows from Pontryagin’s Maximum Principle and the fact that f is a probability density
function that there is no loss of generality in assuming that γ(θ) = 1.

12We use the notation Γ whenever dealing with an arbitrary but fixed value of γ.
13See Appendix A, in particular Assumption A.1, for conditions that guarantee the uniqueness of l(θ,Γ).
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Furthermore, as v must be convex, once v(θ̂) > 0 then v(θ) > 0 for all θ > θ̂. Hence, θ0 is
determined by solving the equation

K−1
(
θ − 1− F (θ)

f(θ)

)
= 0.

Sufficient conditions for the mapping θ 7→ l(θ,Γ) to be non-decreasing are that the Hazard rates
satisfy

d

dθ

(
F (θ)

f(θ)

)
≥ 0 ≥ d

dθ

(1− F (θ)

f(θ)

)
, (3)

see Biais et al. (2000) for a discussion on this condition. Let us assume that we have determined
Θ0. What remains is then to connect the participation constraint with the spread. Differentiating
Eq. (2) and noting that v′(θ) = ψ1(q(θ)) we have that

τ ′(θ) = q′(θ)
(
θψ′1(q(θ)) + ψ′2(q(θ))

)
.

Observe that τ ′(θ0) and τ ′(θ0) are in fact T ′(0−) and T ′(0+) as, by construction, q(θ0) =

q(θ0) = 0. If we define φ1 := ψ′1(0) and φ2 := ψ′2(0), then we have that the spread is determined
by the expressions

t(0−) = q′(θ0−)
(
θ0φ1 + φ2

)
and t(0+) = q′(θ0+)

(
θ0φ1 + φ2

)
. (4)

Our objective in Section 2.2 is to compare these values to those obtained in the presence of a
crossing network. For simplicity we define Θo := Θ0(vo), where vo solves problem Po.

Before we proceed we present two examples that illustrate the use of the methodology de-
scribed hitherto. The first revisits Mussa and Rosen (1978). The second is slightly more ad-
vanced. We use it below to illustrate the complex structure of optimal pricing schedules and
utilities in the presence of CNs.

Example 2.2. Let us assume that Θ = [−r, r] for some r > 0, that types are uniformly dis-
tributed and that

u(θ, q) = θq.

We also set C(q) = 0.5 q2. Given that a trader of type θ ∈ Θo is brought down to reservation
utility and hence trades q(θ) = 0, the expression

q(θ) = θ +
F (θ)− γ(θ)

f(θ)
= 2θ + r − 2rγ(θ)

implies that the Lagrange multiplier is

γ(θ) =


0 , θ < θ0;

1
2 + θ

r , θ ∈ Θo;

1 , θ > θ0.
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By direct computation we find that θ0 = − r
2 and θ0 = r

2 . In particular, q′(θ0−) = q′(θ0+) = 2

and hence t(0−) = −r and t(0+) = r. Thus, the spread increases linearly in the highest/lowest
type.14

Example 2.3. Let us assume that the distribution of types over Θ = [−1, 1] is given by f(θ) =

(2θ + 3)/4 for θ ∈ [−1, 0) and f(θ) = (3 − 2θ)/4 for θ ∈ [0, 1]; that C(q) = 0.5 q2 and that
u(θ, q)− τ = θ · q + 0.25 q2 − τ. It is straightforward to show that the conditions on the Hazard
rates are satisfied and that

K−1
(
θ +

F (θ)

f(θ)

)
= 2
[3θ2 + 6θ + 2

2θ + 3

]
and K−1

(
θ − 1− F (θ)

f(θ)

)
= 2
[3θ2 − 6θ + 2

2θ − 3

]
.

Furthermore, Θo ≈
[
− 0.423, 0.423

]
. For the spread, we have that t(0−) = q′(θ0)θ0 ≈ −1.359

and t(0+) = q′(θ0)θ0 ≈ 1.359. In order to obtain v we integrate q (ψ1(q) = q) and take into
account that v ≡ 0 over Θo. We plot graph{vo} in Figure 1, as well as the per-type profits of the
dealer.
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Figure 1: An example without a crossing network

2.2. Introducing a crossing network
We now analyze the dealer’s problem when there is a CN that gives a trader of type θ the

expected utility u0(θ;π). Recall that the dealer’s problem is

P(π) = sup
v∈C

∫
Θ

(
θ v′(t)− v(t)− K̃

(
v′(θ)

))
11{Θc

e(v)}(θ)f(θ)dθ.

Dealing with the presence of the zero-one indicator function 11{Θc
e} is quite cumbersome (see,

e.g. Horst and Moreno-Bromberg (2011)) because its domain of definition may change with

14This suggests that spreads decrease if high- and low-type agents opt for an outside option if present; thus,
in equilibrium they do not engage the dealer.
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different book choices. In contrast to the setting studied in Horst and Moreno-Bromberg (2011),
however, here the CN is passive. This lack of non-cooperative-games component allows for
an alternative way to proceed, which, as mentioned in Section 1, has as a key requirement
that, disregarding negative expected unwinding costs, the dealer is able to match the CN. As a
consequence of Assumption 1.1 and the structure of u we can show this is always possible. More
specifically

Proposition 2.4. There exists an incentive compatible book
(
qc, τc

)
such that for almost all

θ ∈ Θ it holds that u
(
θ, qc(θ)

)
− τc(θ) = u0(θ;π).

Observe that finding the incentive compatible book
(
qc, τc

)
that replicates u0(·;π) does not

tell us anything about τc(θ) − C(qc(θ)), which may be negative. In other words, matching the
CN for all types may result in type-wise losses. With Proposition 2.4 in hand, we may make
use of the following accounting trick, which was introduced in Jullien (2003): let us assume that
the dealer had access to a fictitious market such that the unwinding costs from trading in it,
denoted in the sequel by Cc, satisfy Cc(q(θ)) = τ(θ). In this way, we may again assume that
the dealer trades with all market participants, but now his costs of unwinding are given by the
function C : R→ R defined as

C(q) := min
{
C(q), Cc(q)

}
, q ∈ R.

In terms of incentives, nothing is distorted by introducing the cost function C, but we must
identify the points where there is switching from using C to using Cc and vice versa. These
switching points determine the market’s segmentation.

If we define, for any traded quantity q, the function C̃(q) := C
(
q
)
− ψ2

(
q
)
, then we may

re-use the machinery from Section 2.1 with minor modifications;15 namely, denoting by I the
dealer’s utility corresponding to the cost function C, we may write the Lagrangian of the dealer’s
problem as

L(v, γ) := I[v] + 〈v − u0(·;π), γ〉,

with corresponding complementary-slackness conditions 〈v − u0(·;π), γ〉 = 0 and dγ(θ) = 0 ⇒
v(θ) > u0(·;π). As before, identifying the types for which dγ(θ) > 0 is equivalent to determining
those traders who take their outside option.16 Whether these types are reserved or excluded,
however, depends on the strict positivity of u0(·;π). From here on, we may proceed as in
Section 2.1 in order to find the quantities that the dealer chooses to offer. Strictly speaking we
should find the pointwise maximizer in q of the expression(

θ +
F (θ)− Γ

f(θ)

)
ψ1(q)−K(q),

where K(q) := C̃(q)−ψ2(q). This may fortunately be avoided, given that whenever C(q) = Cc(q),

15Observe that Assumption 1.1 and Proposition 2.4 imply that C̃ satisfies Assumption A.1.
16See Theorem 2 in Jullien (2003) and the discussion that follows.
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the participation constraint binds and q(θ) = qc(θ). Next, we study the connection between the
solution to the fictitious problem P(π) and that to P(π).

Whenever the participation constraint does not bind, the dealer selects the quantity to be
chosen via the pointwise maximization of the mapping q 7→ σ(θ, q,Γ). What makes the current
problem trickier than the case without a CN is that now we must pay more attention to the
evolution of the multiplier γ. If we compare l(θ, 0) and l(θ, 1) to qc(θ) we may pinpoint the set
where the participation constraint may bind. Observe that

{
l(θ, 1), θ ∈ Θ

}
and

{
l(θ, 0), θ ∈ Θ

}
are the sets of the lowest and highest quantities the dealer may offer in an individually-rational
way. Hence, as long as l(θ, 1) ≤ qc(θ) ≤ l(θ, 0), there is the possibility of profitable matching.

There might be instances where the participation constraint is binding for some type θ ∈ Θ,
i.e.

(
q(θ), τ(θ)

)
=
(
qc(θ), τc(θ)

)
, and τc(θ) − C

(
qc(θ)

)
< 0. In such cases C

(
qc(θ)

)
= Cc

(
qc(θ)

)
and θ ∈ Θe(v) for the corresponding indirect utility function, and we say there is exclusion.

Remark 2.5. It is at this point that the quasi-uniqueness mentioned in Section 1.2 can be
addressed. The dealer’s problem P(π) using the cost function C results in the condition

(
i(θ, v(θ), v′(θ))

)
+

=
(
i(θ, v(θ), v′(θ))

)
being trivially satisfied. As a consequence, problem P(π) admits a unique solution. The lat-
ter coincides, by construction, with the solution to P(π) whenever C(q(θ)) = C(q(θ)). The
caveat is that the solution to problem P(π) is blind towards what is offered to excluded types, as
their outside option is costlessly matched (they are effectively reserved). Constructing incentive
compatible contracts for the excluded types is, thanks to the convexity of the indirect utility func-
tion, relatively simple. For instance if an interval of types (θ1, θ2) were excluded (but θ1 and
θ2 participated) one could consider any two supporting lines to graph{v(·;π)} at (θ1, v(θ1;π))

and (θ2, v(θ2;π)). From the resulting indirect-utility function on (θ1, θ2) one could extract the
corresponding quantities and prices. The resulting global convexity of the indirect-utility function
offered by the dealer would imply that all incentives would remain unchanged. Whether the dealer
would suffer losses from the contracts offered to types on (θ1, θ2) would be irrelevant, given the
corresponding traders would not participate.

As mentioned above, here it is not necessary to determine γ(θ) in order to do likewise
with q(θ). On the other hand, however, if we interpret γ as the shadow cost of satisfying the
participation constraint, we may wish to identify the multiplier so as to have a measure of the
impact of the CN on the dealer’s profits. The following result, which deals with points where
there is switching between matching and fully servicing, extends Proposition 2.1.

Proposition 2.6. For π ∈ R2 given, let θ̃ ∈ Θ be such that there exists ε > 0 such that
v(θ;π) = u0(θ;π) on (θ̃ − ε, θ̃] and v(θ;π) > u0(θ;π) on (θ̃, θ̃ + ε]. Furthermore, assume that

∫ θ̃

θ̃−ε

(
τ(θ)− C(q(θ))

)
f(θ)dθ > 0,

13



where
{(
q(θ), τ(θ)

)
, θ ∈ Θ

}
implements v(·;π). In other words, there is profitable matching on

(θ̃− ε, θ̃] and the dealer fully services types on (θ̃, θ̃+ ε]. Then ∂v(θ̃;π) is a singleton. The result
also holds if the order of the matching and full-servicing intervals is switched.

The rationale behind Proposition 2.6 is that, as long as the dealer is able to match the
traders’ outside option without incurring in a loss, it is possible to normalize the latter to zero
and directly apply Proposition 2.1. This is, naturally, not the case when matching u0 results
in losses. We put Proposition 2.6 to work in Example 2.12. We show in the following example
how, in the absence of Assumption 1.1, the presence of the CN may lead to a widening of the
spread.

Example 2.7. We revisit Example 2.2 with r = 1, i.e. the traders’ types span [−1, 1] and they
are uniformly distributed. We consider two different expected utilities from trading in the CN;
namely,

w̃
(
θ; (−0.05, 0.05)

)
=

−0.05 θ, if θ ≤ 0;

0.05 θ, if θ > 0;

and w
(
θ, (−0.05, 0.05)

)
= w̃

(
θ, (−0.05, 0.05)

)
−1/50. In other words, these two expected utilities

from trading in the CN differ only in the access cost (absent in w̃). Clearly, the dealer can
match w̃ by offering the incentive-compatible book

(
(−0.05, 0), (0.05, 0)

)
. However, trading either

of this contract with any of the dealers will result in a loss. As a consequence, there are no
reserved traders and the type space is partitioned only into a set of excluded types (in this case
(θe, θe) = (−0.55, 0.55)) and one of fully serviced ones (in this case [−1, θe] ∪ [θe, 1]). The first
positive quantity traded in the DM is q = 0.1003 for T (0.1003) = 0.0277. Therefore the pricing
schedule in the DM is, for q ≥ 0.1003,

T (q) = 0.0277 +

∫ q

0.1003
t(s)ds,

where t(s) = 2(v′)−1(s) and v is the corresponding indirect utility function. In particular, the
spread is given by (the situation for θ < 0 is symmetric as in Example 2.2)

T =
∣∣t(0.1003)− t(−0.1003)

∣∣ = 2
∣∣0.55− (−0.55)

∣∣ = 2.2;

whereas the spread in Example 2.2 for r = 1 equals two. In other words, we observe a widening
of the spread in the presence of a CN. This is due to the absence of access costs. If we repeat the
previous exercise, but now using w̃ as the expected utility of trading in the CN, we have that the
set of reserved types is Θ0 = (−0.4125, 0.4125), no types are excluded and the spread is 1.625.
We present the ask side of the DM in Figure 2.

Before moving on, we present below a modification to Example 2.3 that shows how even
traders without access to a non-trivial outside option benefit from the presence of the CN and
that the optimal Lagrange multiplier need not be continuous.
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Figure 2: The indirect-utility functions and CN expected utilities with(out) access costs.

Example 2.8. Let f, Θ, C and u be as in Example 2.3 and assume that the CN offers the
traders the following expected profits:

w(θ; (3.2, 3.2)) =


−0.975θ − 0.52, if θ ≤ − 8

15 ;

0.975θ − 0.52, if θ ≥ 8
15 ;

convex and negative for θ ∈ (− 8
15 ,

8
15).

Matching this outside option would require the dealer to offer the book (±0.975, 0.52). This is
profitable, hence the indirect utility never lies below u0. To illustrate this, we have plotted the
indirect-utility function in Figure 3(a). It strictly dominates the one plotted in Figure 1(a) for
all types who earn positive profits. The smooth pasting condition (l(θ, γ(θ)) = qc(θ) where v
touches u0, i.e. in ±0.675) determines the optimal Lagrange multiplier, namely γ(−1) = 0 and
γ ≡ 0.030 on (−1,−0.389]. For positive types we obtain symmetrically γ(1) = 1 and γ ≡ 0.970

on [0.389, 1). The new spread, given by
(
t(0−), t(0+)

)
= (−1.282, 1.282), is strictly smaller than

in the case without a CN.

The following theorem, one of our main results, analyzes the impact of the CN on the DM and
the traders’ welfare. Its proof can be found in AppendixB.

Theorem 2.9. For a given price π = (π−, π+) let Sm and So be the spreads with and without the
presence of the crossing network and vo and v(·;π) the corresponding indirect-utility functions,
respectively. In the presence of the crossing network

1. less types are reserved, i.e. Θ0(vo) ⊇ Θ0(π). Furthermore, the inclusion is strict if there
exists θ ∈ Θ such that u0(θ;π) > vo(θ);

2. if the types are uniformly distributed (f ≡ (θ − θ)−1) the spread narrows, i.e. So ≥ Sm;
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Figure 3: An example without exclusion

3. the type-wise welfare increases, i.e. vo(θ) ≤ v(θ;π) for all θ ∈ Θ.

Remark 2.10. The results of Theorem 2.9 are borne by some of the empirical literature. For
instance, Gresse (2006) concludes that

“Looking at the relationship between CN trading and the DM liquidity, spreads are
negatively related to CN-executed volumes.”

Buti et al. (2011) also provide evidence that high CN activity is associated with narrower spreads,
although in their case no causality is concluded. Foley and Putnin, š (2016) show that two-sided
dark pools are beneficial, whereas the impact of one-sided dark pools is not clear and has an
adverse-selection effect.

We finalize this section with two examples that showcase the results obtained thus far.
Example 2.11 showcases that, in the simple case where the outside option is such that the dealer
(only) excludes all high-enough (in absolute value) types, then the results of Theorem 2.9 follow
trivially.

Example 2.11. Let us revisit Example 2.2 with an extremely steep outside option that warrants
exclusion, namely, for r0 < r let

u0(θ) =

∞, if θ ∈ [−r,−r0)
⋃

(r0, r];

0, otherwise.

Recall that, for a given value Γ of the Lagrange multiplier, the corresponding quantity is

q(θ; Γ) := 2θ + r − 2rΓ.

In Example 2.2 the participation constraint does not bind for high types. In particular, γ ≡ 0 on
[−r, θ0) and to find the left-hand endpoint of the reserved set we set Γ = 0 and solve 2θ+r = 0. In
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the current setting, the participation constraint binds for θ < −r0 and the multiplier is constant
on (−r0, θ0(Γ)), where

θ0(Γ) := −r
2

[
1− 2Γ

]
.

By construction, the choice of Γ bears no weight on the trader types that are serviced to the left
of θ = −r0, but only on how many additional low types benefit from the presence of the outside
option. By integrating q(θ; Γ) and noting that the corresponding indirect-utility function v(·; Γ)

must satisfy v(θ0(Γ); Γ) = 0, we have, for θ ∈ [−r0, θ0(Γ)]

v(θ; Γ) = θ2 + θr
[
1− 2Γ

]
+
r2

4

[
1− 2Γ

]2
.

Given that the indirect-utility function also satisfies v(θ; Γ) = θq(θ; Γ) − τ(θ; Γ), we have that
the DM on [−r0, θ0(Γ)] is described by the quantity-price pairs

(
q(θ; Γ), θ2 − r2

4

[
1− 2Γ

]2)
. As a

consequence, the per-type profit is

Π(θ; Γ) := −θ2 − 3

4
r2
[
1− 2Γ

]2 − 2θr
[
1− 2Γ

]
,

where the third term on the right-hand side is positive and dominates the first two. Finally, we
have that each choice of Γ results in the dealer obtaining the aggregate profits from negative types

P (Γ) :=
1

2r

∫ θ0(Γ)

−r0
Π(θ; Γ)dθ.

The mapping Γ 7→ P (Γ) is strictly concave and the first-order conditions yield that it is maximized
at Γ = (r− r0)/(2r). As a result θ0(Γ) = −r0/2 and v(θ; Γ) = θ2 + r0θ+ r2

0/4, which correspond
to the boundary of the reserved set and the indirect-utility function for negative trader types in
the problem without a CN on [−r0, r0].

Example 2.12. We stay with the basic setup of Examples 2.3 and 2.8, but now assume that
u0(θ;π) =

(
1−π+

3 θ6/5 − 0.001
)

+
for θ ≥ 0 and u0(θ;π) ≡ 0 otherwise. For any type θ such that

u0(θ) > 0 it holds that

(
qc(θ), τc(θ)

)
=
(2

5
(1− π+)θ1/5,

2

5
(1− π+)θ6/5 +

1

25
(1− π+)2θ2/5 −

(1

3
(1− π+)θ6/5 − 0.001

)
+

)
.

We assume π = (0, 1/2). The first thing to notice is that the dealer’s per-type profit for of-
fering (qc(θ), τc(θ)), i.e. τc(θ) − C(qc(θ)) = θ6/5/30 − θ2/5/100 + 0.001, is negative for types
θ ∈ (0.0035, 0.1667). On the other hand, the inequality u0(θ; 1/2) ≥ 0 only holds for θ ≥ 0.014.

Combining both arguments we see that Θe(π) ⊂ (0.014, 0.1667). Next we observe that the in-
equality

l(θ, 1) = K−1
(
θ − 1− F (θ)

f(θ)

)
≥

5
√
θ

5

holds for all θ ∈ [0.4761, 1]. As a consequence, we have that profitable matching may occur on
the interval (0.1667, 0.4761), over which q(θ) = qc(θ) and C

(
q(θ)

)
= C

(
q(θ)

)
. Furthermore,
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Proposition 2.6 implies that the corresponding indirect utility function is differentiable at θ =

0.4761. In order to obtain v(θ;π) for θ ∈ [0.4761, 1], we integrate l(·, 1) and determine the
corresponding integration constant c by equating

2

∫ 0.4761

0

(
3θ2 − 6θ + 2

2θ − 3

)
dθ + c =

1

6
(0.4761)6/5 − 0.001.

We know from the example without a CN that γ(t) = 0 for θ ∈ [−1,−0.423). On [−0.423, 0) the
multiplier must satisfy

K−1
(
θ − γ(θ)− F (θ)

f(θ)

)
= 0,

which results in γ(θ) = (3θ2 + 6θ + 2)/4 on the said interval. What remains to be determined
is θ0 and γ(θ0). To this end, we define the family of functions v(·; Γ) such that v′(θ; Γ) = l(θ,Γ)

whenever this quantity is positive and v(θ; Γ) = 0 for θ ∈ [0, θ(Γ)], where θ(Γ) is the solution to
the equation l(θ,Γ) = 0. As γ(0) = 0.5, we have that Γ > 0.5.17 In fact, Γ = γ(θ0) = 0.5105,

θ0 = 0.007 and the intersection of v(·; Γ) and u0(·; 1/2) occurs at θ = 0.0159.

Summarizing, the types on [−1,−0.423)∪ (0.007, 0.0159]∪ (0.1667, 1] are fully serviced, those
on [−0.423, 0.007] are reserved and the ones that lie on (0.0159, 0.1667) are excluded. The left-
hand side of the spread is the same as in the example without a CN, whereas the right-hand side
is t(0+) = 0.0281. This is significantly smaller than in Example 2.3.

Determining γ(θ) on (0, 0.007] is relatively simple, as we again must solve l(θ, γ(θ)) = 0,

which results in γ(θ) = (−3θ2 + 6θ + 2)/4. Finally, in order to determine γ on Θe(π) we must
rewrite the virtual surplus using C(q(θ)) = τc(θ), which results in

C(q) = (55/6)q6 − (1/4)q2 + 0.001.

The pointwise maximization of the resulting virtual surplus must equal qc(θ) = 5
√
θ/5. After some

lengthy arithmetic that we choose to spare the reader from, we obtain

γ(θ) = F (θ)− f(θ)

[
55qc(θ)

5 − θ
]

= F (θ) for θ ∈ Θe(π).

Finally, in the profitable-matching region we solve l(θ, γ(θ)) = 5
√
θ/5 so as to find the multiplier,

which yields

γ(θ) = F (θ)− f(θ)

[
1

10
θ1/5 − θ

]
for θ ∈ [0.1667, 0.4761).

or

γ(θ) =
1

10
θ1/5 · 2θ − 3

4
− 3θ2 − 6θ − 2

4
for θ ∈ [0.1667, 0.4761).

Observe that, in contrast with Example 2.8, here γ(θ) = 1 for types that are strictly smaller
than one. This means that the rightmost types do not profit from the introduction of the CN via

17Pasting when passing from servicing to excluding need not be smooth.
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changes in the quantities they are offered, but rather from changes in the corresponding prices.
Intuitively speaking this has to do with how steep the outside option is for large types and, as a
consequence, whether or not it is matched over a non-trivial interval.

We present in Figure 4(a) the indirect utilities for positive types (the ones for negative ones
being the same as in Figure 1(a)). The values of γ have been plotted in Figure 4(b). In Figure 5
we provide a magnification around small values of θ so as to highlight the switching between reser-
vation, full servicing and exclusion. Observe the jump of the Lagrange multiplier at the boundary
between fully-serviced and excluded types (Figure 5(b)) and between excluded and matched ones
(Figure 4(b)).
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Figure 5: An example with exclusion (magnified)

We revisit this example in the upcoming section, where we look into the existence of equi-
librium prices in the CN.
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3. An equilibrium price in the crossing network

Motivated by the fact that prices in CNs are obtained from those in a primary venue, it is
natural to assume that pricing in the DM has an impact on the pricing schedule π. For example,
trading in the CN could take place at the best-bid and best-ask prices of the primary market.
We analyze such an example, within a portfolio-liquidation framework, in Section 4.

The pecuniary interaction between the DM and the CN, however, is not unidirectional:
the dealer anticipates the effect that his choice of book structure has on the CN. Our main
focus is the impact of the CN on the spread in the DM. Specifically, if we denote by t(0;π) :=(
t(0−;π), t(0+;π)

)
the best bid-ask prices in the DM for a given CN price schedule π, then

we call π∗ an equilibrium price if π∗ = t(0;π∗). In this section we analyze the existence of an
equilibrium price π∗.

We make the following natural assumption on the impact of π on the traders’ outside option.

Assumption 3.1. Let π1 ≤ π2, where “≤” is the lexicographic order in R2, then for all θ ∈ Θ

it holds that u0(θ;π1) ≥ u0(θ;π2). Furthermore, we assume that there exists
(
π−, π+

)
∈ R2 such

that w(·;π) ≤ 0 for all (π−, π+) such that π− ≤ π− and π+ ≤ π+.

Observe that, from Assumption 3.1, there is no loss of generality in assuming that π∗ belongs
to some closed and bounded subset of R2, which we denote by Π. As a consequence we have
that t(0; ·) : Π→ Π.

We are now ready to state of our final main result, whose proof can be found in Appendix C.

Theorem 3.2. If types are uniformly distributed, then the mapping π 7→ t(0;π) has a fixed
point.

Summarizing, we have that the dealer can correctly anticipate the movements in prices in
the CN when he designs the optimal pricing schedule for the DM. Furthermore, the presence of
the CN is beneficial in terms of liquidity, market participation and the traders’ welfare.

Remark 3.3. The requirement of uniformly distributed types can be relaxed to the extent that if
f and K are such that Conditions (B1) are satisfied, then the required monotonicity properties
still apply. Unfortunately, these conditions cannot be verified ex-ante because they include the
end points of the set of reserved traders.

Example 3.4. Let us go back to Example 2.12 (with exclusion), but introduce the feedback loop
between the DM and the CN through the iteration πi+1 = t(0;πi). We initialize the recursion by
setting π0 = (0, 1/2) and κ = 0.001, which are the parameters in the aforementioned example.

We observe a very swift convergence. Indeed, it takes only four iterations to reach ‖v(·;πi)−
v(·;πi+1)‖∞ ≤ 10−5 and the indirect-utility functions in the third and fourth iteration are almost
indistinguishable. The equilibrium price is π∗ = (0, 0.015). We present in Figure 6 the plots of
the first four iterates. It is evident that each iteration results in a smaller set of reserved traders
and in a higher indirect utility for all types. The spreads, the right endpoints of the reserved
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Figure 6: The indirect-utility functions corresponding to the iteration πi+1 = t(0;πi).

regions, the Lagrange multipliers at the right endpoint of the reserved regions and the exclusion
regions are provided in Table 1. It is interesting to observe that, as the spread decreases to its
equilibrium level, the number of trader types that are reserved decreases and the sets of excluded
types grow (in terms of inclusions). This last fact obeys the fact that, when the traders have a
more attractive outside option, it is harder for the dealer to match it profitably.

Table 1: The numbers of the feedback loop

π+ Θo Γ Θe(π+)

1/2 [-0.423,0.0070] 0.5105 [0.0159, 0.1667]
0.0281 [-0.423,0.0040] 0.5061 [0.0083, 0.4872]
0.0161 [-0.423,0.0040] 0.5060 [0.0082, 0.4954]
0.0158 [-0.423,0.0040] 0.5060 [0.0082, 0.4955]

4. Portfolio liquidation and dark-pool trading

In this section we present an application of our methodology to portfolio liquidation. We
assume that the market participants’ aim is to liquidate part of their current holdings on some
traded asset. The sizes of the traders’ portfolios are heterogeneous and saying that a trader’s
type is θ means that she is short θ shares of the asset prior to trading (i.e. θ < 0 implies the
trader has a long position on the stock). We set Θ = [−1, 1] and f ≡ 1/2. If a trader of type θ
trades q shares for τ dollars, his utility is

û(θ, q)− τ := −α(θ − q)2 − τ,
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where 0 < α denotes the traders’ (homogeneous) sensitivity towards inventory holdings. Notice
that −αθ2 is the type-dependent reservation utility of a trader of type θ. If we “normalize" the
said utility to zero, we may write

u(θ, q)− τ = 2αq︸︷︷︸
ψ1(q)

θ−αq2︸ ︷︷ ︸
ψ2(q)

−τ. (5)

In this example the crossing network takes the form of a dark pool (DP for short). Choosing to
trade in the latter entails two kinds of costs for the traders: On the one hand, there is a direct,
fixed cost κ > 0 of engaging in dark-pool trading. On the other hand, execution in the DP is not
guaranteed. We denote by p ∈ [0, 1] the probability that an order is executed where we assume
for simplicity that the probability of order execution is independent of the order size. Pricing in
the DP is linear. Namely, for given ask and bid execution prices π = (πa, πb), the utility that a
trader of type θ extracts from submitting an order of q shares to be traded in the DP is

p
[
(2θα− πj)q − αq2

]
− κ, with j = a if θ ≤ 0 and j = b otherwise,

where again we have normalized reservation utilities to zero. We make the natural assumption
that maximal trades cannot exceed the position that the corresponding agents hold. In partic-
ular, after trading in the DP, no one has gone from holding a long position to holding a short
one and vice versa. The problem of optimal submission to the DP for a θ-type trader is

max
q

{
p
[
(2θα− πj)q − αq2

]}
,

with j = a, b depending on the sign of θ, as above. Absent our assumption on maximal trade
size this would yield the optimal submission level

q̃d(θ) = θ − πj
2α
.

With restricted trades, however, we have that

qd(θ) =


θ, if θ ≤ 0;

0, if θ ∈ (0, πb2α);

θ − πb
2α , if θ ∈ [ πb2α , 1].

Note there is no loss of generality in assuming that π < 2α, which establishes a link between
trader impatience and the DP execution price. We obtain that opting for the DP results in a
trader of type θ enjoying the expected utility

w(θ;π) =


(2p− 1)αθ2 − pπaθ − κ, if θ ≤ 0;

−κ, if θ ∈ (0, πb2α);

αp
(
θ − πb

2α

)2 − κ, if θ ∈ [ πb2α , 1].
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In order for w(·;π) to be convex, it must hold that p > 1/2. In other words, the probability
of execution in the DP cannot be too small. Under this condition Assumption 1.1 is clearly
satisfied.

Remark 4.1. Observe that, even though the optimal submission level qd is independent of the
probability of execution p, that is not the case for the traders’ expected utilities of submitting an
order to the DP. Given that the agents’ outside options depend on the value of p, so does the
spread, as we show below.

Finally, we assume that the dealer’s cost of unwinding a portfolio of size q is C(q) = βq2

where β > 0.

4.1. The dealer market without a dark pool

Unlike trading in the DP, we do not make a maximal-trade-size assumption when agents
engage the dealer. Given that trader types are uniformly distributed, Condition (3) on the
Hazard rates is trivially satisfied. Therefore, in the absence of a DP, the dealer’s optimal choices
of quantities are, for negative types

l(θ, 0) = K−1
(
θ +

F (θ)

f(θ)

)
=

α

α+ β

(
2θ + 1

)
and for positive types

l(θ, 1) = K−1
(
θ − 1− F (θ)

f(θ)

)
=

α

α+ β

(
2θ − 1

)
,

where the boundary of Θ0 is given by

l(θ, 0) = 0⇒ θ0 = −1

2
and l(θ, 1) = 0⇒ θ0 =

1

2
.

Recall that from the Envelope Theorem and the convexity of the indirect-utility function we have
that v(θ) = θ v′(θ) +ψ2 ◦ψ−1

1

(
v′(θ)

)
− τ(θ) and v′(θ) = ψ1

(
q(θ)

)
= 2αq(θ). The indirect-utility

function is then

v(θ) =

 2α2

α+β (θ2 + θ)− α2

4(α+β) , θ ≤ θ0;

2α2

α+β (θ2 − θ)− α2

4(α+β) , θ ≥ θ0.

When it comes to the spread, observe that q′ ≡ 2α
α+β , φ1 = ψ′1(0) = 2α and φ2 = ψ′2(0) = 0,

which from Expression (4) yields

[t(0−), t(0+)] =
4α2

α+ β

[
− 1

2
,
1

2

]
.

Below we analyze how the spread changes with the introduction of the DP.

23



4.2. The impact of a dark pool

Recall that, combining the no-trade option and the possibility of trading in the DP, the
trader’s outside option is

u0(θ;π) = max
{

w(θ;π), 0
}

θ ∈ Θ.

We denote by ε1 and ε2 the negative and positive roots of the equation w(θ;π) = 0, respectively.
In other words, these are the boundary types where the agents’ outside option yields positive
expected utility. We first take an exogenous execution price π and determine, for each θ ∈ Θ,

what is the quantity-price pair
(
qc(θ;π), τc(θ;π)

)
that the dealer must offer so as to match a DP

with execution price π. Using the relation 2αqc(θ;π) = u′0(θ;π) we obtain

qc(θ;π) =

(2p− 1)θ − pπa2α , if θ ≤ ε1;

p
(
θ − πb

2α

)
, if θ ≥ ε2.

and
τc(θ;π) = κ+ 2αqc(θ;π)− qc(θ;π)2 − u0(θ;π).

For agents who participate in the DM, we again have their indirect utility function satisfies

v′(θ)

2α
= l
(
θ, γ(θ)

)
. (6)

In order to determine the spread in the presence of the DP we must determine θ0,m(π) and
θ0,m(π), the left and right endpoints of the set of reserved types in the presence of the DP,
respectively, together with γ

(
θ0,m

)
and γ

(
θ0,m

)
. For an arbitrary Γ ∈ [0, 1] we have

l(θ,Γ) =
α

α+ β

[
2θ + 1− 2Γ

]
.

Indexed by Γ, the candidates for θ0,m(π) are then given by θ0,m(Γ;π) = Γ − 1/2. As it must
hold that θ0,m(Γ;π) ≤ 0, then Γ ≤ 1/2. Let θ̃m(Γ) be the first intersection to the left of
θ0,m(Γ) of v(·; Γ) and u0(·;π), then, integrating Expression (6) with γ(θ) = Γ we have that, on
[θ̃m(Γ;π), θ0,m(Γ;π)], the traders’ indirect utility is given by

v(θ; Γ) =
2α2

α+ β

(
θ2 + (1− 2Γ)θ

)
+ c1,m, (7)

where c1,m is determined by the equation

v
(
θ0,m(Γ;π); Γ

)
= 0.

Unless the inequality Γ ≤ 1/2 is tight, in which case the types below θ̃m(Γ) are excluded,
Proposition 2.6 implies that Γ must be chosen so as to satisfy the smooth-pasting condition
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u′0
(
θ̃m(Γ;π);π

)
= v′

(
θ̃m(Γ;π);π

)
, which is equivalent to

θ̃m(Γ;π) = −
[ 2α

α+ β
− (2p− 1)

]−1[ α

α+ β
(1− 2Γ) +

pπ

2α

]
. (8)

Observe that, besides the requirement Γ ≥ 1/2, the strategy to determine θ0,m(π) is exactly the
same as for θ0,m(π), with θ̂m(Γ;π) playing the role of θ̃m(Γ;π) for positive types. Summarizing,
from Eq. (7) we observe that, if Γ− and Γ+ correspond to the optimal choices for the negative
and positive endpoints of Θ0(π), then

q′
(
θ0,m(Γ−;π)

)
=

1

2α
v′′
(
θ0,m(Γ−;π); Γ−

)
=

1

2α
v′′
(
θ0,m(Γ+;π); Γ+

)
= q′

(
θ0,m(Γ+;π)

)
=

2α

α+ β
.

The spread is then

|tm(0+)− tm(0−)| = 4α2

α+ β
|θ0,m(Γ+;π)− θ0,m(Γ−;π)| ≤ 4α2

α+ β
|θ0 − θ0|,

i.e. the presence of a dark pool narrows the spread in the DM. This effect is strict if θ̃m(Γ−;π) >

−1 or θ̂m(Γ+;π) < 1, i.e. as soon as the presence of the DP is nontrivial. This is because these
conditions imply that either Γ− > 0 or Γ+ < 1 which readily implies

θ0,m(Γ−;π) = Γ− −
1

2
> θ0 or θ0,m(Γ+;π) = Γ+ −

1

2
< θ0.

Given that u0(·;π) satisfies Assumption 3.1, Theorem 3.2 may be applied directly to guarantee
the existence of an equilibrium price π∗.

Remark 4.2. It follows from Eq. (8) that the optimal Γ− and Γ+ that determine the spread
are (implicit) functions of the probability of execution p. Intuitively, a higher p leads to a more
attractive outside option for higher types and, as a consequence, to a smaller spread. The de-
termination of the optimal Γ−(p) and Γ+(p), however, must ensue through the maximization
of the dealer’s objective as a function of Γ, which cannot be done unless we specify the model’s
parameters.

5. Conclusions

We have presented a hidden-information model to study the structure of the limit-order
book of a dealer who provides liquidity to traders of unknown preferences. Furthermore, we
have established a link between the traders’ indirect-utility function and the bid-ask spread in
the DM. Making use of the aforementioned link, we have studied how the presence of a type-
dependent outside option impacts the spread of the DM, as well as the set of trader types who
participate in the DM and their welfare. In particular, we have shown, in a portfolio-liquidation
setting, that the presence of a dark pool results in a shrinkage of the spread in the DM. Finally,
we have established that, under certain conditions, the feedback loop introduced by the impact
that the spread has on the structure of the outside option leads to an equilibrium price.
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Appendices

Appendix A Existence of a solution to Problem P(π)

In this appendix we prove the existence of a solution to the dealer’s problem in the presence
of a CN. Some of the arguments are somewhat standard, but we give them for completeness.
We require the following technical assumption:

Assumption A.1. The functions ψ1, ψ2 and C are such that ψ′1(q) > 0 and C(q)− ψ2(q) ≥ 0

hold for all q ∈ R and K̃ is strictly convex, coercive,18 continuously differentiable and satisfies
K̃ ′(0) = 0.

The first important result that we require is that the dealer’s optimal choices lead to him
never losing money on types that participate.

Proposition A.2. If (q∗, τ∗) : Θ→ R2 is an optimal allocation, then for all participating types
it holds that τ∗(θ)− C

(
q∗(θ)

)
≥ 0.

Proof. Assume the contrary, i.e. that the set

Θ̃ :=
{
θ | v(θ;π) ≥ u0(θ;π), τ∗(θ) < C

(
q∗(θ)

)}
,

where v(θ;π) = u
(
θ, q∗(θ)

)
− τ∗(θ) has positive measure. Define a new pricing schedule via

τ̃(θ) := max
{
τ∗(θ), C

(
q∗(θ)

)}
.

The incentives for types in Θ̃c do not change because their prices remain unchanged, whereas
prices for others have increased. Profits corresponding to trading with types in Θ̃ increase to
zero. As a consequence the dealer’s welfare strictly increases, which violates the optimality of
(q∗, τ∗). �

A consequence of Proposition A.2 is that, together with Assumption A.1, it allows us to
restrict the admissible set of the dealer’s problem to a compact one. We prove this in several
steps.

Lemma A.3. If v : Θ→ R is a non-negative, convex function that solves P, then v(0) = 0.

Proof. Assume that v ∈ C solves P and v(0) > 0. This implies that ψ2

(
q(0)

)
−τ(0) ≥ 0. Given

that, from Assumption 1.1, a trader of type θ = 0 has no access to a profitable outside option,
then she participates. From Proposition A.2 it must then hold that τ(0) ≥ C

(
q(0)

)
which in

turn implies that ψ2

(
q(0)

)
≥ C

(
q(0)

)
. This relation, however, can only hold for q(0) = 0, which

implies that τ(0) = v(0) = 0. �

18By coercive we mean that lim|q|→∞ C(q) =∞.
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Lemma A.4. If v ∈ C solves P, then |∂v| ≤ q.

Proof. From Assumption A.1 and the compactness of Θ we have that the mapping q 7→ i(θ, v, q)
tends to −∞ as |q| → ∞ uniformly on Θ for v ≥ 0. From Proposition A.2 i

(
θ, v(θ), v′(θ)

)
must

be non-negative for all participating types, which concludes the proof. �

As q could depend on π, we define

A(π) := {v ∈ C | v ≥ 0, v(0) = 0, |∂v| ≤ q}

as new admissibility set for problem P(π). The previous results show that if we replace C by
A(π) in the definition of P(π), the solution to the problem does not change.

Corollary A.5. The admissible set A ⊂ C of Problem P is uniformly bounded and uniformly
equicontinuous.

Proof. From Lemmas A.3 and A.4, a uniform bound for all v ∈ A is given by maxθ∈Θ

{
u0(θ;π)

}
+

q‖Θ‖. Lemma A.4 guarantees that for any v ∈ A it holds that |∂v| ≤ q. In other words, A is
composed of convex functions whose subdifferentials are uniformly bounded, hence A is uni-
formly equicontinuous. �

Notice that, when it comes to determining quantities and prices for trader types who do
participate, Proposition A.2 results in the dealer having to solve the problem

P̃(π) :=

{
supv∈A

∫
Θ

(
i
(
θ, v(θ), v′(θ)

))
+
f(θ)dθ

s.t. v(θ) ≥ u0(θ;π) for all θ ∈ Θ.

The last auxiliary result that we need is the following proposition, whose proof is a direct
consequence of Fatou’s Lemma, together with Lemmas A.3 and A.4.

Proposition A.6. The mapping

v 7→
∫

Θ

(
i(θ, v(θ), v′(θ))

)
+
f(θ)dθ

is upper semi-continuous in A with respect to uniform convergence.

We are now ready to prove existence of a solution to the principal’s problem: Assume that
A
⋂{

v ∈ C|v(·) ≥ u0(·;π)
}

is non-empty and consider a maximizing sequence
{
ṽn
}
n∈N of

Problem P̃(π). From Corollary A.5 we have that, passing to a subsequence if necessary, there
exists ṽ ∈ A such that ṽn → ṽ uniformly. A direct application of Proposition A.6 yields that
ṽ is a solution to P̃(π). To finalize the proof we must construct from ṽ a solution to Problem
P(π). To this end, let us define the sets

Θ− :=
{
θ ∈ Θ|i

(
θ, ṽ(θ), ṽ′(θ)

)
< 0
}

and Θ+ := Θc
−.

It is well known that if a sequence of convex functions converges uniformly (to a convex function),
then there is also uniform convergence of the derivatives wherever they exist, which is almost
everywhere. This fact, together with the continuity of the mappings θ 7→ ṽ(θ) and (θ, v, q) 7→
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i(θ, v, q), implies that Θ− is the union of a disjoint set of open intervals:

Θ− =
∞⋃
i=1

(ai, bi).

Define, for each i ≥ 1,

ṽa,i := inf
{
q|q ∈ ∂ṽ(ai)

}
and ṽb,i := sup

{
q|q ∈ ∂ṽ(bi)

}
and consider the support lines to graph{ṽ} at ai and bi given by

li(θ) = ṽ(ai) + ṽa,i(θ − ai) and Li(θ) = ṽ(bi) + ṽb,i(θ − bi),

respectively. Let ci ∈ (ai, bi) be, for each i ≥ 1, the unique solution to the equation li(θ) = Li(θ)
and define on (ai, bi) =: Θi

v∗i (θ) :=

{
li(θ) θ ≤ ci;
Li(θ) θ > ci.

Finally define

v∗(θ) :=

{
ṽ(θ) θ ∈ Θ+;
v∗i (θ) θ ∈ Θi, i ∈ N,

then v∗ is a solution to Problem P(π) and Θe(v
∗) = Θ−, which concludes the proof. �

Appendix B The impact of a CN on the DM

In order to prove Theorem 2.9, we require a result that guarantees that our notion of the
spread is well defined in the presence of a CN. This could be loosely summarized by saying that
the first (in terms of moving away from θ = 0) types to earn positive utility trade in the DM.

Lemma B.1. There exists ε = ε(π) such that the types that belong to

(θ0(π)− ε, θ0(π)) ∪ (θ0(π), θ0(π) + ε)

are fully serviced.

Proof. Let us define θ̂ := sup
{
θ ∈ Θ | u0(θ;π) = 0

}
. If there exists η > 0 such that types

on (θ̂, θ̂ + η) can be matched profitably, then the result follows either because θ0(π) < θ̂ or
because θ0(π) = θ̂ and the types on (θ̂, θ̂ + ε), for some 0 < ε ≤ η, are fully serviced. Let us
now assume that such an η does not exist, we claim then that θ0(π) < θ̂ must hold. Proceeding
by the way of contradiction, let us assume that θ0(π) = θ̂ and that there exists δ > 0 such
that (θ̂, θ̂ + δ) ⊂ Θe(π). This configuration can be improved upon as follows: let a > 0 be such
that θ̂ − a > 0. By construction l(θ̂ − a, γ(θ̂ − a)) = 0. Let us fix γ(θ) ≡ γ(θ̂ − a) =: Γ(a) for
θ ∈ (θ̂ − a, θa), where θa the solution to va(θ) = u0(θ;π) on (θ̂ − a, θ] if it exists or θa = θ
otherwise, given that we denote by va the indirect-utility function corresponding to setting
γ(θ) ≡ Γ(a) for θ ∈ (θ̂ − a, θ). In particular θa > θ̂ and l(θ,Γ(a)) > 0 for θ ∈ (θ̂ − a, θa).

We now have that types θ ∈ (θ̂ − a, θa) are fully serviced. By Assumption 1.1, v′a(θ̂ − a) =
0 < u′0(θ̂;π); therefore, there exists a1 > 0 such that for all a ≤ a1 it holds that θa < θ̂ + δ. If
we could show that there exists a ≤ a1 such that the dealer could offer types in (θ̂ − a, θa) the
quantities qa(θ) = l(θ,Γ(a)) at a profit, we would contradict the optimality of θ0(π) and the
proof would be finalized, as incentives above θa would not be distorted and the dealer’s profits
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would strictly increase. In order to do so, observe that the dealer’s typewise profit when offering
qa(θ) is

P (θ) := θψ1(qa(θ)) + ψ2(qa(θ))− va(θ)− C
(
qa(θ)

)
.

In particular, P (θ̂ − a) = 0 and

P ′(θ̂ − a) = ψ1(qa(θ̂ − a)) + (θ̂ − a)ψ′1(qa(θ̂ − a))q′a(θ̂ − a) + v′a(θ̂ − a)

− C̃ ′
(
qa(θ̂ − a)

)
q′a(θ̂ − a)

= ψ1(0) + (θ̂ − a)ψ′1(0)q′a(θ̂ − a) + v′a(θ̂ − a)− C̃ ′
(
0
)
q′a(θ̂ − a)

= (θ̂ − a)ψ′1(0)q′a(θ̂ − a).

The step from the second to the third equality follows, because by construction v′a(θ̂ − a) = 0;
by assumption ψ1(0) = 0 and, from Assumption A.1, C̃ ′

(
0
)

= 0. Furthermore, given that ψ1 is
strictly increasing and q′a(θ̂− a) > 0, then P ′(θ̂− a) > 0. Therefore, there exists b > 0 such that
P (θ) > 0 if θ ∈ (θ̂ − a, θ̂ − a + b). As a consequence, if a < a1 is small enough, then P (θ) > 0
for θ ∈ (θ̂ − a, θa), as required. �

We are now ready to prove our second main result:

Proof of Theorem 2.9: (1) Observe that if π is such that
(
θ0(π), θ0(π)

)
= Θ0(π) ⊂ Θo, then

the result follows immediately from Lemma B.1. If we revert the inclusion, two situations are
possible, as the addition of the CN-constraint to Problem Po may or may not bind for some
types. The latter case being trivial, let us look at the case where there is a point θa > θ0 on
which it holds that vo(θa) = u0(θb;π) and such that vo(θ) > u0(θ;π) for θ < θa and vice versa
for θ > θa. The Lagrange multiplier γm is active on (θa, θ], which implies that γm(θa) < 1. We
know from Jullien (2003), p. 9, that for all θ such that l(θ,Γ) > 0, the latter is decreasing in Γ.
As a consequence, the root of the equation

K−1
(
θ +

F (θ)− γm(θa)

f(θ)

)
= 0

is strictly smaller than that of l(θ, 1) = 0, which yields the desired result.

(2) Let us denote by to(0−) and to(0+) the best bid and ask prices without the presence of a
CN and by tm(0−) and tm(0+) the corresponding marginal prices with one; thus,

to(0−) = q′o(θ0,o−)
(
θ0,oφ1 + φ2

)
and to(0+) = q′o(θ0,o+)

(
θ0,oφ1 + φ2

)
and

tm(0−) = q′m(θ0,m−)
(
θ0,mφ1 + φ2

)
and tm(0+) = q′m(θ0,m+)

(
θ0,mφ1 + φ2

)
.

From Part (1) we know that θ0,o ≤ θ0,m (both negative) and θ0,m ≤ θ0,o (both positive) and,
given that φ1 and φ2 do not depend on the presence of the CN, all we have left to do is show
that

q′m(θ0,m−) ≤ q′o(θ0,o−) and q′m(θ0,m+) ≤ q′o(θ0,o+).
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Using the well-known relation (f−1)′(a) = 1/f ′(f−1(a)) we have that

q′m(θ0,m−) =
1

K ′
(
K−1

(
θ0,m −

γ(θ0,m−)−F (θ0,m)

f(θ0,m)

)) d

dθ

(
θ − γ(θ)− F (θ)

f(θ)

)∣∣∣
θ=θ0,m−

=
1

K ′
(
qm(θ0,m)

) d
dθ

(
θ − γ(θ)− F (θ)

f(θ)

)∣∣∣
θ=θ0,m−

=
1

K ′(0)

(
1− d

dθ

(γ(θ0,m−)− F (θ)

f(θ)

))∣∣∣
θ=θ0,m

,

where we have used the fact that γ is constant on (θ0,m − δ, θ0,m) for some δ > 0. We may
proceed analogously for the other three quantities. We have to show that

1

K ′(0)

d

dθ

(γ(θ0,m−)− F (θ)

f(θ)

)∣∣∣
θ=θ0,m

≥ 1

K ′(0)

d

dθ

(−F (θ)

f(θ)

)∣∣∣
θ=θ0,o

1

K ′(0)

d

dθ

(γ(θ0,m+)− F (θ)

f(θ)

)∣∣∣
θ=θ0,m

≥ 1

K ′(0)

d

dθ

(1− F (θ)

f(θ)

)∣∣∣
θ=θ0,o

,

(B1)

which hold with equality under the assumption that f ≡ (θ − θ)−1.

(3) If follows from Part (1) that, if θ participates in the presence of the CN, then qo(θ) ≤ qm(θ).
Assume now that the inequality vo(θ) > v(θ;π) holds for all θ in a non-empty interval (θ1, θ2)
and vo(θ1) = v(θ1;π) and vo(θ2) = v(θ2;π). By the convexity of vo and v(·;π), this would imply
the existence of θ3 ∈ (θ1, θ2) such that v′o(θ) > v′(θ;π) holds almost surely in (θ1, θ3). However
v′o(θ) = ψ1(qo(θ)), v

′(θ;π) = ψ1(qm(θ)) and ψ1 is strictly increasing; hence, this would imply
that qo(θ) > qm(θ) for almost all θ ∈ (θ1, θ3), which is a contradiction. �

Appendix C The existence of an equilibrium price.

The restriction of possible equilibrium prices to Π, together with Assumptions 1.1 and 3.1,
yields the next result.

Lemma C.1. There exists a non-empty interval [ε1, ε2] ⊂ Θ such that

1. 0 ∈ (ε1, ε2);

2. u0(θ;π) = 0 for all θ ∈ [ε1, ε2] and all π ∈ Π.

In the sequel we make use of the results obtained in Section 2.2 to show that the mapping
π 7→ t(0;π) has the required monotonicity properties so as to use the following result (see,
e.g. Aliprantis and Border (2007)):

Theorem C.2. (Tarski’s Fixed Point Theorem) Let (X,≤) be a non-empty, complete lattice. If
f : X → X is order preserving, then the set of fixed points of f is also a non-empty, complete
lattice.

Proof of Theorem 3.2. Lemmas B.1 and C.1 guarantee that we have a well-defined spread;
thus, we may decompose the analysis of the mapping π 7→ t(0;π) into that of the mappings
π− 7→ t(0−;π−) and π+ 7→ t(0+;π+). In other words, for a given price π, the dealer’s optimal
response to u0(·;π) is, modulo a normalization of γ, equivalent to the combination of his actions
towards negative and positive types separately. We concentrate on the existence of a fixed point
of the mapping π+ 7→ t(0+;π+).
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From Assumption 3.1 we have that if π1+ < π2+, then u0(θ;π1+) > u0(θ;π2+) for all θ > 0.
If for i = 1, 2 it holds that u0(θ;πi+) < vo(θ) for all θ > 0, then v(θ;π1+) = v(θ;π2+) on the
same domain and t(0+;π1+) = t(0+;π2+). Next assume that u0(θ;πi+) ≥ vo(θ) on a subset Θi

of (0, θ], for i = 1, 2. Given that u0(θ;π1+) > u0(θ;π2+) for all θ > 0, then θ(π1) < θ(π2) and
the first point θ̃1 such that v(θ;π1+) = u0(θ;π1+) holds satisfies θ̃1 < θ̃2, where the latter is the
analogous to θ̃1 in the presence of u0(θ;π2+). The existence of θ̃1 and θ̃2 is guaranteed by the
fact that in both cases the indirect-utility functions intersect the corresponding outside options.
Arguing as in the proof of Theorem 2.9, Part (2), this also implies that θ0(π1) < θ0(π2); hence
t(0+;π1+) < t(0+;π2+). In other words, the mapping π+ 7→ t(0+;π+) is order-preserving and,
using Tarski’s Fixed Point Theorem, we may conclude it has a fixed point. �
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