
Interest Rate Modelling and Derivative Pricing

Sebastian Schlenkrich

HU Berlin, Department of Mathematics

WS, 2018/19



p. 287

Part V

Bermudan Swaption Pricing
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Let’s have another look at the cancellation option

Interbank swap deal example

Bank A may decide to early terminate deal in 10, 11, 12,..years
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What does such a Bermudan call right mean?
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[Bermudan cancellable swap] = [full swap] + [Bermudan option on opposite swap]
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What is a Bermudan swaption?
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Bermudan Swaption
A Bermudan swaption is an option to enter into a Vanilla swap with fixed rate

K and final maturity Tn at various exercise dates T 1
E , T 2

E , . . . , T k̄
E . If there is

only one exercise date (i.e. k̄ = 1) then the Bermudan swaption equals a
European swaption.



p. 292

A Bermudan swaption can be priced via backward

induction
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A Bermudan swaption can be priced via backward

induction - let’s add some notation
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First we specify the future payoff cash flows

◮ Choose a numeraire B(t) and corresponding cond. expectations Et [·] = E[· | Ft ]

◮ Underlying payoff Uk if option is exercised

Uk = B(T k
E )

∑

Ti ≥T k
E

E
T k

E

[
Xi (Ti )

B(Ti )

]

= B(T k
E )




∑

Ti ≥T k
E

K · τi · P(T k
E , Ti ) −

∑

T̃j ≥T k
E

Lδ(T k
E , T̃j−1, T̃j−1 + δ) · τ̃j · P(T k

E , T̃j )





︸ ︷︷ ︸

future fixed leg minus future float leg

= B(T k
E )




∑

Ti ≥T k
E

K · τi · P(T k
E , Ti )

−P(T k
E , T̃jk ) −

∑

T̃j ≥T k
E

P(T k
E , T̃j−1) ·

[
D(T̃j−1, T̃j ) − 1

]
+ P(T k

E , T̃m)
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Then we specify the continuation value and optimal
exercise

◮ Continuation value Hk(t) (T k
E

≤ t ≤ T k+1
E

) represents the time-t value of the
remaining option if not exercised

◮ Option becomes worth-less if not exercises at last exercise date T k̄
E

. Thus last

continuation value Hk̄(T k̄
E

) = 0

◮ Recall that Bermudan option gives the right but not the obligation to enter into
underlying at exercise

◮ Rational agent will choose the maximum of payoff and continuation at exercise,
i.e.

Vk = max
{

Uk , Hk(T k
E )

}

◮ Vk represents the Bermudan option value at exercise T k
E

. Thus we also must
have for the continuation value

Hk−1(T k
E ) = Vk

◮ Derivative pricing formula yields

Hk−1(T k−1
E

) = B(T k−1
E

) · E
T

k−1
E

[
Hk−1(T k

E
)

B(T k
E

)

]

= B(T k−1
E

) · E
T

k−1
E

[
Vk

B(T k
E

)

]
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We summarize the Bermudan pricing algorithm

Backward induction for Bermudan options
Consider a Bermudan option with k̄ exercise dates T k

E
(k = 1, . . . k̄) and underlying

future payoffs with (time-T k
E

) prices Uk .

Denote Hk(t) the option’s continuation value for T k
E

≤ t ≤ T k+1
E

and set

Hk̄

(
T k̄

E

)
= 0. Also set T 0

E
= t (i.e. pricing time today).

The option price can be derived via the recursion

Hk

(
T k

E

)
= B(T k

E ) · E
T k

E

[
Hk(T k+1

E
)

B(T k+1
E

)

]

= B(T k
E ) · E

T k
E

[

max
{

Uk+1, Hk+1(T k+1
E

)
}

B(T k+1
E

)

]

for k = k̄ − 1, . . . , 0. The Bermudan option price is given by

V Berm(t) = H0(t) = H0(T 0
E ).



p. 297

Some more comments regarding Bermudan pricing...

◮ Recursion for Bermudan pricing can be formally derives via theory of optimal
stopping and Hamilton-Jacobi-Bellman (HJB) equation

◮ For more details, see Sec. 18.2.2 in Andersen/Piterbarg (2010)

◮ For a single exercise date k̄ = 1 we get

H0(t) = B(t) · Et

[
max {U1, 0)}

B(T 1
E

)

]

This is the general pricing formula for a European swaptions (if U1 represents a
Vanilla swap)

◮ In principle, recursion Hk

(
T k

E

)
= B(T k

E
) · E

T k
E

[
max

{
Uk+1,Hk+1(T k+1

E
)
}

B(T k+1
E

)

]

holds

for any payoffs Uk . However, computation

Uk = B(T k
E )

∑

Ti ≥T k
E

E
T k

E

[
Xi (Ti )

B(Ti )

]

might pose additional challenges if cash flows Xi (Ti ) are more complex
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How do we price a Bermudan in practice?

◮ In principle, recursion algorithm for Hk() is straight forward

◮ Computational challenge is calculating conditional expectations

Hk

(
T k

E

)
= B(T k

E ) · ET k
E

[

max
{

Uk+1, Hk+1(T k+1
E )

}

B(T k+1
E )

]

◮ Note, that this problem is an instance of the general option pricing
problem

V (T0) = B(T0) · E
[

V (T1)

B(T1)
| FT0

]

We can apply general option pricing methods to roll-back the Bermudan payoff
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Note that Uk , Vk and Hk depend on underlying state
variable x(T k

E )
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Typically we need to discretise variables Uk , Vk and Hk on
a grid of underlying state variables

Forthcomming, we discuss several methods to roll-back the payoffs
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Outline
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Key idea using the conditional density function in the Hull
White model

Recall that

V (T0) = B(T0) · E
[

V (T1)

B(T1)
| FT0

]

We choose the T1-maturing zero coupon bond P(t, T1) as numeraire. Then

V (T0) = P(T0, T1) · ET1 [V (T1) | FT0 ]

= P(x(T0); T0, T1) ·
∫ +∞

−∞

V (x ; T1) · pµ,σ2 (x) · dx

State variable x = x(T1) is normally distributed with known mean and variance
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Hull-White model results yield density parameters of the
state variable x(T1)

V (T0) = P(x(T0); T0, T1) ·
∫ +∞

−∞

V (x ; T1) · pµ,σ2 (x) · dx

State variable x = x(T1) is normally distributed with mean

µ = E
T1 [x(T1) | FT0 ] = G ′(T0, T1) [x(T0) + G(T0, T1)y(T0)]

and variance

σ2 = Var [x(T1) | FT0 ] = y(T1) − G ′(T0, T1)2y(T0)

Thus

pµ,σ2 (x) =
1√

2πσ2
· exp

{

− (x − µ)2

2σ2

}

and

V (T0) = P(x(T0); T0, T1) ·
∫ +∞

−∞

V (x ; T1)√
2πσ2

· exp

{

− (x − µ)2

2σ2

}

dx
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Integral against normal density needs to be computed
numerically by quadrature methods

V (T0) = P(x(T0); T0, T1) ·
∫ +∞

−∞

V (x ; T1)√
2πσ2

· exp

{

− (x − µ)2

2σ2

}

dx

◮ We can apply general purpose quadrature rules to function

f (x) =
V (x ; T1)√

2πσ2
· exp

{

− (x − µ)2

2σ2

}

◮ select a grid [x0, . . . , xN ] and approximate e.g. via
◮ Trapezoidal rule

∫ +∞

−∞

f (x) · dx ≈
N∑

i=1

1

2
[f (xi−1) + f (xi )] (xi − xi−1)

◮ Or Simpson’s rule with equidistant grid (h = xi − xi−1) and even
sub-intervalls

∫ +∞

−∞

f (x)·dx ≈ h

3
·
[

f (x0) + 2

N/2−1
∑

j=1

f (x2j) + 4

N/2
∑

j=1

f (x2j−1) + f (xN)

]
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There are some details that need to be considered - Select
your integration domain carefully

◮ Infinite integral is approximated by definite integral

∫ +∞

−∞

f (x) · dx ≈
∫ xN

x0

f (x) · dx ≈ · · ·

◮ Finite integration boundaries need to be chosen carefully by taking into
account variance of x(t)

◮ One approach is calculating variance to option expiry T1,
σ̂2 = Var [x(T )] = y(T1) and set

x0 = −λ · σ̂ and xN = λ · σ̂

◮ Note, that E
T1 [x(T1)] = 0, thus we don’t apply a shift to the x -grid
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There are some details that need to be considered - Take
care of the break-even point

◮ Note that convergence of quadrature rules depends on smoothness of
integrand f (x)

◮ Recall that

f (x) = V (x) · pµ,σ2 (x) = max
{

Uk+1(x), Hk+1(x ; T k+1
E )

}
· pµ,σ2 (x)

◮ Max-function is not smooth at Uk+1(x) = Hk+1(x ; T k+1
E )

Determine x⋆ (via interpolation of Hk+1(·) and numerical root search) such that

Uk+1(x⋆) = Hk+1(x⋆; T k+1
E )

and split integration

∫ +∞

−∞

f (x) · dx =

∫ x⋆

−∞

f (x) · dx +

∫ +∞

x⋆

f (x) · dx
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Can we exploit the structure of the integrand?

V (T0) = P(x(T0); T0, T1) ·
∫ +∞

−∞

V (x ; T1)√
2πσ2

· exp

{

− (x − µ)2

2σ2

}

dx

◮ Integral against normal distribution density can be solved more efficiently

1. Use Gauss–Hermite quadrature

2. Interpolate only V (x ; T1) by cubic spline and integrate exact
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Gauss–Hermite quadrature is an efficient integration
method for smooth integrands

◮ Gauss–Hermite quadrature is a particular form of Gaussian quadrature

◮ Choose a degree parameter d , and approximate

∫ +∞

−∞

f (x) · e−x2

dx ≈
d∑

k=1

wk · f (xk)

with xk (i = 1, 2, ..., d) being the roots of the physicists’ version of the
Hermite polynomial Hd(x) and wk are weights with

wk =
2d−1d!

√
π

d2 [Hd−1(xk)]2

◮ Roots and weights can be obtained, e.g. via stored values and look-up
tables
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Variable transformation allows application of
Gauss–Hermite quadrature to Hull White model integration

We get

∫ +∞

−∞

V (x ; T1)√
2πσ2

· exp

{

− (x − µ)2

2σ2

}

dx =
1√
π

∫ +∞

−∞

V (
√

2σx + µ; T1) · e−x2

dx

≈ 1√
π

d∑

k=1

wk · V (
√

2σxk + µ; T1)

Some constraints need to be considered

◮ Payoff V (·, T1) is only available on the x -grid at T1, thus V (·, T1) needs
to be interpolated

◮ Gauss-Hermite quadrature does not take care of non-smooth payoff at
break-even state x⋆, thus d needs to be sufficiently large to mitigate
impact
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If we apply cubic spline interpolation anyway then we can
also integrate exactly

Approximate V (·, T1) via cubic spline on the grid [x0, . . . xN ] as

V (x , T1) ≈ C(x) =

N−1∑

i=0

✶{xi ≤x<xi+1}

d∑

k=0

ck · (x − xi )
k

Then

∫ +∞

−∞

V (x ; T1) · pµ,σ2 (x) · dx ≈
N−1∑

i=0

∫ xi+1

xi

d∑

k=0

ck · (x − xi )
k · pµ,σ2 (x) · dx

=

N−1∑

i=0

d∑

k=0

ck ·
∫ xi+1

xi

(x − xi )
k · pµ,σ2 (x) · dx

Thus, all we need is

Ii,k =

∫ xi+1

xi

(x − xi )
k · pµ,σ2 (x) · dx
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We transform variables to make integration easier

First we apply the variable transformation x̄ = (x − µ)/σ. This yields
pµ,σ2 (x) = p0,1(x̄)/σ and

Ii,k =

∫ x̄i+1

x̄i

(σx̄ + µ − xi )
k · p0,1(x̄) · dx

σ

=

∫ x̄i+1

x̄i

σk (x̄ − x̄i )
k · 1√

2π
exp

{

− x̄2

2

}

︸ ︷︷ ︸

standard normal density

dx̄

with the shifted grid points x̄i = (xi − µ)/σ
Denote Φ(·) the cumulated standard normal distribution function. Then

Φ′(x) =
1√
2π

exp

{

− x̄2

2

}

and Φ′′(x) = −xΦ′(x)

As a sub-step we aim at solving the integrals

∫ x̄i+1

x̄i

x̄ k · Φ′(x̄) · dx̄
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We use cubic splines (d = 3) to keep formulas reasonalby
simple I

It turnes out that

F0(x̄) =

∫

Φ′(x̄)dx̄ = Φ(x̄)

F1(x̄) =

∫

x̄Φ′(x̄)dx̄ = −Φ′(x̄)

F2(x̄) =

∫

x̄2Φ′(x̄)dx̄ = Φ(x̄) − x · Φ′(x̄)

F3(x̄) =

∫

x̄3Φ′(x̄)dx̄ = −
(

x̄2 + 2
)

· Φ′(x̄)

This yields for Ii,0

Ii,0 =

∫ x̄i+1

x̄i

Φ′(x̄) · dx = F0(x̄i+1) − F0(x̄i )
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We use cubic splines (d = 3) to keep formulas reasonalby
simple II

and for Ii,1

Ii,1 =

∫ x̄i+1

x̄i

σ (x̄ − x̄i ) · Φ′(x̄) · dx

= σ ·

∫ x̄i+1

x̄i

x̄ · Φ′(x̄) · dx − σ · x̄i · Ii,0

= σ · [F1(x̄i+1) − F1(x̄i )] − σ · x̄i · Ii,0

We may proceed similarly for Ii,2

Ii,2 =

∫ x̄i+1

x̄i

σ2 (x̄ − x̄i )
2 · Φ′(x̄) · dx

=

∫ x̄i+1

x̄i

σ2
[
x̄2 − 2x̄i x̄ + x̄2

i

]
· Φ′(x̄) · dx

= σ2 [F2(x̄i+1) − F2(x̄i )] − 2σ2x̄i [F1(x̄i+1) − F1(x̄i )] + σ2x̄2
i Ii,0

= σ2 [F2(x̄i+1) − F2(x̄i )] − 2σx̄i [Ii,1 + σ · x̄i · Ii,0] + σ2x̄2
i Ii,0

= σ2 [F2(x̄i+1) − F2(x̄i )] − 2σx̄i Ii,1 − σ2x̄2
i Ii,0
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We use cubic splines (d = 3) to keep formulas reasonalby
simple III

and Ii,3

Ii,3 =

∫ x̄i+1

x̄i

σ3 (x̄ − x̄i )
3 · Φ′(x̄) · dx

=

∫ x̄i+1

x̄i

σ3
[
x̄3 − 3x̄i x̄

2 + 3x̄2
i x̄ − x̄3

i

]
· Φ′(x̄) · dx

= σ3 [F3(x̄i+1) − F3(x̄i )] − 3σ3x̄i [F2(x̄i+1) − F2(x̄i )]

+ 3σ3x̄2
i [F1(x̄i+1) − F1(x̄i )] − σ3x̄3

i Ii,0

Substituting terms as before yields

Ii,3 = σ3 [F3(x̄i+1) − F3(x̄i )] − 3σx̄i

[
Ii,2 + 2σx̄i Ii,1 + σ2x̄2

i Ii,0
]

+ 3σ2x̄2
i [Ii,1 + σ · x̄i · Ii,0] − σ3x̄3

i Ii,0

= σ3 [F3(x̄i+1) − F3(x̄i )] − 3σx̄i Ii,2 − 3σ2x̄2
i Ii,1 − σ3x̄3

i Ii,0
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Let’s sumarize the formulas...

We get

V (T0) = P(x(T0); T0, T1) ·
∫ +∞

−∞

V (x ; T1) · pµ,σ2 (x) · dx

≈ P(x(T0); T0, T1) ·
N−1∑

i=0

3∑

k=0

ck · Ii,k

with

Ii,0 = F0(x̄i+1) − F0(x̄i )

Ii,1 = σ · [F1(x̄i+1) − F1(x̄i )] − σ · x̄i · Ii,0

Ii,2 = σ2 [F2(x̄i+1) − F2(x̄i )] − 2σx̄i Ii,1 − σ2x̄2
i Ii,0

Ii,3 = σ3 [F3(x̄i+1) − F3(x̄i )] − 3σx̄i Ii,2 − 3σ2x̄2
i Ii,1 − σ3x̄3

i Ii,0

and anti-derivative functions Fk(x) as before
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Integrating a cubic spline versus a normal density function
occurs in various contextes of pricing methods

◮ Method yields good accuracy already for smaller number of grid points

◮ For larger number of grid points accuracy benefit compared to e.g.
Simpson integration seems not too much

◮ Either way, use special treatment of break-even point x⋆

◮ Computational effort can become significant for larger number of grid
points

◮ Bermudan pricing requires N2 evaluations of Φ(·) and Φ′(·) per
exercise
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PDE methods for finance and pricing are extensively
studied in the literature

◮ We present the basic principles and some aspects relevant for

Bermudan bond option pricing

◮ Further reading

◮ L. Andersen and V. Piterbarg. Interest rate modelling, volume I

to III.

Atlantic Financial Press, 2010, Sec. 2.

◮ D. Duffy. Finite Difference Methods in Financial Engineering.

Wiley Finance, 2006
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We can adapt the Black-Scholes equation to our Hull
White model setting

◮ Recall that state variable x(t) follows the risk-neutral dynamics

dx(t) = [y(t) − a · x(t)]
︸ ︷︷ ︸

µ(t,x(t))

dt + σ(t) · dW (t)

◮ Consider an option with price V = V (t, x(t)), option expiry time T and
payoff V (T , x(T )) = g (x(T ))

◮ Derivative pricing formula yields that discounted option price is a
martingale, i.e.

d

(
V (t, x(t))

B(t)

)

= σV (t, x(t)) · dW (t)

How can we use this to derive a PDE?
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Apply Ito’s Lemma to the discounted option price

We get

d

(
V (t, x(t))

B(t)

)

=
dV (t, x(t))

B(t)
+ V (t)d

(
1

B(t)

)

With d
(
B(t)−1

)
= −r(t) · B(t)−1 · dt follows

d

(
V (t, x(t))

B(t)

)

=
1

B(t)
[dV (t, x(t)) − r(t) · V (t) · dt]

Applying Ito’s Lemma to option price V (t, x(t)) gives

dV (t, x(t)) = Vt · dt + Vx · dx(t) +
1

2
Vxx · [dx(t)]2

=
[

Vt + Vx · µ (t, x(t)) +
1

2
Vxx · σ(t)2

]

dt + Vx · σ(t) · dW (t)

with partial derivatives Vt = ∂V (t, x(t)) /∂t, Vx = ∂V (t, x(t)) /∂x and
Vxx = ∂2V (t, x(t)) /∂x2
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Combining results yields dynamics of discounted option
price

d

(
V (t, x(t))

B(t)

)

=
1

B(t)

[

Vt + Vx · µ (t, x(t)) +
1

2
Vxx · σ(t)2 − r(t) · V

]

︸ ︷︷ ︸

µV (t,x(t))

dt

+
Vx · σ(t)

B(t)
︸ ︷︷ ︸

σV (t,x(t))

·dW (t)

Martingale property of V (t,x(t))
B(t)

requires that drift vanishes. That is

µV (t, x(t)) = Vt + Vx · µ (t, x(t)) +
1

2
Vxx · σ(t)2 − r(t) · V = 0

Substituting µ (t, x(t)) = y(t) − a · x(t) and r(t) = f (0, t) + x(t) yields pricing
PDE
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We get the parabolic pricing PDE with terminal condition

Theorem (Derivative pricing PDE in Hull-White model)
Consider our Hull-White model setup and a derivative security with price
process V (t, x(t)) that pays at time T the payoff V (T , x(T )) = g (x(T )).
Further assume V (T , x(T )) has finite variance and is attainable.
Then for t < T the option price

V (t, x(t)) = B(t) · EQ

[
V (T , x(T ))

B(T )
| Ft

]

follows the PDE

Vt(t, x) + [y(t) − a · x ] · Vx (t, x) +
σ(t)2

2
· Vxx (t, x) = [x + f (0, t)] · V (t, x)

with terminal condition
V (T , x) = g(x)

Proof.
Follows from derivation above.
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How does this help for our Bermudan option pricing
problem?

◮ We need option prices on a grid of state variables [x0, . . . xN ]

Solve Hull White option pricing PDE backwards from exercise to exercise
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Pricing PDE is typically solved via finite difference scheme
and time integration

◮ Use method of lines (MOL) to solve parabolc PDE

◮ First discretise state space and

◮ Then integrate resulting system of ODEs with terminal condition in
time-direction

◮ We discuss basic (or general purpose) approach to solve PDE; for a
detailed treatment see Andersen/Piterbarg (2010) or Duffy (2006)

◮ Some aspects may require special attention in the context of Hull White
model

◮ More problem-specific boundary discretisation

◮ Non-equidistant grids with finer grid around break-even state x⋆

◮ Upwinding schemes to deal with potentially dominant impact of
convection term [y(t) − a · x ] · Vx (t, x) at the grid boundaries of x
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Outline
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How do we discretise state space?

◮ PDE for V (t, x(t)) is defined on infinite domain (−∞, +∞)

◮ We don’t get explicit boundary conditions from PDE derivation
◮ Thus, we require payoff-specific approximation
◮ Finally, we are interested in V (0, 0)

◮ We use equidistant x -grid x0, . . . , xN with grid size hx centered around
zero and scaled via standard deviation of x(T ) at final maturity T

x0 = −λ · σ̂ and xN = λ · σ̂

with σ̂2 = Var [x(T )] = y(T ) and λ ≈ 5

◮ Why not shift the grid by expectation E [x(T )] (as suggested in the
Literature)?

◮ Pricing PDE is independent of pricing measure (used for derivation)
◮ There is no natural measure under which E [x(T )] should be

calculated
◮ In T -forward measure E

T [x(T )] = 0 anyway
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Differential operators in state-dimention are discretised via
central finite differences

For now leave time t continuous. We use notation V (·, x)

For inner grid points xi with i = 1, . . . , N − 1

Vx (·, xi ) =
V (·, xi+1) − V (·, xi−1)

2hx

+ O(h2
x ) and

Vxx (·, xi ) =
V (·, xi+1) − 2V (·, xi ) + V (·, xi−1)

h2
x

+ O(h2
x )

At the boundaries we impose condition

Vxx (·, x0) = λ0 · Vx (·, x0) and Vxx (·, xN) = λN · Vx (·, xN)

This yields one-sided first order partial derivative approximations

Vx (·, x0) ≈
2 [V (·, x1) − V (·, x0)]

(2 + λ0hx ) hx

and Vx (·, xN) ≈
2 [V (·, xN) − V (·, xN−1)]

(2 − λNhx ) hx
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Some initial comments regarding choice of λ0,N

◮ Often, λ0,N = 0 (also suggested in the Literature)

◮ With λ0,N = 0 we have Vxx (·, x0) = Vxx (·, xN) = 0 and

Vx (·, x0) =
V (·, x1) − V (·, x0)

hx

+ O(h2
x ) and

Vx (·, xN) =
V (·, xN) − V (·, xN−1)

hx

+ O(h2
x )

◮ However, for bond options the choice Vxx (·, x0) = Vxx (·, xN) = 0 might be
a poor approximation

◮ We will discuss an alternative choice for λ0,N later
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Now consider PDE for each grid point individually
Define the vector-valued function v(t) via

v(t) = [v0(t), . . . , vN(t)]⊤ = [V (t, x0), . . . , V (t, x0)]⊤ ∈ R
N+1

Then state discretisation yields for inner points xi with i = 1, . . . , N − 1

v ′
i (t)+[y(t) − axi ]

vi+1(t) − vi−1(t)

2hx

+
σ(t)2

2

vi+1(t) − 2vi (t) + vi−1(t)

h2
x

= [xi + f (0, t)] vi (t)

and for the boundaries

v ′
0(t) +

[

y(t) − ax0 + λ0
σ(t)2

2

]
2 [v1(t) − v0(t)]

(2 + λ0hx ) hx

= [x0 + f (0, t)] v0(t)

v ′
N(t) +

[

y(t) − axN + λN

σ(t)2

2

]
2 [vN(t) − vN−1(t)]

(2 − λNhx ) hx

= [xN + f (0, t)] vN(t)

As before, we have the terminal condition

vi (T ) = g(xi )

Parabolic PDE is transformed into linear system of ODEs with terminal condition



p. 335

It is more convenient to write system of ODEs in
matrix-vector notation

We get

v ′(t) = M(t) · v(t) =








c0 u0

l1
. . .

. . .

. . .
. . . uN−1

lN cN








· v(t)

with time-dependent components ci , li , ui (i = 1, . . . N − 1),

ci =
σ(t)2

h2
x

+ xi + f (0, t), li = −
σ(t)2

2h2
x

+
y(t) − axi

2hx

, ui = −
σ(t)2

2h2
x

−
y(t) − axi

2hx

and

c0 =

2

[

y(t) − ax0 + λ0
σ(t)2

2

]

(2 + λ0hx ) hx

+x0+f (0, t), cN = −

2

[

y(t) − axN + λN
σ(t)2

2

]

(2 − λNhx ) hx

+x0+f (0, t),

u0 = −

2

[

y(t) − ax0 + λ0
σ(t)2

2

]

(2 + λ0hx ) hx

, lN =

2

[

y(t) − axN + λN
σ(t)2

2

]

(2 − λNhx ) hx
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Linear system of ODEs can be solved by standard methods

We have
v ′(t) = f (t, v(t)) = M(t) · v(t)

We demonstrate time discretisation based on θ-method. Consider equidistant
time grid t = t0, . . . , tM = T with step size ht and approximation

v(tj+1) − v(tj)

ht

≈ f (tj+1 − θht , (1 − θ)v(tj+1) + θv(tj))

for θ ∈ [0, 1]

◮ In general approximation yields method of order O(ht)

◮ For θ = 1
2

approximation yields method of order O(h2
t )

For our linear ODE we set v j = v(tj), Mθ = M(tj+1 − θht) and get the scheme

v j+1 − v j

ht

= Mθ

[
(1 − θ)v j+1 + θv j

]
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We get a recursion for the θ-method

Re-arranging terms yields

[I + htθMθ] v j = [I − ht (1 − θ) Mθ] v j+1

If [I + htθMθ] is regular then we can solve for v j via

v j = [I + htθMθ]−1 [I − ht (1 − θ) Mθ] v j+1

Terminal condition is
vM = [g(x0), . . . , g(xN)]⊤

◮ Unless θ = 0 (Explicit Euler scheme) we need to solve a linear equation
system

◮ Fortunately, matrix [I + htθMθ] is tri-diagonal; solution requires O(M)
operations

◮ θ-method is A-stable for θ ≥ 1
2

◮ However, oscillations in solution may occur unless θ = 1 (Implicit Euler
scheme, L-stable)
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Let’s have another look at the boundary condition...

We look at an example of a zero coupon bond option with payoff

V (x , T ) =
[
P(x , T , T ′) − K

]+

For x ≪ 0 option is far in-the-money and V (x , t) can be approximated by
intrinsic value

V (x , t) ≈ Ṽ (x , t) =
[
P(x , t, T ′) − K

]+
=

[
P(0, T ′)

P(0, t)
e−G(t,T )x− 1

2
G(t,T )2y(t) − K

]+

This yields
∂

∂x
Ṽ (x , t) = −G(t, T )

[
Ṽ (x , t) + K

]

and
∂2

∂x2
Ṽ (x , t) = −G(t, T )

︸ ︷︷ ︸

λ

∂

∂x
Ṽ (x , t)

Alternatively, for x ≫ 0 option is far out-of-the-money and

∂2

∂x2
Ṽ (x , t) =

∂

∂x
Ṽ (x , t) = 0
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We adapt that approximation to our general option pricing
problem

◮ In principle, for a coupon bond underlying we could estimate λ = λ(t) via
option intrinsic value Ṽ (x , t) and

λ(t) =

[
∂2

∂x2
Ṽ (x , t)

]

/
∂

∂x
Ṽ (x , t) for

∂

∂x
Ṽ (x , t) 6= 0,

otherwise λ(t) = 0

◮ We take a more rough approach by approximating λ based only on
previous solution

λ0,N =

[
∂2

∂x2
V (x , t)

]

/
∂

∂x
V (x , t) ≈

[
∂2

∂x2
V (x1,N−1, t + ht)

]

/
∂

∂x
V (x1,N−1, t + ht)

≈
v

j+1
0,N−2

− 2v
j+1
1,N−1

+ v
j+1
2,N

h2
x

/
v

j+1
2,N

− v
j+1
0,N−2

2hx

for v j+1
2,N − v j+1

0,N−2/(2hx ) 6= 0, otherwise λ0,N = 0
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It turns out that accuracy of one-sided first order
derivative approximation is of order O(h2

x) I

Lemma
Assume V = V (x) is twice continuously differentiable. Moreover, consider grid points

x−1, x0, x1 with equal spacing hx = x1 − x0 = x0 − x−1. If there is a λ0 ∈ R such that

V ′′(x0) = λ0 · V ′(x0)

then

V ′(x0) =
2 [V (x1) − V (x0)]

(2 + λ0hx ) hx

+ O(h2
x ).

Proof:

Denote vi = V (xi ). We have from standard Taylor approximation

V ′′(x0) =
v−1 − 2v0 + v1

h2
x

+ O(h2
x ) and V ′(x0) =

v1 − v−1

2hx

+ O(h2
x )

From V ′′(x0) = λ · V ′(x0) follows

v−1 − 2v0 + v1

h2
x

+ O(h2
x ) = λ0

[
v1 − v−1

2hx

+ O(h2
x )

]
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It turns out that accuracy of one-sided first order
derivative approximation is of order O(h2

x) II
Multiplying with 2h2

x gives the relation

2 (v−1 − 2v0 + v1) + O(h4
x ) = λ0hx (v1 − v−1) + O(h4

x )

Re-ordering terms yields

(2 + λ0hx ) v−1 = 4v0 + (λ0hx − 2) v1 + O(h4
x )

And solving for v−1 gives v−1 = [4v0 + (λ0hx − 2) v1] / (2 + λ0hx ) + O(h4
x ).

Now, we substiture v−1 in the approximation for V ′(x). This gives

V ′(x0) =
v1 −

[
[4v0 + (λ0hx − 2) v1] / (2 + λ0hx ) + O(h4

x )
]

2hx

+ O(h2
x )

=
(2 + λ0hx ) v1 − [4v0 + (λ0hx − 2) v1]

2 (2 + λ0hx ) hx

+ O(h2
x ) + O(h3

x )

=
2v1 − 4v0 + 2v1

2 (2 + λ0hx ) hx

+ O(h2
x )

=
2 (v1 − v0)

(2 + λ0hx ) hx

+ O(h2
x )
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It turns out that accuracy of one-sided first order
derivative approximation is of order O(h2

x) III

◮ With constriant V ′′(x0) = λ · V ′(x0) we can eliminate explicit dependence
on second derivative V ′′(x0) and outer grid point v−1 = V (x−1)

◮ Analogous result can be derived for upper boundery and down-ward
approximation of first derivative

◮ Resulting scheme is still second order accurate in state space direction
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We summarize the PDE pricing method

1. Discretise state space x on a grid [x0, . . . , xN ] and specify time step size
ht and θ ∈ [0, 1]

2. Determine the terminal condition v j+1 = max {Uj+1, Hj+1} for the current
valuation step

3. Set up discretised linear operator Mθ of the resulting ODE system
d
dt

v = Mθ · v

4. Incorporate appropriate product-specific boundary conditons

5. Set up linear system [I + htθMθ] v j = [I − ht (1 − θ) Mθ] v j+1

6. Solve linear system for v j by tridiagonal matrix solver

7. Repeat with step 3. until next exercise date or tj = 0
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Monte-Carlo methods are widely applied in various finance
applications

◮ We demonstrate the basic principles for
◮ path integration of Ito processes
◮ exact simulation of Hull-White model paths

◮ There are many aspects that should also be considered, see
e.g.

◮ L. Andersen and V. Piterbarg. Interest rate modelling, volume I

to III.

Atlantic Financial Press, 2010, Sec. 3.

◮ P. Glasserman. Monte Carlo Methods in Financial Engineering.

Springer, 2003
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Outline
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Monte-Carlo (MC) Pricing is based on the Strong Law of
Large Numbers

Theorem (Strong Law of Large Numbers)
Let Y1, Y2, . . . be a sequence of independent identically disctributed (i.i.d.)
random variables with finite expectation µ < ∞. Then the sample mean
Ȳn = 1

n

∑n

i=1
Yi converges to µ a.s. That is

lim
n→∞

Ȳn = µ a.s.

◮ We aim at calculating V (t) = N(t) · EN [V (T )/N(T ) | Ft ]

◮ For MC pricing simulate future discounted payoffs
{

V (T ;ωi )
N(T ;ωi )

}

i=1,2,...n
, and

◮ Estimate

V (t) = N(t) · 1

n

n∑

i=1

V (T ; ωi )

N(T ; ωi )
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Keep in mind that sample mean is still a random variable
governed by central limit theorem

Theorem (Central Limit Theorem)
Let Y1, Y2, . . . be a sequence of i.i.d. random variables with finite expectation
µ < ∞ and standard deviation σ < ∞. Denote the sample mean
Ȳn = 1

n

∑n

i=1
Yi . Then

Ȳn − µ

σ/
√

n

d−→ N(0, 1).

Moreover, for the variance estimator s2
n = 1

n−1

∑n

i=1

(
Yi − Ȳn

)2
we also have

Ȳn − µ

sn/
√

n

d−→ N(0, 1).

◮ Here, N(0, 1) is the standard normal distribution

◮
d−→ denotes convergence in distribution, i.e. limn→∞ Fn(x) = F (x) for

the corresponding cumulative distribution functions and all x ∈ R at
which F (x) is continuous

◮ sn/
√

n is the standard error of the sample mean Ȳn
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How do we get our samples V (T ; ωi)/N(T ; ωi)?

1. Simulate state variables x(t) on relevant dates t

2. Simulate numeraire N(t) on relevant dates t

3. Calculate payoff V (T , x(T )) at observation/pay date T
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We need to simulate our state variables on the relevant
observation dates

Consider the general dynamics for a process given as SDE

dX(t) = µ(t, X(t)) · dt + σ(t, X(t)) · dW (t)

◮ Typically, we know initial value X(t) (t = 0)

◮ We need X(T ) for some future time T > t

◮ In Hull-White model and risk-neutral measure formulation we have

µ(t, X(t)) = y(t) − a · X(t), and, σ(t, X(t)) = σ(t)

There are several standard methods to solve above SDE. We will briefly discuss
Euler method and Milstein method

.
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Euler method for SDEs is similar to Explicit Euler method
for ODEs

◮ Specify a grid of simulation times t = t0, t1, . . . , tM = T

◮ Calculate sequence of state variables

Xk+1 = Xk + µ(tk , Xk) (tk+1 − tk) + σ(tk , Xk) [W (tk+1) − W (tk)]

◮ Drift µ(tk , Xk) and volatility σ(tk , Xk) are evaluated at current time tk

and state Xk

◮ Increment of Brownian motion W (tk+1) − W (tk) is normally distributed,
i.e.

W (tk+1) − W (tk) = Zk ·
√

tk+1 − tk with Zk ∼ N(0, 1)
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Milstein method refines the simulation of the diffusion term

◮ Again, specify a grid of simulation times t = t0, t1, . . . , tM = T

◮ Calculate sequence of state variables

Xk+1 = Xk + µ(tk , Xk) (tk+1 − tk) + σ(tk , Xk) [W (tk+1) − W (tk)]

+
1

2
·

∂

∂x
σ(tk , Xk) · σ(tk , Xk) ·

[
(W (tk+1) − W (tk))2 − (tk+1 − tk)

]

◮ Drift µ(tk , Xk) and volatility σ(tk , Xk) are evaluated at current time tk and
state Xk

◮ Requires calculation of derivative of volatility ∂
∂x

σ(tk , Xk) w.r.t. state variable

◮ Increment of Brownian motion W (tk+1) − W (tk) is normally distributed, i.e.

W (tk+1) − W (tk) = Zk ·
√

tk+1 − tk with Zk ∼ N(0, 1)

◮ With ∆k = tk+1 − tk iteration becomes

Xk+1 = Xk + µ(tk , Xk)∆k + σ(tk , Xk)Zk

√

∆k +
1

2

∂σ(tk , Xk)

∂x
σ(tk , Xk)

(
Z2

k − 1
)

∆k
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How can we measure convergence of the methods?

◮ We distinguish strong order of convergence and weak order of
convergence

◮ Consider a discrete SDE solution
{

X h
k

}M

k=0
with X h

k ≈ X(t + kh), h = T−t
M

Definition (Strong order of convergence)
The discrete solution X h

M at final maturity T = t + hM converges to the exact
solution X(T ) with strong orderβ if there exists a constant C such that

E

[∣
∣X h

M − X(T )
∣
∣
]

≤ C · hβ .

◮ Strong order of convergence focuses on convergence on the individual
paths

◮ Euler method has strong order of convergence of 1
2

(given sufficient
conditions on µ(·) and σ(·))

◮ Milstein method has strong order of convergence of 1 (given sufficient
conditions on µ(·) and σ(·))
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For derivative pricing we are typically interested in weak
order of convergence

We need some context for weak order of convergence

◮ A function f : R → R is polynomially bounded if |f (x)| ≤ k (1 + |x |)q for
constants k and q and all x

◮ The set Cn
P represents all functions that are n-times continuously

differentiable and with 1st to nth derivative polynaomially bounded

Definition (Weak order of convergence)
The discrete solution X h

M at final maturity T = t + hM converges to the exact
solution X(T ) with weak orderβ if there exists a constant C such that

∣
∣E

[
f

(
X h

M

)]
− E [f (X(T ))]

∣
∣ ≤ C · hβ ∀f ∈ C2β+2

P

for sufficiently small h.

◮ Think of f as a payoff function, then weak order of convergence is related
to convergence in price

◮ Euler method and Milstein method can be shown to have weak order 1
convergence (given sufficient conditions on µ and σ)
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Some comments regarding weak order of convergence

Error estimate ∣
∣E

[
f

(
X h

M

)]
− E [f (X(T ))]

∣
∣ ≤ C · hβ

requires considerable assumptions regarding smoothness of µ(·), σ(·) and test
functions f (·)

◮ In practice payoffs are typically non-smooth at the strike

◮ This limits applicability of more advanced schemes with theoretical higher
order of convergence

◮ A fairly simple approach of a higher order scheme is based on Richardson
extrapolation

◮ this method is also applied to ODEs
◮ see Glassermann (2000), Sec. 6.2.4 for details

◮ Typically, numerical testing is required to assess convergence in practice
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The choice of pricing measure is crutial for numeraire
simulation

Consider risk-neutral measure, then

N(T ) = B(T ) = exp

{∫ T

0

r(s)ds

}

= exp

{∫ T

0

[f (0, s) + x(s)] ds

}

= P(0, T )−1 exp

{∫ T

0

x(s)ds

}

Requires simulation or approximation of
∫ T

0
x(s)ds

Suppose x(tk) is simulated on a time grid {tk}M

k=0 then we approximate integral
via trapezoidal rule

∫ T

0

x(s)ds ≈
M∑

i=1

x(tk−1) + x(tk)

2
(tk − tk−1)

Numeraire simulation is done in parallel to state simulation

N(tk) =
P(0, tk−1)

P(0, tk)
· N(tk−1) · exp

{
x(tk−1) + x(tk)

2
(tk − tk−1)

}
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Alternatively, we can simulate in T -forward measure for a
fixed future time T

Select a future time T̄ sufficiently large. Then N(0) = P(0, T̄ )
At any pay time T ≤ T̄ numeraire is directly available via zero coupon bond
formula

N(T ) = P(x(T ), T , T̄ ) =
P(0, T̄ )

P(0, T )
e−G(T ,T ′)x(T )− 1

2
G(T ,T ′)2y(T )

However, T̄ -forward measure simulation needs consistent model formulation or
change of measure.
In particlar

dW T̄ (t)
︸ ︷︷ ︸

B.M. in T̄ -forward measure

= σP(t, T̄ )
︸ ︷︷ ︸

ZCB volatility

·dt + dW (t)
︸ ︷︷ ︸

B.M. in risk-neutral measure
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Another commonly used numeraire for simulation is the
discretely compounded bank account

◮ Consider a grid of simulation times t = t0, t1, . . . , tM = T .
◮ Assume we start with 1 EUR at t = 0, i.e. N(0) = 1
◮ At each tk we take numeraire N(tk) and buy zero coupon bond maturing

at tk+1, That is

N(t) = P(t, tk+1) · N(tk)

P(tk , tk+1)
for t ∈ [tk , tk+1]

Explicitly, define discretely compounded bank account as B̄(0) = 1 and

B̄(t) =
∏

tk <t

P(t, tk+1)

P(tk , tk+1)

We get

d

(
B̄(t)

P(t, tk+1)

)

=
∏

tk <t

1

P(tk , tk+1)
· d

(
P(t, tk+1)

P(t, tk+1)

)

= 0 for t ∈ [tk , tk+1]

Simulating in B̄-measure is equivalent to simulating in rolling tk+1-forward
measure
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Outline

American Monte-Carlo

Introduction to Monte-Carlo Pricing

Monte-Carlo Simulation in Hull White Model

Regression-based Backward Induction
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Do we really need to solve the Hull-White SDE
numerically?

Recall dynamics in T -forward measure

dx(t) =
[
y(t) − σ(t)2G(t, T ) − a · x(t)

]
· dt + σ(t) · dW T (t)

that gives

x(T ) = e−a(T−t)

[

x(t) +

∫ T

t

ea(u−t)
([

y(u) − σ(u)2G(u, T )
]

du + σ(u)dW T (u)
)
]

As a result x(T ) ∼ N(µ, σ2) (conditional on t) with

µ = E
T [x(T ) | Ft ] = G ′(t, T ) [x(t) + G(t, T )y(t)] and

σ2 = Var [x(T ) | Ft ] = y(T ) − G ′(t, T )2y(t)

We can simulate exactly

x(T ) = µ + σ · Z with Z ∼ N(0, 1)
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Expectation calculation via µ = E
T [x(T ) | Ft ] requires

carefull choice of numeraire
Consider grid of simulation times t = t0, t1, . . . , tM = T
We simulate

x(tk+1) = µk + σk · Zk

with

µk = G ′(tk , tk+1) [x(tk) + G(tk , tk+1)y(tk)] ,

σ2
k = y(tk+1) − G ′(tk , tk+1)2y(tk), and

Zk ∼ N(0, 1)

Grid point tk+1 must coincide with forward measure for Etk+1 [·] for each
individual step k → k + 1
Numeraire must be discretely compounded bank account B̄(t) and

B̄(tk+1) =
B̄(tk)

P(x(tk), tk , tk+1)

Recursion for x(tk+1) and B̄(tk+1) fully specifies path simulation for pricing
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Some comments regarding Hull-White MC simulation...

◮ We could also simulate in risk-neutral measure or T̄ -forward measure

◮ this might be advantegous if also FX or equities are
modelled/simulated

◮ requires adjustment of conditional expectation µk and numeraire
N(tk) calculation

◮ variance σ2
k is invariant to change of meassure in Hull-White model

◮ Repeat path generation for as many paths 1, . . . , n as desired (or
computationally feasible)

◮ For Bermudan pricing we need to simulate x and N (at least) at exercise

dates T 1
E , . . . , T k̄

E

◮ For calculation of Zk use

◮ pseudo-random numbers or
◮ Quasi-Monte-Carlo sequences

as proxies for independent N(0, 1) random variables accross time steps
and paths
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We illustrate MC pricing by means of a coupon bond
option example

Consider coupon bond option expiring at TE with coupons Ci paid at Ti

(i = 1, . . . , u, incl. strike and notional)

◮ Set t0 = 0, t1 = TE /2 and t2 = TE (two steps for illustrative purpose)

◮ Compute 2n independent N(0, 1) pseudo random numbers Z 1, . . . , Z 2n

◮ For all paths j = 1, . . . , n calculate

◮ µj
0, σ0 and B̄j(t1); note µj

0 and B̄j(t1) are equal for all paths j since
x(t0) = 0

◮ x j
1 = µj

0 + σ0 · Z j

◮ µj
1, σ1 and B̄j(t2); note now µj

1 and B̄j(t2) depend on x j
1

◮ x j
2 = µj

1 + σ1 · Z n+j

◮ payoff V j(t2) =
[∑u

i=1
Ci · P(x j

2, t2, Ti )
]+

at t2 = TE

◮ Calculate option price (note B̄(0) = 1)

V (0) = B̄(0) · 1

n

n∑

j=1

V j(t2)

B̄j(t2)
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Outline

American Monte-Carlo

Introduction to Monte-Carlo Pricing

Monte-Carlo Simulation in Hull White Model

Regression-based Backward Induction
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Let’s return to our Bermudan option pricing problem

H3 = 0

U3

V3 = max{U3, H3}

H2 = . . .

U2

V2 = max{U2, H2}

H1 = . . .

U1

V1 = max{U1, H1}

H0 = B(t)E

[
V1

B(T 1
E

)
| Ft

]

✲

continuation value

✲

❄ ❄ ❄ ❄ ❄ ❄

✻ ✻ ✻

T 1
E

T 1
l−1

T̃ 1
k−1

Tn

T̃m

K

Lm

✲

❄ ❄ ❄ ❄

✻ ✻

T 2
E

T 2
l−1

T̃ 2
k−1

Tn

T̃m

K

Lm

✲

❄ ❄

✻

T 3
E

T 3
l−1

T̃ 3
k−1

Tn

T̃m

K

Lm

✲

exercise payoff

✲

❄ ❄ ❄ ❄ ❄ ❄

✻ ✻ ✻

T 1
E

T 1
l−1

T̃ 1
k−1

Tn

T̃m

K

Lm

✲

❄ ❄ ❄ ❄

✻ ✻

T 2
E

T 2
l−1

T̃ 2
k−1

Tn

T̃m

K

Lm

✲

❄ ❄

✻

T 3
E

T 3
l−1

T̃ 3
k−1

Tn

T̃m

K

Lm
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In this setting we need to calculate future conditional
expectations

◮ Assume we simulated paths for state variables xk , underlyings Uk and
numeraire Bk for all relevant dates tk

◮ We need continuation values Hk defined recursively via Hk̄ = 0 and

Hk = BkEk

[
max {Uk+1, Hk+1}

Bk+1

]

◮ In principle, we could use nested Monte Carlo

◮ In practice, nested Monte Carlo is typically computationally not feasible
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A key idea of American Monte-Carlo is approximating
conditional expectation via regression

Conditional expectation

Hk = Ek

[
Bk

Bk+1
max {Uk+1, Hk+1}

]

is a function of the path x(t) for t ≤ tk

For non-path-dependent underlyings Uk , Hk can be witten as function of
xk = x(tk), i.e.

Hk = Hk(xk)

We aim at finding a regression operator

Rk = Rk [Y ]

which we can use as proxy for Hk
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What do we mean by regression operator?
Denote ζ(ω) = [ζ1(ω), . . . , ζq(ω)]⊤ a set of basis functions (vector of random
variables)

Let Y = Y (ω) be a target random variable

Assume we have outcomes ω1, . . . , ωn̄ with control variables ζ(ω1), . . . , ζ(ωn̄)
and observations Y (ω1), . . . , Y (ωn̄)

A regression operator R [Y ] is defined via

R [Y ] (ω) = ζ(ω)⊤β

where the regression coefficients β solve linear least squares problem

∥
∥
∥
∥
∥
∥
∥






ζ(ω1)⊤β − Y (ω1)
...

ζ(ωn̄)⊤β − Y (ωn̄)






∥
∥
∥
∥
∥
∥
∥

2

→ min

Linear leat squares system can be solved e.g. via QR factorisation or SVD
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A basic pricing scheme is obtained by replacing conditional
expectation of future payoff by regression operator

Approximate H̃k ≈ Hk via H̃k̄ = Hk̄ = 0 and

H̃k = Rk

[
Bk

Bk+1
max

{
Uk+1, H̃k+1

}
]

for k = k̄ − 1, . . . , 1

◮ Critical piece of this methodology is (for each step k)

◮ choice of regression variables ζ1, . . . , ζq and
◮ calibration of regression operator Rk with coefficients β

◮ Regression variables ζ1, . . . , ζq must be calculated based on information
up to tk

◮ they must not look into the future to avoid upward bias

◮ Control variables ζ(ω1), . . . , ζ(ωn̄) and observations Y (ω1), . . . , Y (ωn̄) for
calibration should be simulated on paths independent from pricing

◮ using same paths for calibration and payoff simulation also
incorporates information on the future
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What are typical basis functions?

State variable approach
Set ζi = x(tk)i−1 for i = 1, . . . , q. Typical choice is q ≈ 4 (i.e. polynomials of

order 3). For multi-dimensional models we would set ζi =
∏d

j=1
xj(tk)pi,j with

∑d

j=1
pi,j ≤ r .

◮ Very generic and easy to incorporate

Explanatory variable approach
Identify variables y1, . . . yd̄ relevant for the underlying option. Set basis
functions as monomials

ζi =

d̄∏

j=1

yj(tk)pi,j with

d̄∑

j=1

pi,j ≤ r

◮ Can be chosen option-specific and incorporate information prior to tk

◮ Typical choices are co-terminal swap rates or Libor rates (observed at tk)
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Regression of the full underlying can be a bit rough - we
may restrict regression to exercise decision only

For a given path consider

Hk =
Bk

Bk+1
max {Uk+1, Hk+1}

=
Bk

Bk+1

[

✶{Uk+1>Hk+1}Uk+1 +
(

1 − ✶{Uk+1>Hk+1}
)

Hk+1

]

Use regression to calculate ✶{Uk+1>Hk+1}

Calculate Rk = Rk [Uk+1 − Hk+1], set Hk̄ = 0 and

Hk =
Bk

Bk+1

[
✶{Rk >0}Uk+1 +

(
1 − ✶{Rk >0}

)
Hk+1

]
for k = k̄ − 1, . . . , 1

◮ Think of ✶{Rk >0} as an exercise strategy (which might be sub-optimal)

◮ This approach is sometimes considered more accurate than regression on
regression

◮ For further reference, see also Longstaff/Schwartz (2001)
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We summarize the American Monte Carlo method
1. Simulate n paths of state variables x

j

k
, underlyings U

j

k
and numeraires B

j

k

(j = 1, . . . , n) for all relevant times tk (k = 1, . . . k̄)

2. Set H
j

k̄
= 0

3. For k = k̄ − 1, . . . 1 iterate

3.1 Calculate control variables
{

ζ j
i

= ζi (ωj )
}j=1,...,n̂

i=1,...,q
and regression variables

Y j = U
j

k
− H

j

k
for the first n̂ paths (n̂ ≈ 1

4
n)

3.2 Calibrate regression operator Rk = Rk [Y ] which gives coefficients β

3.3 Calculate control variables
{

ζ j
i

= ζi (ωj )
}j=n̂+1,...n

i=1,...,q
for remaining paths

and (for all paths)

H
j

k
=

B
j

k

B
j

k+1

[

✶{Rk (ωj )>0}U
j

k+1
+

(

1 − ✶{Rk (ωj )>0}

)

H
j

k+1

]

4. Calculate discounted payoffs for the paths j = n̂ + 1, . . . n not used for regression

H
j
0 =

B
j

k

B
j

k+1

max
{

U
j
1, H

j
1

}

5. Derive average V (0) = 1
n−n̂

∑n

j=n̂+1
H

j
0
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Some comments regarding AMC for Bermudans in
Hull-White model

◮ AMC implementations can be very bespoke and problem specific

◮ see literature for more details

◮ More explanatory variables or too high polynomial degree for regression
may deteriorate numerical solution

◮ this is particularly relevant for 1-factor models like Hull-White
◮ single state variable or co-terminal swap rate should suffice

◮ AMC with Hull White for Bermudans is not the method of choice

◮ PDE and integration methods are directly applicable
◮ AMC is much slower and less accurate compared to PDE and

integration

AMC is the method of choice for high-dimensional models and/or
path-dependent products
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