
Interest Rate Modelling and Derivative Pricing

Sebastian Schlenkrich

HU Berlin, Department of Mathematics

WS, 2018/19

p. 287

Part V

Bermudan Swaption Pricing

p. 288

Outline

Bermudan Swaptions

Pricing Methods for Bermudans

Density Integration Methods

PDE and Finite Differences

American Monte-Carlo

p. 289

Let’s have another look at the cancellation option

Interbank swap deal example

Bank A may decide to early terminate deal in 10, 11, 12,..years

p. 290

What does such a Bermudan call right mean?

✲T̃0

L1

✻ ✻ ✻ ✻ ✻ ✻

❄ ❄ ❄

T0

K

T̃ 1
k−1

T 1
l−1T 1

E

✻ ✻

❄

T̃ 2
k−1

T 2
l−1T 2

E

✻ ✻

❄

T̃ 3
k−1

T 3
l−1T 3

E

✻ ✻

❄

T̃m

Tn

Lm

K

✲✲

❄ ❄ ❄ ❄ ❄ ❄

✻ ✻ ✻

T 1
E

T 1
l−1

T̃ 1
k−1

Tn

T̃m

K

Lm

✲

❄ ❄ ❄ ❄

✻ ✻

T 2
E

T 2
l−1

T̃ 2
k−1

Tn

T̃m

K

Lm

✲

❄ ❄

✻

T 3
E

T 3
l−1

T̃ 3
k−1

Tn

T̃m

K

Lm

[Bermudan cancellable swap] = [full swap] + [Bermudan option on opposite swap]

p. 291

What is a Bermudan swaption?

✲✲

❄ ❄ ❄ ❄ ❄ ❄

✻ ✻ ✻

T 1
E

T 1
l−1

T̃ 1
k−1

Tn

T̃m

K

Lm

✲

❄ ❄ ❄ ❄

✻ ✻

T 2
E

T 2
l−1

T̃ 2
k−1

Tn

T̃m

K

Lm

✲

❄ ❄

✻

T 3
E

T 3
l−1

T̃ 3
k−1

Tn

T̃m

K

Lm

Bermudan Swaption
A Bermudan swaption is an option to enter into a Vanilla swap with fixed rate

K and final maturity Tn at various exercise dates T 1
E , T 2

E , . . . , T k̄
E . If there is

only one exercise date (i.e. k̄ = 1) then the Bermudan swaption equals a
European swaption.

p. 292

A Bermudan swaption can be priced via backward

induction

✲

continuation value

✲

❄ ❄ ❄ ❄ ❄ ❄

✻ ✻ ✻

T 1
E

T 1
l−1

T̃ 1
k−1

Tn

T̃m

K

Lm

✲

❄ ❄ ❄ ❄

✻ ✻

T 2
E

T 2
l−1

T̃ 2
k−1

Tn

T̃m

K

Lm

✲

❄ ❄

✻

T 3
E

T 3
l−1

T̃ 3
k−1

Tn

T̃m

K

Lm

✲

exercise payoff

✲

❄ ❄ ❄ ❄ ❄ ❄

✻ ✻ ✻

T 1
E

T 1
l−1

T̃ 1
k−1

Tn

T̃m

K

Lm

✲

❄ ❄ ❄ ❄

✻ ✻

T 2
E

T 2
l−1

T̃ 2
k−1

Tn

T̃m

K

Lm

✲

❄ ❄

✻

T 3
E

T 3
l−1

T̃ 3
k−1

Tn

T̃m

K

Lm

p. 293

A Bermudan swaption can be priced via backward

induction - let’s add some notation
H3 = 0

U3

V3 = max{U3, H3}

H2 = . . .

U2

V2 = max{U2, H2}

H1 = . . .

U1

V1 = max{U1, H1}

H0 = B(t)E

[
V1

B(T 1
E

)
| Ft

]

✲

continuation value

✲

❄ ❄ ❄ ❄ ❄ ❄

✻ ✻ ✻

T 1
E

T 1
l−1

T̃ 1
k−1

Tn

T̃m

K

Lm

✲

❄ ❄ ❄ ❄

✻ ✻

T 2
E

T 2
l−1

T̃ 2
k−1

Tn

T̃m

K

Lm

✲

❄ ❄

✻

T 3
E

T 3
l−1

T̃ 3
k−1

Tn

T̃m

K

Lm

✲

exercise payoff

✲

❄ ❄ ❄ ❄ ❄ ❄

✻ ✻ ✻

T 1
E

T 1
l−1

T̃ 1
k−1

Tn

T̃m

K

Lm

✲

❄ ❄ ❄ ❄

✻ ✻

T 2
E

T 2
l−1

T̃ 2
k−1

Tn

T̃m

K

Lm

✲

❄ ❄

✻

T 3
E

T 3
l−1

T̃ 3
k−1

Tn

T̃m

K

Lm

p. 294

First we specify the future payoff cash flows

◮ Choose a numeraire B(t) and corresponding cond. expectations Et [·] = E[· | Ft]

◮ Underlying payoff Uk if option is exercised

Uk = B(T k
E)

∑

Ti ≥T k
E

E
T k

E

[
Xi (Ti)

B(Ti)

]

= B(T k
E)

∑

Ti ≥T k
E

K · τi · P(T k
E , Ti) −

∑

T̃j ≥T k
E

Lδ(T k
E , T̃j−1, T̃j−1 + δ) · τ̃j · P(T k

E , T̃j)

︸ ︷︷ ︸

future fixed leg minus future float leg

= B(T k
E)

∑

Ti ≥T k
E

K · τi · P(T k
E , Ti)

−P(T k
E , T̃jk) −

∑

T̃j ≥T k
E

P(T k
E , T̃j−1) ·

[
D(T̃j−1, T̃j) − 1

]
+ P(T k

E , T̃m)

p. 295

Then we specify the continuation value and optimal
exercise

◮ Continuation value Hk(t) (T k
E

≤ t ≤ T k+1
E

) represents the time-t value of the
remaining option if not exercised

◮ Option becomes worth-less if not exercises at last exercise date T k̄
E

. Thus last

continuation value Hk̄(T k̄
E

) = 0

◮ Recall that Bermudan option gives the right but not the obligation to enter into
underlying at exercise

◮ Rational agent will choose the maximum of payoff and continuation at exercise,
i.e.

Vk = max
{

Uk , Hk(T k
E)

}

◮ Vk represents the Bermudan option value at exercise T k
E

. Thus we also must
have for the continuation value

Hk−1(T k
E) = Vk

◮ Derivative pricing formula yields

Hk−1(T k−1
E

) = B(T k−1
E

) · E
T

k−1
E

[
Hk−1(T k

E
)

B(T k
E

)

]

= B(T k−1
E

) · E
T

k−1
E

[
Vk

B(T k
E

)

]

p. 296

We summarize the Bermudan pricing algorithm

Backward induction for Bermudan options
Consider a Bermudan option with k̄ exercise dates T k

E
(k = 1, . . . k̄) and underlying

future payoffs with (time-T k
E

) prices Uk .

Denote Hk(t) the option’s continuation value for T k
E

≤ t ≤ T k+1
E

and set

Hk̄

(
T k̄

E

)
= 0. Also set T 0

E
= t (i.e. pricing time today).

The option price can be derived via the recursion

Hk

(
T k

E

)
= B(T k

E) · E
T k

E

[
Hk(T k+1

E
)

B(T k+1
E

)

]

= B(T k
E) · E

T k
E

[

max
{

Uk+1, Hk+1(T k+1
E

)
}

B(T k+1
E

)

]

for k = k̄ − 1, . . . , 0. The Bermudan option price is given by

V Berm(t) = H0(t) = H0(T 0
E).

p. 297

Some more comments regarding Bermudan pricing...

◮ Recursion for Bermudan pricing can be formally derives via theory of optimal
stopping and Hamilton-Jacobi-Bellman (HJB) equation

◮ For more details, see Sec. 18.2.2 in Andersen/Piterbarg (2010)

◮ For a single exercise date k̄ = 1 we get

H0(t) = B(t) · Et

[
max {U1, 0)}

B(T 1
E

)

]

This is the general pricing formula for a European swaptions (if U1 represents a
Vanilla swap)

◮ In principle, recursion Hk

(
T k

E

)
= B(T k

E
) · E

T k
E

[
max

{
Uk+1,Hk+1(T k+1

E
)
}

B(T k+1
E

)

]

holds

for any payoffs Uk . However, computation

Uk = B(T k
E)

∑

Ti ≥T k
E

E
T k

E

[
Xi (Ti)

B(Ti)

]

might pose additional challenges if cash flows Xi (Ti) are more complex

p. 298

How do we price a Bermudan in practice?

◮ In principle, recursion algorithm for Hk() is straight forward

◮ Computational challenge is calculating conditional expectations

Hk

(
T k

E

)
= B(T k

E) · ET k
E

[

max
{

Uk+1, Hk+1(T k+1
E)

}

B(T k+1
E)

]

◮ Note, that this problem is an instance of the general option pricing
problem

V (T0) = B(T0) · E
[

V (T1)

B(T1)
| FT0

]

We can apply general option pricing methods to roll-back the Bermudan payoff

p. 299

Outline

Bermudan Swaptions

Pricing Methods for Bermudans

Density Integration Methods

PDE and Finite Differences

American Monte-Carlo

p. 300

Note that Uk , Vk and Hk depend on underlying state
variable x(T k

E)
H3 = 0

U3

V3 = max{U3, H3}

H2 = . . .

U2

V2 = max{U2, H2}

H1 = . . .

U1

V1 = max{U1, H1}

H0 = B(t)E

[
V1

B(T 1
E

)
| Ft

]

✲

continuation value

✲

❄ ❄ ❄ ❄ ❄ ❄

✻ ✻ ✻

T 1
E

T 1
l−1

T̃ 1
k−1

Tn

T̃m

K

Lm

✲

❄ ❄ ❄ ❄

✻ ✻

T 2
E

T 2
l−1

T̃ 2
k−1

Tn

T̃m

K

Lm

✲

❄ ❄

✻

T 3
E

T 3
l−1

T̃ 3
k−1

Tn

T̃m

K

Lm

✲

exercise payoff

✲

❄ ❄ ❄ ❄ ❄ ❄

✻ ✻ ✻

T 1
E

T 1
l−1

T̃ 1
k−1

Tn

T̃m

K

Lm

✲

❄ ❄ ❄ ❄

✻ ✻

T 2
E

T 2
l−1

T̃ 2
k−1

Tn

T̃m

K

Lm

✲

❄ ❄

✻

T 3
E

T 3
l−1

T̃ 3
k−1

Tn

T̃m

K

Lm

p. 301

Typically we need to discretise variables Uk , Vk and Hk on
a grid of underlying state variables

Forthcomming, we discuss several methods to roll-back the payoffs

p. 302

Outline

Bermudan Swaptions

Pricing Methods for Bermudans

Density Integration Methods

PDE and Finite Differences

American Monte-Carlo

p. 303

Outline

Density Integration Methods

General Densitiy Integration Method

Gauss–Hermite quadrature

Cubic Spline Interpolation and Exact Integration

p. 304

Key idea using the conditional density function in the Hull
White model

Recall that

V (T0) = B(T0) · E
[

V (T1)

B(T1)
| FT0

]

We choose the T1-maturing zero coupon bond P(t, T1) as numeraire. Then

V (T0) = P(T0, T1) · ET1 [V (T1) | FT0]

= P(x(T0); T0, T1) ·
∫ +∞

−∞

V (x ; T1) · pµ,σ2 (x) · dx

State variable x = x(T1) is normally distributed with known mean and variance

p. 305

Hull-White model results yield density parameters of the
state variable x(T1)

V (T0) = P(x(T0); T0, T1) ·
∫ +∞

−∞

V (x ; T1) · pµ,σ2 (x) · dx

State variable x = x(T1) is normally distributed with mean

µ = E
T1 [x(T1) | FT0] = G ′(T0, T1) [x(T0) + G(T0, T1)y(T0)]

and variance

σ2 = Var [x(T1) | FT0] = y(T1) − G ′(T0, T1)2y(T0)

Thus

pµ,σ2 (x) =
1√

2πσ2
· exp

{

− (x − µ)2

2σ2

}

and

V (T0) = P(x(T0); T0, T1) ·
∫ +∞

−∞

V (x ; T1)√
2πσ2

· exp

{

− (x − µ)2

2σ2

}

dx

p. 306

Integral against normal density needs to be computed
numerically by quadrature methods

V (T0) = P(x(T0); T0, T1) ·
∫ +∞

−∞

V (x ; T1)√
2πσ2

· exp

{

− (x − µ)2

2σ2

}

dx

◮ We can apply general purpose quadrature rules to function

f (x) =
V (x ; T1)√

2πσ2
· exp

{

− (x − µ)2

2σ2

}

◮ select a grid [x0, . . . , xN] and approximate e.g. via
◮ Trapezoidal rule

∫ +∞

−∞

f (x) · dx ≈
N∑

i=1

1

2
[f (xi−1) + f (xi)] (xi − xi−1)

◮ Or Simpson’s rule with equidistant grid (h = xi − xi−1) and even
sub-intervalls

∫ +∞

−∞

f (x)·dx ≈ h

3
·
[

f (x0) + 2

N/2−1
∑

j=1

f (x2j) + 4

N/2
∑

j=1

f (x2j−1) + f (xN)

]

p. 307

There are some details that need to be considered - Select
your integration domain carefully

◮ Infinite integral is approximated by definite integral

∫ +∞

−∞

f (x) · dx ≈
∫ xN

x0

f (x) · dx ≈ · · ·

◮ Finite integration boundaries need to be chosen carefully by taking into
account variance of x(t)

◮ One approach is calculating variance to option expiry T1,
σ̂2 = Var [x(T)] = y(T1) and set

x0 = −λ · σ̂ and xN = λ · σ̂

◮ Note, that E
T1 [x(T1)] = 0, thus we don’t apply a shift to the x -grid

p. 308

There are some details that need to be considered - Take
care of the break-even point

◮ Note that convergence of quadrature rules depends on smoothness of
integrand f (x)

◮ Recall that

f (x) = V (x) · pµ,σ2 (x) = max
{

Uk+1(x), Hk+1(x ; T k+1
E)

}
· pµ,σ2 (x)

◮ Max-function is not smooth at Uk+1(x) = Hk+1(x ; T k+1
E)

Determine x⋆ (via interpolation of Hk+1(·) and numerical root search) such that

Uk+1(x⋆) = Hk+1(x⋆; T k+1
E)

and split integration

∫ +∞

−∞

f (x) · dx =

∫ x⋆

−∞

f (x) · dx +

∫ +∞

x⋆

f (x) · dx

p. 309

Can we exploit the structure of the integrand?

V (T0) = P(x(T0); T0, T1) ·
∫ +∞

−∞

V (x ; T1)√
2πσ2

· exp

{

− (x − µ)2

2σ2

}

dx

◮ Integral against normal distribution density can be solved more efficiently

1. Use Gauss–Hermite quadrature

2. Interpolate only V (x ; T1) by cubic spline and integrate exact

p. 310

Outline

Density Integration Methods

General Densitiy Integration Method

Gauss–Hermite quadrature

Cubic Spline Interpolation and Exact Integration

p. 311

Gauss–Hermite quadrature is an efficient integration
method for smooth integrands

◮ Gauss–Hermite quadrature is a particular form of Gaussian quadrature

◮ Choose a degree parameter d , and approximate

∫ +∞

−∞

f (x) · e−x2

dx ≈
d∑

k=1

wk · f (xk)

with xk (i = 1, 2, ..., d) being the roots of the physicists’ version of the
Hermite polynomial Hd(x) and wk are weights with

wk =
2d−1d!

√
π

d2 [Hd−1(xk)]2

◮ Roots and weights can be obtained, e.g. via stored values and look-up
tables

p. 312

Variable transformation allows application of
Gauss–Hermite quadrature to Hull White model integration

We get

∫ +∞

−∞

V (x ; T1)√
2πσ2

· exp

{

− (x − µ)2

2σ2

}

dx =
1√
π

∫ +∞

−∞

V (
√

2σx + µ; T1) · e−x2

dx

≈ 1√
π

d∑

k=1

wk · V (
√

2σxk + µ; T1)

Some constraints need to be considered

◮ Payoff V (·, T1) is only available on the x -grid at T1, thus V (·, T1) needs
to be interpolated

◮ Gauss-Hermite quadrature does not take care of non-smooth payoff at
break-even state x⋆, thus d needs to be sufficiently large to mitigate
impact

p. 313

Outline

Density Integration Methods

General Densitiy Integration Method

Gauss–Hermite quadrature

Cubic Spline Interpolation and Exact Integration

p. 314

If we apply cubic spline interpolation anyway then we can
also integrate exactly

Approximate V (·, T1) via cubic spline on the grid [x0, . . . xN] as

V (x , T1) ≈ C(x) =

N−1∑

i=0

✶{xi ≤x<xi+1}

d∑

k=0

ck · (x − xi)
k

Then

∫ +∞

−∞

V (x ; T1) · pµ,σ2 (x) · dx ≈
N−1∑

i=0

∫ xi+1

xi

d∑

k=0

ck · (x − xi)
k · pµ,σ2 (x) · dx

=

N−1∑

i=0

d∑

k=0

ck ·
∫ xi+1

xi

(x − xi)
k · pµ,σ2 (x) · dx

Thus, all we need is

Ii,k =

∫ xi+1

xi

(x − xi)
k · pµ,σ2 (x) · dx

p. 315

We transform variables to make integration easier

First we apply the variable transformation x̄ = (x − µ)/σ. This yields
pµ,σ2 (x) = p0,1(x̄)/σ and

Ii,k =

∫ x̄i+1

x̄i

(σx̄ + µ − xi)
k · p0,1(x̄) · dx

σ

=

∫ x̄i+1

x̄i

σk (x̄ − x̄i)
k · 1√

2π
exp

{

− x̄2

2

}

︸ ︷︷ ︸

standard normal density

dx̄

with the shifted grid points x̄i = (xi − µ)/σ
Denote Φ(·) the cumulated standard normal distribution function. Then

Φ′(x) =
1√
2π

exp

{

− x̄2

2

}

and Φ′′(x) = −xΦ′(x)

As a sub-step we aim at solving the integrals

∫ x̄i+1

x̄i

x̄ k · Φ′(x̄) · dx̄

p. 316

We use cubic splines (d = 3) to keep formulas reasonalby
simple I

It turnes out that

F0(x̄) =

∫

Φ′(x̄)dx̄ = Φ(x̄)

F1(x̄) =

∫

x̄Φ′(x̄)dx̄ = −Φ′(x̄)

F2(x̄) =

∫

x̄2Φ′(x̄)dx̄ = Φ(x̄) − x · Φ′(x̄)

F3(x̄) =

∫

x̄3Φ′(x̄)dx̄ = −
(

x̄2 + 2
)

· Φ′(x̄)

This yields for Ii,0

Ii,0 =

∫ x̄i+1

x̄i

Φ′(x̄) · dx = F0(x̄i+1) − F0(x̄i)

p. 317

We use cubic splines (d = 3) to keep formulas reasonalby
simple II

and for Ii,1

Ii,1 =

∫ x̄i+1

x̄i

σ (x̄ − x̄i) · Φ′(x̄) · dx

= σ ·

∫ x̄i+1

x̄i

x̄ · Φ′(x̄) · dx − σ · x̄i · Ii,0

= σ · [F1(x̄i+1) − F1(x̄i)] − σ · x̄i · Ii,0

We may proceed similarly for Ii,2

Ii,2 =

∫ x̄i+1

x̄i

σ2 (x̄ − x̄i)
2 · Φ′(x̄) · dx

=

∫ x̄i+1

x̄i

σ2
[
x̄2 − 2x̄i x̄ + x̄2

i

]
· Φ′(x̄) · dx

= σ2 [F2(x̄i+1) − F2(x̄i)] − 2σ2x̄i [F1(x̄i+1) − F1(x̄i)] + σ2x̄2
i Ii,0

= σ2 [F2(x̄i+1) − F2(x̄i)] − 2σx̄i [Ii,1 + σ · x̄i · Ii,0] + σ2x̄2
i Ii,0

= σ2 [F2(x̄i+1) − F2(x̄i)] − 2σx̄i Ii,1 − σ2x̄2
i Ii,0

p. 318

We use cubic splines (d = 3) to keep formulas reasonalby
simple III

and Ii,3

Ii,3 =

∫ x̄i+1

x̄i

σ3 (x̄ − x̄i)
3 · Φ′(x̄) · dx

=

∫ x̄i+1

x̄i

σ3
[
x̄3 − 3x̄i x̄

2 + 3x̄2
i x̄ − x̄3

i

]
· Φ′(x̄) · dx

= σ3 [F3(x̄i+1) − F3(x̄i)] − 3σ3x̄i [F2(x̄i+1) − F2(x̄i)]

+ 3σ3x̄2
i [F1(x̄i+1) − F1(x̄i)] − σ3x̄3

i Ii,0

Substituting terms as before yields

Ii,3 = σ3 [F3(x̄i+1) − F3(x̄i)] − 3σx̄i

[
Ii,2 + 2σx̄i Ii,1 + σ2x̄2

i Ii,0
]

+ 3σ2x̄2
i [Ii,1 + σ · x̄i · Ii,0] − σ3x̄3

i Ii,0

= σ3 [F3(x̄i+1) − F3(x̄i)] − 3σx̄i Ii,2 − 3σ2x̄2
i Ii,1 − σ3x̄3

i Ii,0

p. 319

Let’s sumarize the formulas...

We get

V (T0) = P(x(T0); T0, T1) ·
∫ +∞

−∞

V (x ; T1) · pµ,σ2 (x) · dx

≈ P(x(T0); T0, T1) ·
N−1∑

i=0

3∑

k=0

ck · Ii,k

with

Ii,0 = F0(x̄i+1) − F0(x̄i)

Ii,1 = σ · [F1(x̄i+1) − F1(x̄i)] − σ · x̄i · Ii,0

Ii,2 = σ2 [F2(x̄i+1) − F2(x̄i)] − 2σx̄i Ii,1 − σ2x̄2
i Ii,0

Ii,3 = σ3 [F3(x̄i+1) − F3(x̄i)] − 3σx̄i Ii,2 − 3σ2x̄2
i Ii,1 − σ3x̄3

i Ii,0

and anti-derivative functions Fk(x) as before

p. 320

Integrating a cubic spline versus a normal density function
occurs in various contextes of pricing methods

◮ Method yields good accuracy already for smaller number of grid points

◮ For larger number of grid points accuracy benefit compared to e.g.
Simpson integration seems not too much

◮ Either way, use special treatment of break-even point x⋆

◮ Computational effort can become significant for larger number of grid
points

◮ Bermudan pricing requires N2 evaluations of Φ(·) and Φ′(·) per
exercise

p. 321

Outline

Bermudan Swaptions

Pricing Methods for Bermudans

Density Integration Methods

PDE and Finite Differences

American Monte-Carlo

p. 322

PDE methods for finance and pricing are extensively
studied in the literature

◮ We present the basic principles and some aspects relevant for

Bermudan bond option pricing

◮ Further reading

◮ L. Andersen and V. Piterbarg. Interest rate modelling, volume I

to III.

Atlantic Financial Press, 2010, Sec. 2.

◮ D. Duffy. Finite Difference Methods in Financial Engineering.

Wiley Finance, 2006

p. 323

Outline

PDE and Finite Differences

Derivative Pricing PDE in Hull-White Model

State Space Discretisation via Finite Differences

Time-integration via θ-Method

Alternative Boundary Conditions for Bond Option Payoffs

Summary of PDE Pricing Method

p. 324

We can adapt the Black-Scholes equation to our Hull
White model setting

◮ Recall that state variable x(t) follows the risk-neutral dynamics

dx(t) = [y(t) − a · x(t)]
︸ ︷︷ ︸

µ(t,x(t))

dt + σ(t) · dW (t)

◮ Consider an option with price V = V (t, x(t)), option expiry time T and
payoff V (T , x(T)) = g (x(T))

◮ Derivative pricing formula yields that discounted option price is a
martingale, i.e.

d

(
V (t, x(t))

B(t)

)

= σV (t, x(t)) · dW (t)

How can we use this to derive a PDE?

p. 325

Apply Ito’s Lemma to the discounted option price

We get

d

(
V (t, x(t))

B(t)

)

=
dV (t, x(t))

B(t)
+ V (t)d

(
1

B(t)

)

With d
(
B(t)−1

)
= −r(t) · B(t)−1 · dt follows

d

(
V (t, x(t))

B(t)

)

=
1

B(t)
[dV (t, x(t)) − r(t) · V (t) · dt]

Applying Ito’s Lemma to option price V (t, x(t)) gives

dV (t, x(t)) = Vt · dt + Vx · dx(t) +
1

2
Vxx · [dx(t)]2

=
[

Vt + Vx · µ (t, x(t)) +
1

2
Vxx · σ(t)2

]

dt + Vx · σ(t) · dW (t)

with partial derivatives Vt = ∂V (t, x(t)) /∂t, Vx = ∂V (t, x(t)) /∂x and
Vxx = ∂2V (t, x(t)) /∂x2

p. 326

Combining results yields dynamics of discounted option
price

d

(
V (t, x(t))

B(t)

)

=
1

B(t)

[

Vt + Vx · µ (t, x(t)) +
1

2
Vxx · σ(t)2 − r(t) · V

]

︸ ︷︷ ︸

µV (t,x(t))

dt

+
Vx · σ(t)

B(t)
︸ ︷︷ ︸

σV (t,x(t))

·dW (t)

Martingale property of V (t,x(t))
B(t)

requires that drift vanishes. That is

µV (t, x(t)) = Vt + Vx · µ (t, x(t)) +
1

2
Vxx · σ(t)2 − r(t) · V = 0

Substituting µ (t, x(t)) = y(t) − a · x(t) and r(t) = f (0, t) + x(t) yields pricing
PDE

p. 327

We get the parabolic pricing PDE with terminal condition

Theorem (Derivative pricing PDE in Hull-White model)
Consider our Hull-White model setup and a derivative security with price
process V (t, x(t)) that pays at time T the payoff V (T , x(T)) = g (x(T)).
Further assume V (T , x(T)) has finite variance and is attainable.
Then for t < T the option price

V (t, x(t)) = B(t) · EQ

[
V (T , x(T))

B(T)
| Ft

]

follows the PDE

Vt(t, x) + [y(t) − a · x] · Vx (t, x) +
σ(t)2

2
· Vxx (t, x) = [x + f (0, t)] · V (t, x)

with terminal condition
V (T , x) = g(x)

Proof.
Follows from derivation above.

p. 328

How does this help for our Bermudan option pricing
problem?

◮ We need option prices on a grid of state variables [x0, . . . xN]

Solve Hull White option pricing PDE backwards from exercise to exercise

p. 329

Pricing PDE is typically solved via finite difference scheme
and time integration

◮ Use method of lines (MOL) to solve parabolc PDE

◮ First discretise state space and

◮ Then integrate resulting system of ODEs with terminal condition in
time-direction

◮ We discuss basic (or general purpose) approach to solve PDE; for a
detailed treatment see Andersen/Piterbarg (2010) or Duffy (2006)

◮ Some aspects may require special attention in the context of Hull White
model

◮ More problem-specific boundary discretisation

◮ Non-equidistant grids with finer grid around break-even state x⋆

◮ Upwinding schemes to deal with potentially dominant impact of
convection term [y(t) − a · x] · Vx (t, x) at the grid boundaries of x

p. 330

Outline

PDE and Finite Differences

Derivative Pricing PDE in Hull-White Model

State Space Discretisation via Finite Differences

Time-integration via θ-Method

Alternative Boundary Conditions for Bond Option Payoffs

Summary of PDE Pricing Method

p. 331

How do we discretise state space?

◮ PDE for V (t, x(t)) is defined on infinite domain (−∞, +∞)

◮ We don’t get explicit boundary conditions from PDE derivation
◮ Thus, we require payoff-specific approximation
◮ Finally, we are interested in V (0, 0)

◮ We use equidistant x -grid x0, . . . , xN with grid size hx centered around
zero and scaled via standard deviation of x(T) at final maturity T

x0 = −λ · σ̂ and xN = λ · σ̂

with σ̂2 = Var [x(T)] = y(T) and λ ≈ 5

◮ Why not shift the grid by expectation E [x(T)] (as suggested in the
Literature)?

◮ Pricing PDE is independent of pricing measure (used for derivation)
◮ There is no natural measure under which E [x(T)] should be

calculated
◮ In T -forward measure E

T [x(T)] = 0 anyway

p. 332

Differential operators in state-dimention are discretised via
central finite differences

For now leave time t continuous. We use notation V (·, x)

For inner grid points xi with i = 1, . . . , N − 1

Vx (·, xi) =
V (·, xi+1) − V (·, xi−1)

2hx

+ O(h2
x) and

Vxx (·, xi) =
V (·, xi+1) − 2V (·, xi) + V (·, xi−1)

h2
x

+ O(h2
x)

At the boundaries we impose condition

Vxx (·, x0) = λ0 · Vx (·, x0) and Vxx (·, xN) = λN · Vx (·, xN)

This yields one-sided first order partial derivative approximations

Vx (·, x0) ≈
2 [V (·, x1) − V (·, x0)]

(2 + λ0hx) hx

and Vx (·, xN) ≈
2 [V (·, xN) − V (·, xN−1)]

(2 − λNhx) hx

p. 333

Some initial comments regarding choice of λ0,N

◮ Often, λ0,N = 0 (also suggested in the Literature)

◮ With λ0,N = 0 we have Vxx (·, x0) = Vxx (·, xN) = 0 and

Vx (·, x0) =
V (·, x1) − V (·, x0)

hx

+ O(h2
x) and

Vx (·, xN) =
V (·, xN) − V (·, xN−1)

hx

+ O(h2
x)

◮ However, for bond options the choice Vxx (·, x0) = Vxx (·, xN) = 0 might be
a poor approximation

◮ We will discuss an alternative choice for λ0,N later

p. 334

Now consider PDE for each grid point individually
Define the vector-valued function v(t) via

v(t) = [v0(t), . . . , vN(t)]⊤ = [V (t, x0), . . . , V (t, x0)]⊤ ∈ R
N+1

Then state discretisation yields for inner points xi with i = 1, . . . , N − 1

v ′
i (t)+[y(t) − axi]

vi+1(t) − vi−1(t)

2hx

+
σ(t)2

2

vi+1(t) − 2vi (t) + vi−1(t)

h2
x

= [xi + f (0, t)] vi (t)

and for the boundaries

v ′
0(t) +

[

y(t) − ax0 + λ0
σ(t)2

2

]
2 [v1(t) − v0(t)]

(2 + λ0hx) hx

= [x0 + f (0, t)] v0(t)

v ′
N(t) +

[

y(t) − axN + λN

σ(t)2

2

]
2 [vN(t) − vN−1(t)]

(2 − λNhx) hx

= [xN + f (0, t)] vN(t)

As before, we have the terminal condition

vi (T) = g(xi)

Parabolic PDE is transformed into linear system of ODEs with terminal condition

p. 335

It is more convenient to write system of ODEs in
matrix-vector notation

We get

v ′(t) = M(t) · v(t) =

c0 u0

l1
. . .

. . .

. . .
. . . uN−1

lN cN

· v(t)

with time-dependent components ci , li , ui (i = 1, . . . N − 1),

ci =
σ(t)2

h2
x

+ xi + f (0, t), li = −
σ(t)2

2h2
x

+
y(t) − axi

2hx

, ui = −
σ(t)2

2h2
x

−
y(t) − axi

2hx

and

c0 =

2

[

y(t) − ax0 + λ0
σ(t)2

2

]

(2 + λ0hx) hx

+x0+f (0, t), cN = −

2

[

y(t) − axN + λN
σ(t)2

2

]

(2 − λNhx) hx

+x0+f (0, t),

u0 = −

2

[

y(t) − ax0 + λ0
σ(t)2

2

]

(2 + λ0hx) hx

, lN =

2

[

y(t) − axN + λN
σ(t)2

2

]

(2 − λNhx) hx

p. 336

Outline

PDE and Finite Differences

Derivative Pricing PDE in Hull-White Model

State Space Discretisation via Finite Differences

Time-integration via θ-Method

Alternative Boundary Conditions for Bond Option Payoffs

Summary of PDE Pricing Method

p. 337

Linear system of ODEs can be solved by standard methods

We have
v ′(t) = f (t, v(t)) = M(t) · v(t)

We demonstrate time discretisation based on θ-method. Consider equidistant
time grid t = t0, . . . , tM = T with step size ht and approximation

v(tj+1) − v(tj)

ht

≈ f (tj+1 − θht , (1 − θ)v(tj+1) + θv(tj))

for θ ∈ [0, 1]

◮ In general approximation yields method of order O(ht)

◮ For θ = 1
2

approximation yields method of order O(h2
t)

For our linear ODE we set v j = v(tj), Mθ = M(tj+1 − θht) and get the scheme

v j+1 − v j

ht

= Mθ

[
(1 − θ)v j+1 + θv j

]

p. 338

We get a recursion for the θ-method

Re-arranging terms yields

[I + htθMθ] v j = [I − ht (1 − θ) Mθ] v j+1

If [I + htθMθ] is regular then we can solve for v j via

v j = [I + htθMθ]−1 [I − ht (1 − θ) Mθ] v j+1

Terminal condition is
vM = [g(x0), . . . , g(xN)]⊤

◮ Unless θ = 0 (Explicit Euler scheme) we need to solve a linear equation
system

◮ Fortunately, matrix [I + htθMθ] is tri-diagonal; solution requires O(M)
operations

◮ θ-method is A-stable for θ ≥ 1
2

◮ However, oscillations in solution may occur unless θ = 1 (Implicit Euler
scheme, L-stable)

p. 339

Outline

PDE and Finite Differences

Derivative Pricing PDE in Hull-White Model

State Space Discretisation via Finite Differences

Time-integration via θ-Method

Alternative Boundary Conditions for Bond Option Payoffs

Summary of PDE Pricing Method

p. 340

Let’s have another look at the boundary condition...

We look at an example of a zero coupon bond option with payoff

V (x , T) =
[
P(x , T , T ′) − K

]+

For x ≪ 0 option is far in-the-money and V (x , t) can be approximated by
intrinsic value

V (x , t) ≈ Ṽ (x , t) =
[
P(x , t, T ′) − K

]+
=

[
P(0, T ′)

P(0, t)
e−G(t,T)x− 1

2
G(t,T)2y(t) − K

]+

This yields
∂

∂x
Ṽ (x , t) = −G(t, T)

[
Ṽ (x , t) + K

]

and
∂2

∂x2
Ṽ (x , t) = −G(t, T)

︸ ︷︷ ︸

λ

∂

∂x
Ṽ (x , t)

Alternatively, for x ≫ 0 option is far out-of-the-money and

∂2

∂x2
Ṽ (x , t) =

∂

∂x
Ṽ (x , t) = 0

p. 341

We adapt that approximation to our general option pricing
problem

◮ In principle, for a coupon bond underlying we could estimate λ = λ(t) via
option intrinsic value Ṽ (x , t) and

λ(t) =

[
∂2

∂x2
Ṽ (x , t)

]

/
∂

∂x
Ṽ (x , t) for

∂

∂x
Ṽ (x , t) 6= 0,

otherwise λ(t) = 0

◮ We take a more rough approach by approximating λ based only on
previous solution

λ0,N =

[
∂2

∂x2
V (x , t)

]

/
∂

∂x
V (x , t) ≈

[
∂2

∂x2
V (x1,N−1, t + ht)

]

/
∂

∂x
V (x1,N−1, t + ht)

≈
v

j+1
0,N−2

− 2v
j+1
1,N−1

+ v
j+1
2,N

h2
x

/
v

j+1
2,N

− v
j+1
0,N−2

2hx

for v j+1
2,N − v j+1

0,N−2/(2hx) 6= 0, otherwise λ0,N = 0

p. 342

It turns out that accuracy of one-sided first order
derivative approximation is of order O(h2

x) I

Lemma
Assume V = V (x) is twice continuously differentiable. Moreover, consider grid points

x−1, x0, x1 with equal spacing hx = x1 − x0 = x0 − x−1. If there is a λ0 ∈ R such that

V ′′(x0) = λ0 · V ′(x0)

then

V ′(x0) =
2 [V (x1) − V (x0)]

(2 + λ0hx) hx

+ O(h2
x).

Proof:

Denote vi = V (xi). We have from standard Taylor approximation

V ′′(x0) =
v−1 − 2v0 + v1

h2
x

+ O(h2
x) and V ′(x0) =

v1 − v−1

2hx

+ O(h2
x)

From V ′′(x0) = λ · V ′(x0) follows

v−1 − 2v0 + v1

h2
x

+ O(h2
x) = λ0

[
v1 − v−1

2hx

+ O(h2
x)

]

p. 343

It turns out that accuracy of one-sided first order
derivative approximation is of order O(h2

x) II
Multiplying with 2h2

x gives the relation

2 (v−1 − 2v0 + v1) + O(h4
x) = λ0hx (v1 − v−1) + O(h4

x)

Re-ordering terms yields

(2 + λ0hx) v−1 = 4v0 + (λ0hx − 2) v1 + O(h4
x)

And solving for v−1 gives v−1 = [4v0 + (λ0hx − 2) v1] / (2 + λ0hx) + O(h4
x).

Now, we substiture v−1 in the approximation for V ′(x). This gives

V ′(x0) =
v1 −

[
[4v0 + (λ0hx − 2) v1] / (2 + λ0hx) + O(h4

x)
]

2hx

+ O(h2
x)

=
(2 + λ0hx) v1 − [4v0 + (λ0hx − 2) v1]

2 (2 + λ0hx) hx

+ O(h2
x) + O(h3

x)

=
2v1 − 4v0 + 2v1

2 (2 + λ0hx) hx

+ O(h2
x)

=
2 (v1 − v0)

(2 + λ0hx) hx

+ O(h2
x)

p. 344

It turns out that accuracy of one-sided first order
derivative approximation is of order O(h2

x) III

◮ With constriant V ′′(x0) = λ · V ′(x0) we can eliminate explicit dependence
on second derivative V ′′(x0) and outer grid point v−1 = V (x−1)

◮ Analogous result can be derived for upper boundery and down-ward
approximation of first derivative

◮ Resulting scheme is still second order accurate in state space direction

p. 345

Outline

PDE and Finite Differences

Derivative Pricing PDE in Hull-White Model

State Space Discretisation via Finite Differences

Time-integration via θ-Method

Alternative Boundary Conditions for Bond Option Payoffs

Summary of PDE Pricing Method

p. 346

We summarize the PDE pricing method

1. Discretise state space x on a grid [x0, . . . , xN] and specify time step size
ht and θ ∈ [0, 1]

2. Determine the terminal condition v j+1 = max {Uj+1, Hj+1} for the current
valuation step

3. Set up discretised linear operator Mθ of the resulting ODE system
d
dt

v = Mθ · v

4. Incorporate appropriate product-specific boundary conditons

5. Set up linear system [I + htθMθ] v j = [I − ht (1 − θ) Mθ] v j+1

6. Solve linear system for v j by tridiagonal matrix solver

7. Repeat with step 3. until next exercise date or tj = 0

p. 347

Outline

Bermudan Swaptions

Pricing Methods for Bermudans

Density Integration Methods

PDE and Finite Differences

American Monte-Carlo

p. 348

Monte-Carlo methods are widely applied in various finance
applications

◮ We demonstrate the basic principles for
◮ path integration of Ito processes
◮ exact simulation of Hull-White model paths

◮ There are many aspects that should also be considered, see
e.g.

◮ L. Andersen and V. Piterbarg. Interest rate modelling, volume I

to III.

Atlantic Financial Press, 2010, Sec. 3.

◮ P. Glasserman. Monte Carlo Methods in Financial Engineering.

Springer, 2003

p. 349

Outline

American Monte-Carlo

Introduction to Monte-Carlo Pricing

Monte-Carlo Simulation in Hull White Model

Regression-based Backward Induction

p. 350

Monte-Carlo (MC) Pricing is based on the Strong Law of
Large Numbers

Theorem (Strong Law of Large Numbers)
Let Y1, Y2, . . . be a sequence of independent identically disctributed (i.i.d.)
random variables with finite expectation µ < ∞. Then the sample mean
Ȳn = 1

n

∑n

i=1
Yi converges to µ a.s. That is

lim
n→∞

Ȳn = µ a.s.

◮ We aim at calculating V (t) = N(t) · EN [V (T)/N(T) | Ft]

◮ For MC pricing simulate future discounted payoffs
{

V (T ;ωi)
N(T ;ωi)

}

i=1,2,...n
, and

◮ Estimate

V (t) = N(t) · 1

n

n∑

i=1

V (T ; ωi)

N(T ; ωi)

p. 351

Keep in mind that sample mean is still a random variable
governed by central limit theorem

Theorem (Central Limit Theorem)
Let Y1, Y2, . . . be a sequence of i.i.d. random variables with finite expectation
µ < ∞ and standard deviation σ < ∞. Denote the sample mean
Ȳn = 1

n

∑n

i=1
Yi . Then

Ȳn − µ

σ/
√

n

d−→ N(0, 1).

Moreover, for the variance estimator s2
n = 1

n−1

∑n

i=1

(
Yi − Ȳn

)2
we also have

Ȳn − µ

sn/
√

n

d−→ N(0, 1).

◮ Here, N(0, 1) is the standard normal distribution

◮
d−→ denotes convergence in distribution, i.e. limn→∞ Fn(x) = F (x) for

the corresponding cumulative distribution functions and all x ∈ R at
which F (x) is continuous

◮ sn/
√

n is the standard error of the sample mean Ȳn

p. 352

How do we get our samples V (T ; ωi)/N(T ; ωi)?

1. Simulate state variables x(t) on relevant dates t

2. Simulate numeraire N(t) on relevant dates t

3. Calculate payoff V (T , x(T)) at observation/pay date T

p. 353

We need to simulate our state variables on the relevant
observation dates

Consider the general dynamics for a process given as SDE

dX(t) = µ(t, X(t)) · dt + σ(t, X(t)) · dW (t)

◮ Typically, we know initial value X(t) (t = 0)

◮ We need X(T) for some future time T > t

◮ In Hull-White model and risk-neutral measure formulation we have

µ(t, X(t)) = y(t) − a · X(t), and, σ(t, X(t)) = σ(t)

There are several standard methods to solve above SDE. We will briefly discuss
Euler method and Milstein method

.

p. 354

Euler method for SDEs is similar to Explicit Euler method
for ODEs

◮ Specify a grid of simulation times t = t0, t1, . . . , tM = T

◮ Calculate sequence of state variables

Xk+1 = Xk + µ(tk , Xk) (tk+1 − tk) + σ(tk , Xk) [W (tk+1) − W (tk)]

◮ Drift µ(tk , Xk) and volatility σ(tk , Xk) are evaluated at current time tk

and state Xk

◮ Increment of Brownian motion W (tk+1) − W (tk) is normally distributed,
i.e.

W (tk+1) − W (tk) = Zk ·
√

tk+1 − tk with Zk ∼ N(0, 1)

p. 355

Milstein method refines the simulation of the diffusion term

◮ Again, specify a grid of simulation times t = t0, t1, . . . , tM = T

◮ Calculate sequence of state variables

Xk+1 = Xk + µ(tk , Xk) (tk+1 − tk) + σ(tk , Xk) [W (tk+1) − W (tk)]

+
1

2
·

∂

∂x
σ(tk , Xk) · σ(tk , Xk) ·

[
(W (tk+1) − W (tk))2 − (tk+1 − tk)

]

◮ Drift µ(tk , Xk) and volatility σ(tk , Xk) are evaluated at current time tk and
state Xk

◮ Requires calculation of derivative of volatility ∂
∂x

σ(tk , Xk) w.r.t. state variable

◮ Increment of Brownian motion W (tk+1) − W (tk) is normally distributed, i.e.

W (tk+1) − W (tk) = Zk ·
√

tk+1 − tk with Zk ∼ N(0, 1)

◮ With ∆k = tk+1 − tk iteration becomes

Xk+1 = Xk + µ(tk , Xk)∆k + σ(tk , Xk)Zk

√

∆k +
1

2

∂σ(tk , Xk)

∂x
σ(tk , Xk)

(
Z2

k − 1
)

∆k

p. 356

How can we measure convergence of the methods?

◮ We distinguish strong order of convergence and weak order of
convergence

◮ Consider a discrete SDE solution
{

X h
k

}M

k=0
with X h

k ≈ X(t + kh), h = T−t
M

Definition (Strong order of convergence)
The discrete solution X h

M at final maturity T = t + hM converges to the exact
solution X(T) with strong orderβ if there exists a constant C such that

E

[∣
∣X h

M − X(T)
∣
∣
]

≤ C · hβ .

◮ Strong order of convergence focuses on convergence on the individual
paths

◮ Euler method has strong order of convergence of 1
2

(given sufficient
conditions on µ(·) and σ(·))

◮ Milstein method has strong order of convergence of 1 (given sufficient
conditions on µ(·) and σ(·))

p. 357

For derivative pricing we are typically interested in weak
order of convergence

We need some context for weak order of convergence

◮ A function f : R → R is polynomially bounded if |f (x)| ≤ k (1 + |x |)q for
constants k and q and all x

◮ The set Cn
P represents all functions that are n-times continuously

differentiable and with 1st to nth derivative polynaomially bounded

Definition (Weak order of convergence)
The discrete solution X h

M at final maturity T = t + hM converges to the exact
solution X(T) with weak orderβ if there exists a constant C such that

∣
∣E

[
f

(
X h

M

)]
− E [f (X(T))]

∣
∣ ≤ C · hβ ∀f ∈ C2β+2

P

for sufficiently small h.

◮ Think of f as a payoff function, then weak order of convergence is related
to convergence in price

◮ Euler method and Milstein method can be shown to have weak order 1
convergence (given sufficient conditions on µ and σ)

p. 358

Some comments regarding weak order of convergence

Error estimate ∣
∣E

[
f

(
X h

M

)]
− E [f (X(T))]

∣
∣ ≤ C · hβ

requires considerable assumptions regarding smoothness of µ(·), σ(·) and test
functions f (·)

◮ In practice payoffs are typically non-smooth at the strike

◮ This limits applicability of more advanced schemes with theoretical higher
order of convergence

◮ A fairly simple approach of a higher order scheme is based on Richardson
extrapolation

◮ this method is also applied to ODEs
◮ see Glassermann (2000), Sec. 6.2.4 for details

◮ Typically, numerical testing is required to assess convergence in practice

p. 359

The choice of pricing measure is crutial for numeraire
simulation

Consider risk-neutral measure, then

N(T) = B(T) = exp

{∫ T

0

r(s)ds

}

= exp

{∫ T

0

[f (0, s) + x(s)] ds

}

= P(0, T)−1 exp

{∫ T

0

x(s)ds

}

Requires simulation or approximation of
∫ T

0
x(s)ds

Suppose x(tk) is simulated on a time grid {tk}M

k=0 then we approximate integral
via trapezoidal rule

∫ T

0

x(s)ds ≈
M∑

i=1

x(tk−1) + x(tk)

2
(tk − tk−1)

Numeraire simulation is done in parallel to state simulation

N(tk) =
P(0, tk−1)

P(0, tk)
· N(tk−1) · exp

{
x(tk−1) + x(tk)

2
(tk − tk−1)

}

p. 360

Alternatively, we can simulate in T -forward measure for a
fixed future time T

Select a future time T̄ sufficiently large. Then N(0) = P(0, T̄)
At any pay time T ≤ T̄ numeraire is directly available via zero coupon bond
formula

N(T) = P(x(T), T , T̄) =
P(0, T̄)

P(0, T)
e−G(T ,T ′)x(T)− 1

2
G(T ,T ′)2y(T)

However, T̄ -forward measure simulation needs consistent model formulation or
change of measure.
In particlar

dW T̄ (t)
︸ ︷︷ ︸

B.M. in T̄ -forward measure

= σP(t, T̄)
︸ ︷︷ ︸

ZCB volatility

·dt + dW (t)
︸ ︷︷ ︸

B.M. in risk-neutral measure

p. 361

Another commonly used numeraire for simulation is the
discretely compounded bank account

◮ Consider a grid of simulation times t = t0, t1, . . . , tM = T .
◮ Assume we start with 1 EUR at t = 0, i.e. N(0) = 1
◮ At each tk we take numeraire N(tk) and buy zero coupon bond maturing

at tk+1, That is

N(t) = P(t, tk+1) · N(tk)

P(tk , tk+1)
for t ∈ [tk , tk+1]

Explicitly, define discretely compounded bank account as B̄(0) = 1 and

B̄(t) =
∏

tk <t

P(t, tk+1)

P(tk , tk+1)

We get

d

(
B̄(t)

P(t, tk+1)

)

=
∏

tk <t

1

P(tk , tk+1)
· d

(
P(t, tk+1)

P(t, tk+1)

)

= 0 for t ∈ [tk , tk+1]

Simulating in B̄-measure is equivalent to simulating in rolling tk+1-forward
measure

p. 362

Outline

American Monte-Carlo

Introduction to Monte-Carlo Pricing

Monte-Carlo Simulation in Hull White Model

Regression-based Backward Induction

p. 363

Do we really need to solve the Hull-White SDE
numerically?

Recall dynamics in T -forward measure

dx(t) =
[
y(t) − σ(t)2G(t, T) − a · x(t)

]
· dt + σ(t) · dW T (t)

that gives

x(T) = e−a(T−t)

[

x(t) +

∫ T

t

ea(u−t)
([

y(u) − σ(u)2G(u, T)
]

du + σ(u)dW T (u)
)
]

As a result x(T) ∼ N(µ, σ2) (conditional on t) with

µ = E
T [x(T) | Ft] = G ′(t, T) [x(t) + G(t, T)y(t)] and

σ2 = Var [x(T) | Ft] = y(T) − G ′(t, T)2y(t)

We can simulate exactly

x(T) = µ + σ · Z with Z ∼ N(0, 1)

p. 364

Expectation calculation via µ = E
T [x(T) | Ft] requires

carefull choice of numeraire
Consider grid of simulation times t = t0, t1, . . . , tM = T
We simulate

x(tk+1) = µk + σk · Zk

with

µk = G ′(tk , tk+1) [x(tk) + G(tk , tk+1)y(tk)] ,

σ2
k = y(tk+1) − G ′(tk , tk+1)2y(tk), and

Zk ∼ N(0, 1)

Grid point tk+1 must coincide with forward measure for Etk+1 [·] for each
individual step k → k + 1
Numeraire must be discretely compounded bank account B̄(t) and

B̄(tk+1) =
B̄(tk)

P(x(tk), tk , tk+1)

Recursion for x(tk+1) and B̄(tk+1) fully specifies path simulation for pricing

p. 365

Some comments regarding Hull-White MC simulation...

◮ We could also simulate in risk-neutral measure or T̄ -forward measure

◮ this might be advantegous if also FX or equities are
modelled/simulated

◮ requires adjustment of conditional expectation µk and numeraire
N(tk) calculation

◮ variance σ2
k is invariant to change of meassure in Hull-White model

◮ Repeat path generation for as many paths 1, . . . , n as desired (or
computationally feasible)

◮ For Bermudan pricing we need to simulate x and N (at least) at exercise

dates T 1
E , . . . , T k̄

E

◮ For calculation of Zk use

◮ pseudo-random numbers or
◮ Quasi-Monte-Carlo sequences

as proxies for independent N(0, 1) random variables accross time steps
and paths

p. 366

We illustrate MC pricing by means of a coupon bond
option example

Consider coupon bond option expiring at TE with coupons Ci paid at Ti

(i = 1, . . . , u, incl. strike and notional)

◮ Set t0 = 0, t1 = TE /2 and t2 = TE (two steps for illustrative purpose)

◮ Compute 2n independent N(0, 1) pseudo random numbers Z 1, . . . , Z 2n

◮ For all paths j = 1, . . . , n calculate

◮ µj
0, σ0 and B̄j(t1); note µj

0 and B̄j(t1) are equal for all paths j since
x(t0) = 0

◮ x j
1 = µj

0 + σ0 · Z j

◮ µj
1, σ1 and B̄j(t2); note now µj

1 and B̄j(t2) depend on x j
1

◮ x j
2 = µj

1 + σ1 · Z n+j

◮ payoff V j(t2) =
[∑u

i=1
Ci · P(x j

2, t2, Ti)
]+

at t2 = TE

◮ Calculate option price (note B̄(0) = 1)

V (0) = B̄(0) · 1

n

n∑

j=1

V j(t2)

B̄j(t2)

p. 367

Outline

American Monte-Carlo

Introduction to Monte-Carlo Pricing

Monte-Carlo Simulation in Hull White Model

Regression-based Backward Induction

p. 368

Let’s return to our Bermudan option pricing problem

H3 = 0

U3

V3 = max{U3, H3}

H2 = . . .

U2

V2 = max{U2, H2}

H1 = . . .

U1

V1 = max{U1, H1}

H0 = B(t)E

[
V1

B(T 1
E

)
| Ft

]

✲

continuation value

✲

❄ ❄ ❄ ❄ ❄ ❄

✻ ✻ ✻

T 1
E

T 1
l−1

T̃ 1
k−1

Tn

T̃m

K

Lm

✲

❄ ❄ ❄ ❄

✻ ✻

T 2
E

T 2
l−1

T̃ 2
k−1

Tn

T̃m

K

Lm

✲

❄ ❄

✻

T 3
E

T 3
l−1

T̃ 3
k−1

Tn

T̃m

K

Lm

✲

exercise payoff

✲

❄ ❄ ❄ ❄ ❄ ❄

✻ ✻ ✻

T 1
E

T 1
l−1

T̃ 1
k−1

Tn

T̃m

K

Lm

✲

❄ ❄ ❄ ❄

✻ ✻

T 2
E

T 2
l−1

T̃ 2
k−1

Tn

T̃m

K

Lm

✲

❄ ❄

✻

T 3
E

T 3
l−1

T̃ 3
k−1

Tn

T̃m

K

Lm

p. 369

In this setting we need to calculate future conditional
expectations

◮ Assume we simulated paths for state variables xk , underlyings Uk and
numeraire Bk for all relevant dates tk

◮ We need continuation values Hk defined recursively via Hk̄ = 0 and

Hk = BkEk

[
max {Uk+1, Hk+1}

Bk+1

]

◮ In principle, we could use nested Monte Carlo

◮ In practice, nested Monte Carlo is typically computationally not feasible

p. 370

A key idea of American Monte-Carlo is approximating
conditional expectation via regression

Conditional expectation

Hk = Ek

[
Bk

Bk+1
max {Uk+1, Hk+1}

]

is a function of the path x(t) for t ≤ tk

For non-path-dependent underlyings Uk , Hk can be witten as function of
xk = x(tk), i.e.

Hk = Hk(xk)

We aim at finding a regression operator

Rk = Rk [Y]

which we can use as proxy for Hk

p. 371

What do we mean by regression operator?
Denote ζ(ω) = [ζ1(ω), . . . , ζq(ω)]⊤ a set of basis functions (vector of random
variables)

Let Y = Y (ω) be a target random variable

Assume we have outcomes ω1, . . . , ωn̄ with control variables ζ(ω1), . . . , ζ(ωn̄)
and observations Y (ω1), . . . , Y (ωn̄)

A regression operator R [Y] is defined via

R [Y] (ω) = ζ(ω)⊤β

where the regression coefficients β solve linear least squares problem

∥
∥
∥
∥
∥
∥
∥

ζ(ω1)⊤β − Y (ω1)
...

ζ(ωn̄)⊤β − Y (ωn̄)

∥
∥
∥
∥
∥
∥
∥

2

→ min

Linear leat squares system can be solved e.g. via QR factorisation or SVD

p. 372

A basic pricing scheme is obtained by replacing conditional
expectation of future payoff by regression operator

Approximate H̃k ≈ Hk via H̃k̄ = Hk̄ = 0 and

H̃k = Rk

[
Bk

Bk+1
max

{
Uk+1, H̃k+1

}
]

for k = k̄ − 1, . . . , 1

◮ Critical piece of this methodology is (for each step k)

◮ choice of regression variables ζ1, . . . , ζq and
◮ calibration of regression operator Rk with coefficients β

◮ Regression variables ζ1, . . . , ζq must be calculated based on information
up to tk

◮ they must not look into the future to avoid upward bias

◮ Control variables ζ(ω1), . . . , ζ(ωn̄) and observations Y (ω1), . . . , Y (ωn̄) for
calibration should be simulated on paths independent from pricing

◮ using same paths for calibration and payoff simulation also
incorporates information on the future

p. 373

What are typical basis functions?

State variable approach
Set ζi = x(tk)i−1 for i = 1, . . . , q. Typical choice is q ≈ 4 (i.e. polynomials of

order 3). For multi-dimensional models we would set ζi =
∏d

j=1
xj(tk)pi,j with

∑d

j=1
pi,j ≤ r .

◮ Very generic and easy to incorporate

Explanatory variable approach
Identify variables y1, . . . yd̄ relevant for the underlying option. Set basis
functions as monomials

ζi =

d̄∏

j=1

yj(tk)pi,j with

d̄∑

j=1

pi,j ≤ r

◮ Can be chosen option-specific and incorporate information prior to tk

◮ Typical choices are co-terminal swap rates or Libor rates (observed at tk)

p. 374

Regression of the full underlying can be a bit rough - we
may restrict regression to exercise decision only

For a given path consider

Hk =
Bk

Bk+1
max {Uk+1, Hk+1}

=
Bk

Bk+1

[

✶{Uk+1>Hk+1}Uk+1 +
(

1 − ✶{Uk+1>Hk+1}
)

Hk+1

]

Use regression to calculate ✶{Uk+1>Hk+1}

Calculate Rk = Rk [Uk+1 − Hk+1], set Hk̄ = 0 and

Hk =
Bk

Bk+1

[
✶{Rk >0}Uk+1 +

(
1 − ✶{Rk >0}

)
Hk+1

]
for k = k̄ − 1, . . . , 1

◮ Think of ✶{Rk >0} as an exercise strategy (which might be sub-optimal)

◮ This approach is sometimes considered more accurate than regression on
regression

◮ For further reference, see also Longstaff/Schwartz (2001)

p. 375

We summarize the American Monte Carlo method
1. Simulate n paths of state variables x

j

k
, underlyings U

j

k
and numeraires B

j

k

(j = 1, . . . , n) for all relevant times tk (k = 1, . . . k̄)

2. Set H
j

k̄
= 0

3. For k = k̄ − 1, . . . 1 iterate

3.1 Calculate control variables
{

ζ j
i

= ζi (ωj)
}j=1,...,n̂

i=1,...,q
and regression variables

Y j = U
j

k
− H

j

k
for the first n̂ paths (n̂ ≈ 1

4
n)

3.2 Calibrate regression operator Rk = Rk [Y] which gives coefficients β

3.3 Calculate control variables
{

ζ j
i

= ζi (ωj)
}j=n̂+1,...n

i=1,...,q
for remaining paths

and (for all paths)

H
j

k
=

B
j

k

B
j

k+1

[

✶{Rk (ωj)>0}U
j

k+1
+

(

1 − ✶{Rk (ωj)>0}

)

H
j

k+1

]

4. Calculate discounted payoffs for the paths j = n̂ + 1, . . . n not used for regression

H
j
0 =

B
j

k

B
j

k+1

max
{

U
j
1, H

j
1

}

5. Derive average V (0) = 1
n−n̂

∑n

j=n̂+1
H

j
0

p. 376

Some comments regarding AMC for Bermudans in
Hull-White model

◮ AMC implementations can be very bespoke and problem specific

◮ see literature for more details

◮ More explanatory variables or too high polynomial degree for regression
may deteriorate numerical solution

◮ this is particularly relevant for 1-factor models like Hull-White
◮ single state variable or co-terminal swap rate should suffice

◮ AMC with Hull White for Bermudans is not the method of choice

◮ PDE and integration methods are directly applicable
◮ AMC is much slower and less accurate compared to PDE and

integration

AMC is the method of choice for high-dimensional models and/or
path-dependent products

Contact

Dr. Sebastian Schlenkrich

Office: RUD25, R 1.211

Mail: sebastian.schlenkrich@hu-berlin.de

d-fine GmbH

Mobile: +49-162-263-1525

Mail: sebastian.schlenkrich@d-fine.de

	Bermudan Swaption Pricing
	Bermudan Swaptions
	Pricing Methods for Bermudans
	Density Integration Methods
	General Densitiy Integration Method
	Gauss–Hermite quadrature
	Cubic Spline Interpolation and Exact Integration

	PDE and Finite Differences
	Derivative Pricing PDE in Hull-White Model
	State Space Discretisation via Finite Differences
	Time-integration via -Method
	Alternative Boundary Conditions for Bond Option Payoffs
	Summary of PDE Pricing Method

	American Monte-Carlo
	Introduction to Monte-Carlo Pricing
	Monte-Carlo Simulation in Hull White Model
	Regression-based Backward Induction

