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1. Introduction and model formulation. We consider a class of non-Markov
stochastic optimal control problems with a singular terminal state constraint on the
controlled process. In a Markovian framework such constraints lead to nonlinear
partial differential equations (PDEs) with a singularity at the terminal time. Exis-
tence and uniqueness of smooth solutions to such PDEs has recently been established
in [12]. This paper extends their results beyond the Markovian framework. We show
that the value function of the corresponding non-Markovian control problem can be
characterized by a backward stochastic partial differential equation (BSPDE) with a
singular terminal value. Our main contribution is to prove existence and uniqueness of
a sufficiently regular solution to this BSPDE from which one can deduce the optimal
control in feedback form.

The analysis of optimal control problems with singular state constraints on the
terminal value of the controlled process is motivated by models of optimal portfolio
liquidation under price-sensitive market impact. Traditional financial market models
assume that price fluctuations follow some exogenous stochastic process and that all
trades can be carried out at the prevailing market price. This assumption that all
trades can be settled without impact on market dynamics is appropriate for small
investors that trade only a negligible proportion of the average daily trading volume.
It is not always appropriate for institutional investors that need to close large positions
over short time periods.

Models of optimal portfolio liquidation have received considerable attentions in
the mathematical finance and stochastic control literature in recent years, see, e.g.,
[1, 3, 10, 11, 13, 15, 16, 24]. The literature on optimal liquidation has so far been
confined to Markovian models, where the cost functions are either deterministic or
driven by stochastic factors that follow a Markovian dynamics. In real world markets,
the cost of trading is often of a non-Markovian nature, though. For instance, trading
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costs are computed based on volume weighted average prices (VWAP), a weighted
average of past prices and volumes traded at that prices. This calls for a general
mathematical framework which allows for non-Markovian factor dynamics and explicit
functional dependencies of the optimal liquidation strategies on the observable factor
process.

This paper provides such a framework. Our primary focus is on BSPDEs with sin-
gular terminal values arising in models of optimal portfolio liquidation. Our model is
flexible enough to allow for a non-Markovian factor dynamics and cost functional and
for simultaneous submission of active orders (for immediate execution) to a primary
market and passive block trades (for possible future execution) to a crossing network
or dark pool. Dark pools are alternative trading venues that allow investors shield
their orders from public view and hence to reduce market impact and trading costs.
Since orders submitted to a dark pool are not openly displayed, order execution is
uncertain and often modeled by a point process. To the best of our knowledge [13, 16]
were the first to study portfolio liquidation problems with dark pools in continuous
time.

1.1. Model and problem formulation. Throughout this paper, we work on
a probability space (Ω, F̄ ,P) equipped with a filtration {F̄t}0≤t≤T that satisfies the
usual conditions of completeness and right-continuity. The probability space carries
two independent m-dimensional1 Brownian motions W and B as well as an indepen-
dent point process J̃ on on a non-empty Borel set Z ⊂ Rl with finite characteristic
measure µ(dz). We endow the set Z with its Borel σ-algebra Z and denote by
π(dz, dt) the associated Poisson random measure. The filtration generated by W ,
together with all P null sets, is denoted by {Ft}t≥0. The σ-algebra of the predictable
sets on Ω× [0,+∞) associated with {Ft}t≥0 is denoted by P.

In this work, we address the following stochastic optimal control problem with a
terminal state constraint:

(1.1) min
ξ,ρ

E

∫ T

0

{
ηs(ys)|ξs|2 + λs(ys)|xs|2 +

∫
Z
γs(ys, z)|ρs(z)|2 µ(dz)

}
ds

subject to

(1.2)


xt = x−

∫ t

0

ξs ds−
∫ t

0

∫
Z
ρs(z)π(dz, ds), t ∈ [0, T ];

xT = 0;

yt = y +

∫ t

0

bs(ys, ω) ds+

∫ t

0

σ̄s(ys, ω) dBs +

∫ t

0

σs(ys, ω) dWs.

Here, the real-valued process (xt)t∈[0,T ] is the state process; in a portfolio liquidation
framework xt describes the number of shares held at time t ∈ [0, T ]. The state process
is governed by a pair of controls (ξ, ρ) describing, for instance, the rates at which the
portfolio is liquidated in the primary market and the block trades placed in the dark
pool, respectively, with the Poisson random measure π governing dark pool executions.

The d-dimensional process (yt)t∈[0,T ] is an uncontrolled factor process. The factor
process is driven by the Wiener processes W and B; the coefficients bt(y;ω), σ̄t(y;ω)

and σt(y;ω) are F -adapted. We sometimes write xs,x,ξ,ρt for 0 ≤ s ≤ t ≤ T to indicate

1The Brownian motions may well have different dimensions; this assumption is made for conve-
nience only.
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the dependence of the state process on the control (ξ, ρ), the initial time s ∈ [0, T ] and
initial state x ∈ R. Likewise, we sometimes write ys,yt . The set of admissible controls
consists of all pairs (ξ, ρ) ∈ L2

F̄
(0, T ;R)× L2

F̄
(0, T ;L2(Z)) that satisfy almost surely

the terminal state constraint

(1.3) xT = 0.

We assume that the cost associated with an admissible control (ξ, ρ) at time t ∈
[0, T ) and state (x, y) ∈ R× Rd is given by

Jt(x, y; ξ, ρ)

:= EF̄t

∫ T

t

{
ηs(y

t,y
s )|ξs|2 + λs(y

t,y
s )|xt,x;ξ,ρ

s |2 +

∫
Z
γs(y

t,y
s , z)|ρs(z)|2 µ(dz)

}
ds

for F -adapted coefficients ηt(y;ω), λt(y;ω) and γt(y;ω). The value function is de-
noted by

(1.4) Vt(x, y) := ess inf
(ξ,ρ) admissible

Jt(x, y; ξ, ρ)

In a portfolio liquidation framework the coefficients ηt(y;ω) and λt(y;ω) measure the
market impact costs and the investor’s desire for early liquidation (“risk aversion”),
respectively. The term γt(y;ω) measures the so-called slippage or adverse selection
costs associated with the execution of dark pool orders.2 Vt(x, y) is the cost of liq-
uidating the portfolio comprising x shares during the time interval [t, T ], given the
current value y of the factor process and (1.3) reflects the fact that full liquidation is
required by the terminal time.

1.2. The BSPDE for the value function. The special case where η, λ and γ
are independent of y has recently been analyzed by Ankirchner et al. [2]. In this
case, the value function can be described by a backward stochastic differential equa-
tion (BSDE) with singular terminal value. To the best of our knowledge, such equa-
tions were first analyzed by Popier [20]. A class of stochastic optimal control prob-
lems with the terminal states being constrained to a convex set were studied by Ji
and Zhou [14] using forward-backward stochastic differential systems. They assumed
a strict invertibility of the diffusion term with respect to the control and applied
a maximum principle of Pontryagin type. We solve the control problem by solving
the corresponding stochastic Hamilton-Jacobi-Bellman (HJB) equation introduced by
Peng [19] for non-Markovian control problems.

In view of the linear-quadratic structure of the cost functional a standard argu-
ments suggest a multiplicative decomposition of the value function of the form

(1.5) Vt(x, y) = ut(y)x2 and Ψt(x, y) = ψt(y)x2

for a pair of adapted processes (u, ψ) that satisfies the BSPDE (in a suitable class of
stochastic processes)

(1.6)


−dut(y) = {Lut(y) +Mψt(y) + F (s, y, ut(y))} dt

− ψt(y) dWt, (t, y) ∈ [0, T ]× Rd;
uT (y) = +∞, y ∈ Rd,

2The notion of “slippage costs” refers to the costs associated with an adversely executed order,
e.g., a buy order execution in a dark pool immediately before a price decrease in the primary market.
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where, for a := 1
2 (σσT + σ̄σ̄T ), the operators L andM act on twice, respectively once

continuously differentiable functions according to

Lut(y) = tr
(
(at(y)D2ut(y)

)
+ bTt (y)Dut(y) and Mψt(y) = tr

(
Dψt(y)σTt (y)

)
with D and D2 being the gradient operator and Hessian matrix respectively through-
out this work, and the non-linearity F : R+ × Rd × L0(Rd)→ R is given by

F (t, y, φ(y)) := λt(y)−
∫
Z

|φ(y)|2

γt(y, z) + φ(y)
µ(dz)− |φ(y)|2

ηt(y)
.

The preceding BSPDE depends quadratically on ut(y). Although BSPDEs have
been extensively studied in the applied probability and financial mathematics litera-
ture, see, e.g., [4, 5, 8, 9, 18, 25], no general theory for BSPDEs which are of quadratic
growth in u is yet available, not even for finite terminal values.

Using recent existence of solutions results for nonlinear BSPDEs [21, 22, 23, 26]
and the Itô-Wentzell formula for distribution-valued processes [17, 26] we first prove
that the BSPDE resulting from a corresponding control problem with finite terminal
condition has a sufficiently smooth solution. Subsequently, we establish a comparison
principle from which we deduce that the solution to the BSPDE with infinite terminal
value can be obtained as the limit of an increasing sequence of solutions to BSPDEs
with finite terminal conditions. We also obtain an explicit asymptotic property of the
solution u near the terminal time.

When all the coefficients are deterministic functions of the state and control vari-
ables, then we are in the Markovian setting. In this case our BSPDE simplifies to
a parabolic PDE (to be understood in the distributional sense). As a byproduct of
our general existence and uniqueness result, corresponding results are obtained under
weak assumptions on the model parameters in the Markovian framework.

The remainder of this paper is organized as follows. Our main assumptions and
results are summarized in Section 2. Section 3 is devoted to the proof of the ver-
ification theorem while Section 4 establishes the existence of the solution for our
singular BSPDE that satisfies the assumptions of the verification theorem. In Sec-
tion 5 we prove that the BSPDE (1.6) actually has a unique non-negative solution
in a larger class of stochastic processes that automatically satisfies the asymptotic
behavior around the terminal time that is needed for the proof of the verification
theorem. The appendix recalls three results on BSPDEs which are used throughout
this work.

2. The main results. In order to state our main result we need to introduce
some function spaces. For a Banach space V we denote by SpF ([0, T ];V ), p ∈ [1,∞),
the set of all the V -valued and P-measurable càdlàg processes (Xt)t∈[0,T ] such that

‖X‖pSpF ([0,T ];V )
= E sup

t∈[0,T ]

‖Xt‖pV <∞.

By LpF (0, T ;V ) we denote the class of V -valued P-measurable processes (ut)t∈[0,T ]

such that

‖u‖pLpF (0,T ;V )
= E

∫ T

0

‖ut‖pV dt <∞, p ∈ [1,∞);

‖u‖L∞
F (0,T ;V ) = ess sup

(ω,t)∈Ω×[0,T ]

‖ut‖V <∞, p =∞.
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In a similarly way we define Sp
F̄

([0, T ];V ) and Lp
F̄

(0, T ;V ). For u ∈ LpF (0, T ;Lp(Rd)),
p ∈ [1,∞), we write u ∈ Lp,∞F (0, T ) if

(i) u is continuous on [0, T ], P⊗ dx-a.e.;

(ii) ‖u‖pLp,∞F (0,T )
= E

∫
Rd

sup
t∈[0,T ]

|u(t, x)|p dx <∞.

As usual, the Sobolev space of all functions whose first k derivatives belong to Lp(Π)
for some domain Π ⊂ Rd is denoted by Hk,p(Π). For simplicity, by saying a fi-
nite dimensional space-valued function u = (u1, . . . , ul) ∈ Hk,p(Π), l ∈ N, we mean

u1, . . . , ul ∈ Hk,p(Π) and ‖u‖p
Hk,p(Π)

:=
∑l
j=1 ‖uj‖

p
Hk,p(Π)

.

Throughout this work, we use 〈·, ·〉 to denote the inner product in the usual
Hilbert space L2(Rd) = H0,2(Rd). For k ∈ N0, we set

Hk = S2
F ([0, T ];Hk,2(Rd)) ∩ L2

F (0, T ;Hk+1,2(Rd))

equipped with the norm

‖u‖2Hk = ‖u‖2S2
F ([0,T ];Hk,2(Rd)) + ‖u‖2L2

F (0,T ;Hk+1,2(Rd)).

Our goal is to prove existence of a sufficiently regular solution to the BSPDE
(1.6) and to characterize the value function of our control problem in terms of that
solution. To this end, we first define what we mean by a solution to (1.6).

Definition 2.1. A pair of processes (u, ψ) is a solution to the BSPDE (1.6) if
for all 0 ≤ t < τ < T it holds (u, ψ)1[0,τ ]×O ∈ L2

F (0, τ ;H2,2(O))×L2
F (0, τ ;H1,2(O))

for all bounded balls O ⊂ Rd,

ut(y) = uτ (y)+

∫ τ

t

{Lus(y) +Mψs(y) + F (s, y, us(y))} ds−
∫ τ

t

ψs(y) dWt, dy-a.e.,

and

lim
τ↑T

uτ (y) = +∞, P⊗ dy-a.e.

Our results are established under the following standard measurability and regu-
larity conditions on the model parameters:
(A1) The function

(b, σ, σ̄, η, λ) : Ω× [0, T ]× Rd −→ Rd × Rd×m × Rd×m × R+ × R+

is P ×B(Rd)-measurable and essentially bounded by Λ > 0. Moreover,

γ : Ω× [0, T ]× Rd ×Z −→ [0,+∞],

is P ×B(Rd)×Z -measurable.
(A2) There exists a constant L such that for all y1, y2 ∈ Rd and (ω, t) ∈ Ω× [0, T ],

|bt(y1)− bt(y2)|+ |σt(y1)− σt(y2)|+ |σ̄t(y1)− σ̄t(y2)| ≤ L|y1 − y2|.

(A3) There exist positive constants κ and κ0 such that for all (y, ξ, t) ∈ Rd×Rd×[0, T ],

d∑
i,j=1

m∑
r=1

σ̄irt (y)σ̄jrt (y)ξiξj ≥ κ|ξ|2 and ηt(y) ≥ κ0, P-a.e.
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The verification theorem requires an integral representation of the process

(2.1)
{
ut(y

0,y
t )|x0,x,ξ,ρ

t |2
}

0≤t≤T
.

We are unaware of a general L∞-theory for BSPDEs; at the same time, under as-
sumptions (A1)− (A3), we can not apply the existing Lp-theory (p ∈ (1,∞)) in our
framework directly; see [7] and references therein. Moreover, as it will turn out, the
solution u to (1.6) has to be regular enough to allow for an application of the gener-
alized Itô-Kunita-Wentzell formula of Tang and Yang [26] to the composition ut(yt).
To guarantee regularity and apply the existing Lp-theory on BSPDEs, we work with
a weighted solution. More precisely, we define, for any integer q > d, the function

θ : Rd → R, y 7→ (1 + |y|2)−q,

and analyze θu instead of u. A direct computation verifies that (u, ψ) is a solution to
(1.6) if and only if (θu, θψ) solves

(2.2)


−dvt(y) = {L̃vt(y) + M̃ζt(y) + θF (t, y, (θ−1vt)(y))} dt

− ζt(y) dWt, (t, y) ∈ [0, T )× Rd;
vT (y) = +∞, y ∈ Rd,

where

L̃vt(y) := tr(at(y)D2vt(y)) + b̃Tt (y)Dvt(y) + ct(y)vt(y)

and

M̃ζt(y) := tr(Dζt(y)σTt (y)) + βTt (y)ζt(y)

and the functions b̃t = (b̃it)
d
i=1, βt = (βrt )mr=1 and ct are given by

b̃it(y) : = bit(y) +
4q

1 + |y|2
d∑
j=1

aijt (y)yj ,

βrt (y) :=
2q

1 + |y|2
d∑
j=1

σjrt (y)yj ,

ct(y) :=
2q

1 + |y|2

(
tr(at(y)) +

d∑
i=1

yibit(y) +
2(q − 1)

1 + |y|2
d∑

i,j=1

aijt (y)yiyj
)
.

For each δ ∈ (0, 1), let Cδ(Rd) be the usual Hölder space on Rd. We are now
ready to summarize the main results of this paper.

Theorem 2.2. Under assumptions (A1)− (A3) the following holds:
(i) The BSPDE (1.6) admits a solution (u, ψ) which satisfies

(2.3) (θu, θψ)1[0,τ ] ∈ H1 × L2
F (0, T ;H1,2(Rd)), τ ∈ [0, T ),

and

c0
T − t

≤ ut(y) ≤ c1
T − t

, P⊗ dt⊗ dy-a.e.,
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with c0 and c1 being two positive constants. The function

V (t, y, x) := ut(y)x2, (t, x, y) ∈ [0, T ]× R× Rd,(2.4)

coincides with the value function for almost every y ∈ Rd and the optimal (feedback)
control is given by

(ξ∗t , ρ
∗
t (z)) =

(
ut(yt)xt
ηt(yt)

,
ut(yt)xt−

γt(z, yt) + ut(yt)

)
.

(ii) The solution (u, ψ) is the unique non-negative solution to (1.6) in that sense
that if (ū, ψ̄) is another solution satisfying (2.3) and ū ≥ 0, P⊗ dt⊗ dx-a.e., then

ūt(y) = ut(y), P⊗ dt⊗ dy-a.e.

(iii) Under the additional assumption that σ is spatially invariant, i.e., does not
depend on y one has furthermore for any p ∈ (2,+∞),

θ(·)u·
(
·+
∫ ·

0

σs dWs

)
∈

⋂
τ∈(0,T )

⋂
δ∈(0,1)

L2,∞
F (0, τ) ∩ SpF ([0, τ ];Cδ(Rd))

and the function V (t, y, x) in (2.4) coincides with the value function for every y ∈ Rd.
Remark 2.3 When all the coefficients b, σ, σ̄, λ, η, γ are deterministic functions,

then the optimal control problem is Markovian and the corresponding BSPDE (1.6)
reduces to a deterministic parabolic partial differential equation

(2.5)

{
−∂tu = Lu+ F (t, y, u), (t, y) ∈ [0, T ]× Rd;
uT (y) = +∞, y ∈ Rd.

In this case, we may with no loss of generality assume that σ ≡ 0 so Theorem 2.2 (iii)
indicates that (2.5) admits a unique non-negative solution u in the distributional sense
that satisfies

θu ∈
⋂

τ∈(0,T )

⋂
δ∈(0,1)

C([0, τ ];Cδ(Rd)),

and V (t, y, x) = ut(y)x2 coincides with the continuous value function for every y ∈ Rd.

3. The verification theorem. We are now ready to state the verification the-
orem. Its proof requires some preparation and is carried out below.

Theorem 3.1. Let assumptions (A1)− (A3) be satisfied and suppose that (u, ψ)
is a solution to (1.6) that satisfies

(3.1) (θu, θψ)1[0,t] ∈ H1 × L2
F (0, T ;H1,2(Rd)), t ∈ [0, T ),

and

(3.2)
c0

T − t
≤ ut(y) ≤ c1

T − t
, P⊗ dt⊗ dy-a.e.,

with c0 and c1 being two positive constants. Then, θu ∈ ∩τ∈(0,T )L2,∞
F (0, τ) and

V (t, y, x) := ut(y)x2, (t, x, y) ∈ [0, T ]× R× Rd,
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coincides with the value function of (1.4) for almost every y ∈ Rd. Moreover, the
optimal (feedback) control is given by

(3.3) (ξ∗t , ρ
∗
t (z)) =

(
ut(yt)xt
ηt(yt)

,
ut(yt)xt−

γt(z, yt) + ut(yt)

)
.

We first recall the following generalized Itô-Kunita-Wentzell formula from which
we later derive an integral representation for (2.1).

Lemma 3.2 ([26, Theorem 3.1]). Let the coefficients b, σ and σ̄ satisfy the
assumptions (A1)− (A3) and let G ∈ L2(Ω,FT ;H1,2(Rd)), Φ ∈ L2

F (0, T ;H2,2(Rd)),
Υ ∈ L2

F (0, T ;H1,2(Rd)) and F ∈ L2
F (0, T ;L2(Rd)) such that

Φt(y) = G(y) +

∫ T

t

Fs(y) ds−
∫ T

t

Υs(y) dWs, dy-a.e., for all t ∈ [0, T ].

Then, the compositions Φ·(y
s,·
· ), G(ys,·T ), F·(y

s,·
· ) and Υ·(y

s,·
· ) are well-defined under

the measure P ⊗ dt ⊗ dy, and for almost every y ∈ Rd it holds almost surely for all
t ∈ [s, T ]

Φt(y
s,y
t ) = G(ys,yT )−

∫ T

t

{
tr
(
ar(y

s,y
r )D2Φr(y

s,y
r ) +DΥr(y

s,y
r )σTr (ys,yr )

)
+ bTr (ys,yr )DΦr(y

s,y
r )− Fr(ys,yr )

}
dr

−
∫ T

t

{
σTr (ys,yr )DΦr(y

s,y
r ) + Υr(y

s,y
r )
}
dWr −

∫ T

t

σ̄Tr (ys,yr )DΦr(y
s,y
r ) dBr.

Using local estimates for the weak solutions to BSPDEs from [22], Yang and
Tang [26] proved that the above compositions are well defined. But they did not
establish the integrability properties needed for our proof of the verification theorem.
The following corollary establishes such properties. The proof is purely technical and
postponed to the appendix.

Corollary 3.3. Under the hypothesis of Lemma 3.2, Φ·(y
s,y
· ) is a continuous

and uniformly integrable semi-martingale for almost every y ∈ Rd and Φ ∈ L2,∞
F (0, T ).

Furthermore, there exists a constant C that depends only on κ, L, Λ and T such that

(i)

∫
Rd
|G(ys,yT )|2 dy ≤ C‖G‖2L2(Ω,FT ;H1,2(Rd));

(ii)

∫
Rd

(∫ T

s

E |Fr(ys,yr )| dr
)2

dy ≤ C‖F‖2L2
F (s,T ;L2(Rd));

(iii)

∫
Rd

sup
r∈[s,T ]

E |Φr(ys,yr )|2 dy ≤ C
(
‖G‖2L2(Ω,FT ;H1,2(Rd))+ ‖F‖2L2

F (s,T ;L2(Rd))

)
.

Our second auxiliary result is the following lemma on the set of admissible con-
trols. It states that we may with no loss of generality assume that the state process
associated with an admissible control is monotone. A similar result has been estab-
lished in [12] for the Markovian case.

Lemma 3.4. For each admissible control (ξ, ρ) there exists a corresponding ad-

missible control (ξ̂, ρ̂) with lesser or equal cost such that the process x0,x;ξ̂,ρ̂ is almost
surely monotone. Furthermore, there exists a constant C < ∞ which is independent
of t, x, ρ̂, ξ̂ such that

(3.4) |x0,x;ξ̂,ρ̂
t |2 ≤ C(T − t)EF̄t

∫ T

t

|ξ̂s|2 ds, t ∈ [0, T ].
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Proof. Assume that x ≥ 0 (the case for x ≤ 0 follows in a similar way). For the
admissible control (ξ, ρ), let (x̃t) ∈ S2

F̄
([0, T ]) be the unique solution of the following

stochastic differential equation

x̃t = x−
∫ t

0

ξ+
s ds−

∫ t

0

∫
Z
ρ+
s (z) ∧ x̃+

s π(dz, ds),

where f+ := max{f, 0} for f = x̃s, ξs or ρs. Set

ξ̂t := ξ+
t 1x̃t>0 and ρ̂t(z) := ρ+

t (z) ∧ x̃+
s .

It is easy to check that (ξ̂, ρ̂) ∈ L2
F̄

(0, T ) × L2
F̄

(0, T ;L2(Z)) is an admissible control

pair with lesser or equal cost and that x0,x;ξ̂,ρ̂ is decreasing almost surely. Since x0,x;ξ̂,ρ̂

is non-negative and decreasing,

0 ≤ ρ̂t ≤ x0,x;ξ̂,ρ̂
t , P⊗ dt⊗ µ(dz)-a.e.

Thus,

|x0,x;ξ̂,ρ̂
t |2

≤ CEF̄t

{∣∣∣∣ ∫ T

t

ξ̂s ds

∣∣∣∣2 +

∣∣∣∣ ∫
[t,T ]×Z

ρ̂s−(z) π̃(dz, ds)

∣∣∣∣2 +

∣∣∣∣ ∫
[t,T ]×Z

ρ̂s−(z)µ(dz)ds

∣∣∣∣2}
≤ C(T − t)EF̄t

{∫ T

t

|ξ̂s|2 ds+

∫ T

t

|x0,x;ξ̂,ρ̂
s |2 ds

}
,

which by Gronwall’s inequality implies

|x0,x;ξ̂,ρ̂
t |2 ≤ C(T − t)EF̄t

∫ T

t

|ξ̂s|2 ds.

We are now ready to give the proof of the verification theorem.
Proof of Theorem 3.1. By assumption θu1[0,t] ∈ H1 for any t ∈ (0, T ), an appli-

cation of Proposition A.1 with G = θuτ for any τ < T yields θu ∈ ∩τ∈(0,T )L2,∞
F (0, τ).

The stochastic HJB equation associated with our optimization problem is given
by the following BSPDE:

−dVt(x, y) =

[
LVt(x, y) +MΨt(x, y) + ess inf

ξ,ρ

{
− ξDxVt(x, y)

+

∫
Z

{
Vt(x− ρ, y)− Vt(x, y) + γt(y, z)|ρ|2

}
µ(dz) + ηt(y)|ξ|2 + λt(y)|x|2

}]
dt

−Ψt(x, y) dWt, (t, x, y) ∈ [0, T )× R× Rd;
VT (x, y) = +∞ · 1x 6=0, (x, y) ∈ R× Rd.

It is easy to show that the pair Vt(x, y) := ut(x)|x|2 and Ψt(x, y) := ψt(y)|x|2 solves
the above equation if and only if (u, ψ) solves (1.6). This shows that (ξ∗, ρ∗) is the
candidate optimal strategy. It therefore remains to show that (ξ∗, ρ∗) is admissible
and attains the minimal cost.
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In order to show admissibility, we plug the explicit expression for (ξ∗, ρ∗) into the
state process and get

x∗t := x
∏

0<s≤t

{
1−

∫
Z

us(y
0,y
s )

γs(y
0,y
s , z) + us(y

0,y
s )

π(dz, {s})
}

exp

(
−
∫ t

0

us(y
0,y
s )

ηs(y
0,y
s )

ds

)
for t ∈ [0, t). Hence,

|x∗t | ≤ |x| exp

(
−
∫ t

0

us(y
0,y
s )

ηs(y
0,y
s )

ds

)
≤ |x| exp

(
−
∫ t

0

c0
Λ(T − s)

ds

)
= |x|

(
T − t
T

)c0/Λ
t↑T−→ 0.

From the definition of (ξ∗, ρ∗), we immediately infer that ρ∗ ∈ L2
F̄

(0, T ;L2(Z)) and

ξ∗ ∈ L2
F̄

(0, t;R) for any t ∈ (0, T ). Moreover, the associated state sequence x∗ is
monotone.

In order to show that (ξ∗, ρ∗) is admissible and that the cost functional attains its
minimum at (ξ∗, ρ∗), we notice that the process θ(y0,y

t )ut(y
0,y
t ) satisfies the assump-

tions of Lemma 3.2 so we can apply the generalized Itô-Kunita-Wentzell formula. A
subsequent application of the standard Itô formula to the product of θ−1 and θu yields
the stochastic differential equation for ut(y

0,y
t ).

Applying the standard Itô formula again, this time to ut(y
0,y
t )|x0,x;ξ,ρ

t |2, we finally
obtain the SDE for the candidate value function. A tedious but straightforward
computation shows that for all admissible strategies (ξ, ρ) it holds for almost every
y ∈ Rd that

(3.5) ut(y)
∣∣x|2 − EF̄t

{
uτ (yt,yτ )

∣∣xt,x;ξ,ρ
τ

∣∣2}
= EF̄t

∫ τ

t

{
2us(y

t,y
s )xt,x;ξ,ρ

s ξs + us(y
t,y
s )

∫
Z

{
2ρs(z)x

t,x;ξ,ρ
s − |ρs(z)|2

}
µ(dz)

+ λs(y
t,y
s )|xt,x;ξ,ρ

s |2 −
∫
Z

|us(yt,ys )|2|xt,x;ξ,ρ
s |2

γs(y
t,y
s , z) + us(y

t,y
s )

µ(dz)− |us(y
t,y
s )|2|xt,x;ξ,ρ

s |2

ηs(y
t,y
s )

}
ds

≤ EF̄t

∫ τ

t

{
ηs(y

t,y
s )|ξs|2 + λs(y

t,y
s )
∣∣xt,x;ξ,ρ
s

∣∣2 +

∫
Z
γs(y

t,y
s , z)|ρs(z)|2 µ(dz)

}
ds

for all 0 ≤ t ≤ τ < T . In view of Lemma 3.4 we may with no loss of generality assume
that process x0,x;ξ,ρ is monotone and hence,

lim
τ→T

EF̄t

{
uτ (yt,yτ )

∣∣xt,x;ξ,ρ
τ

∣∣2} ≤ lim
τ→T

c1
T − τ

C(T − τ)EF̄t

∫ T

τ

|ξs|2 ds = 0.

Thus, taking the limit τ → T in (3.5) yields that Jt(x, y; ξ, ρ) ≤ ut(y)x2 for any ad-
missible control (ξ, ρ). For (ξ∗, ρ∗) we have equality in (3.5), which implies ut(y)x2 =
Jt(x, y; ξ∗, ρ∗). But this in particular shows that ξ∗ ∈ L2

F̄
(0, T ;R), thus (ξ∗, ρ∗) is

admissible, attains the minimal cost, and hence is optimal.

4. Existence of a solution to BSPDE (1.6). As a result of the verification
theorem there exists at most one solution (u, ψ) to (1.6) that satisfies (3.1) and (3.2).
In this section, we prove existence of a solution with these properties. To this end,
we set

(4.1) F̂ (t, y, φ(y)) := F (t, y, |φ(y)|), (t, y, φ) ∈ R+ × Rd × L0(Rd),
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and construct the solution as the limit of a sequence of such a solution to a family of
BSPDEs with driver F̂ and finite increasing terminal values. More precisely, for each
N ∈ N, we consider the BSPDE

(4.2)


−dvNt (y) = {L̃vNt (y) + M̃ζNt (y) + θ(y)F̂ (t, y, (θ−1vNt )(y))} dt

− ζNt (y) dWt, (t, y) ∈ [0, T ]× Rd;
vNT (y) = Nθ(y), y ∈ R,

that corresponds to the singular BSPDE (2.2), with the pair (F,∞) being replaced by
(F̂ , Nθ). We cannot appeal directly to Proposition A.1 to prove existence of a solution
to the preceding BSPDE, due to the quadratic dependence of the driver F̂ on |φ(y)|
in (4.1). However, we expect vN to be finite and hence to be able to construct a
solution by a standard truncation argument.

Proposition 4.1. Let assumptions (A1) − (A3) be satisfied. For each N ∈ N,
there exists a unique solution to (4.2) such that

(vN , ζN ) ∈ (H1 ∩ L2,∞
F (0, T ))× L2

F (0, T ;H1,2(Rd))

and θ−1vN ∈ L∞F (0, T ;L∞(Rd)).
Proof. For each M ∈ N there exists a unique solution

(vN,M , ζN,M ) ∈ (H1 ∩ L2,∞
F (0, T ))× L2

F (0, T ;H1,2(Rd))

to the BSPDE

(4.3)



−dvN,Mt (y) =

(
L̃vN,Mt + M̃ζN,Mt + θλ−

∫
Z

θ−1|vN,Mt |2

γt(·, z) + |θ−1vN,Mt |
µ(dz)

− (M ∧ |θ−1vN,Mt |)|vN,Mt |
ηt

)
(y) dt− ζN,M (y) dWt, (t, y) ∈ [0, T ]× Rd;

vN,MT (y) = Nθ(y), y ∈ Rd,

due to Proposition A.1. Putting

v̂t(y) = θ(y) (N + Λ(T − t)) ,

we verify that (v̂, 0) is a solution of the above BSPDE with (λ, γ,M) being replaced
by (Λ,+∞, 0). The comparison principle stated in Corollary A.2 yields

0 ≤ vN,Mt (y) ≤ v̂t(y), P⊗ dt⊗ dy-a.e.,

which implies for any M ∈ N that

0 ≤ θ−1(y)vN,Mt (y) ≤ N + ΛT, P⊗ dt⊗ dy-a.e.

Hence, if M > N + ΛT , then (vN,M , ζN,M ) does not depend on M and is in fact a
solution to (4.2). This also yields uniqueness of solutions as (4.3) admits a unique
solution for each M ∈ N.

The proof of Proposition 4.1 shows that the solution (vN , ζN ) to (4.2) coincides
with that of (4.3) for some M ∈ N. Hence, as an immediate consequence of Corol-
lary A.2 we obtain the following comparison principle.

Corollary 4.2. Let assumptions (A1)−(A3) be satisfied and let (λ̄, γ̄, η̄) satisfy
the same conditions as (λ, γ, η). Suppose further that

(v̄, ζ̄) ∈ H1 × L2
F (0, T ;H1,2(Rd))
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with θ−1v̄ ∈ L∞F (0, T ;L∞(Rd)), is a solution to the following BSPDE:

(4.4)


−dv̄t(y) = {L̃v̄t(y) + M̃ζNt (y) + θ(y)F̂ (t, y, (θ−1vNt )(y))} dt

− ζ̄t(y) dWt, (t, y) ∈ [0, T ]× Rd;
v̄T (y) = G(y), y ∈ Rd.

If (G, λ̄, γ̄, η̄) ≥ (N,λ, γ, η), respectively, (G, λ̄, γ̄, η̄) ≤ (N,λ, γ, η), then for almost all
(ω, y) it holds that

v̄t(y) ≥ vNt (y), respectively, v̄t(y) ≤ vNt (y), ∀t ∈ [0, T ].

We are now ready to prove existence of a solution to our singular BSPDE that
satisfies the assumptions of the verification theorem.

Theorem 4.3. Let assumptions (A1)− (A3) be satisfied. Then the BSPDE (1.6)
admits a solution (u, ψ) satisfying (3.1) and (3.2).

Proof. By Proposition 4.1, for each N > 2Λ + κ0µ(Z), there exists a unique
solution (vN , ζN ) to (4.2) such that (vN , ζN ) ∈ (H1∩L2,∞

F (0, T ))×L2
F (0, T ;H1,2(Rd))

and θ−1vN ∈ L∞F (0, T ;L∞(Rd)). If one replaces the triple (λ, γ, η) by (Λ,+∞,Λ)
and (0, 0, κ0), respectively, then a direct computation shows that respective solutions
to (4.2) are given by (ūN , 0) and (ũN , 0), where

ūNt (y) :=
κ0µ(Z)θ(y)

1− N
N+κ0µ(Z)e

−µ(Z)(T−t) − κ0µ(Z)θ(y),

ũNt (y) :=
2Λθ(y)

1− N−Λ
N+Λ · e−2(T−t) − Λθ(y).

From Corollary 4.2, we conclude that for almost every y ∈ Rd, it holds almost surely
that

ūNt (y) ≤ vNt (y) ≤ ũNt (y), t ∈ [0, T ).

Denoting by v the limit of the increasing sequence {vN}, we deduce that for almost
every y ∈ Rd that almost surely

κ0e
−µ(Z)T θ(y)

T − t
≤ vt(y) ≤ Λe2T θ(y)

T − t
, t ∈ [0, T ).(4.5)

Further, by dominated convergence,

lim
N→∞

‖θ(·)F̂ (·, ·, (θ−1vN· )(·))− θ(·)F (·, ·, (θ−1v·)(·))‖L2
F (0,τ ;L2(Rd)) = 0, τ ∈ (0, T ).

We now use v to construct the desired solution by analyzing a BSPDE on [0, τ ]
with terminal value vτ . More precisely, let us denote by

(v̄, ζ) ∈
(
L2

F (0, τ ;H1,2(Rd)) ∩ S2
F ([0, τ ];L2(Rd))

)
× L2

F (0, τ ;L2(Rd))

the unique solution for the following BSPDE (guaranteed by Proposition A.1 as vτ ∈
L2(Ω,Fτ ;L2(Rd)) by (4.5)):

−dv̄t(y) = {L̃v̄t(y) + M̃ζt(y) + θ(y)F̂ (t, y, (θ−1vt)(y))} dt
− ζt(y) dWt, (t, y) ∈ [0, τ)× Rd;

v̄τ (y) = vτ (y), y ∈ Rd.



A Non-Markov Liquidation Problem and BSDEs with Singular Terminal Condition 13

We use this equation to show that v lies in the right space. In view of estimate
(A.3) in Proposition A.1, we have as N → +∞,

‖(vN − v̄)1[0,τ ]‖H0 + ‖ζN − ζ‖L2
F (0,T ;L2(Rd)) ≤ C

(
‖vNτ − vτ‖L2(Ω,Fτ ;L2(Rd))

+ ‖θF̂ (·, ·, (θ−1vN· )(·))− θF (·, ·, (θ−1v·)(·))‖L2
F (0,τ ;L2(Rd))

)
−→ 0.

Thus,

v̄ = v1[0,τ ] ∈ H0 = L2
F (0, τ ;H1,2(Rd)) ∩ S2

F ([0, τ ];L2(Rd)).

Hence, for each δ ∈ (0, τ) there exists τ̃ ∈ (τ−δ, τ ] such that vτ̃ ∈ L2(Ω,Fτ̃ ;H1,2(Rd)),
and by Proposition A.1, we further have

(v1[0,τ̃ ], ζ1[0,τ̃ ]) ∈ (L2,∞
F (0, τ̃) ∩H1)× L2

F (0, τ̃ ;H1,2(Rd)).

This shows that (u, ψ) := (θ−1v, θ−1ζ) is a solution to BSPDE (1.6) with the desired
properties.

5. Uniqueness and regularity. In this section we show that the solution to the
BSPDE (1.6) constructed in the previous section is the unique non-negative solution
to (1.6). Subsequently, using the existing Lp-theory of BSPDEs, we consider the
regularity of the solution.

5.1. Uniqueness. The following uniqueness result is based on the observation
that any non-negative solution to (1.6) automatically satisfies the growth condition
of the verification theorem.

Theorem 5.1. Under assumptions (A1) − (A3), the solution (u, ψ) given in
Theorem 4.3 is the unique non-negative solution to (1.6) in the sense that if (ū, ψ̄) is
another solution that satisfies (3.1) and ū ≥ 0, P⊗ dt⊗ dx-a.e., then

ūt(y) = ut(y), P⊗ dt⊗ dy-a.e.

Proof. In view of Theorem 3.1, to establish the uniqueness statement it is sufficient
to verify that ū satisfies the growth condition (3.2).

Set (v̄, ζ̄) = (θū, θψ̄) and for N ∈ N, let (vN , ζN ) be the unique solution to (4.2).
From the proof for Theorem 4.3 we see that to establish the lower bound in (3.2) one
needs only to prove

(5.1) v̄t(y) ≥ vNt (y), P⊗ dt⊗ dy-a.e.

Putting (ṽ, ζ̃) = (vN − v̄, ζN − ζ̄) and noticing that for the moment one only has that
η−1|v̄|2 lies in L1

F (0, t;L1(Rd)) instead of L2
F (0, t;L2(Rd)), we apply the inequality

for BSPDEs stated in Lemma A.3 in the appendix. Since(
F (t, y, (θ−1φ1)(y))− F (t, y, (θ−1φ2)(y))

)
(φ1 − φ2)+(y) ≤ 0, P⊗ dt⊗ dy-a.e.,

for any pair of non-negative measurable functions φ1 and φ2 on Rd, and because σ and
σ̄ are bounded and Lipschitz continuous, we obtain from that lemma for τ ∈ (0, T )
and t ∈ (0, τ),

E

{
‖ṽ+
t ‖2L2(Rd) +

∫ τ

t

‖ζ̃s1u>u1
‖2L2(Rd) ds

}
≤ E

{
‖ṽ+
τ ‖2L2(Rd) +

∫ τ

t

2〈ṽ+
s , a

ij
s ∂

2
yiyj ṽs + σjrs ∂yj ζ̃

r
s + b̃is∂yi ṽs + βTs ζ̃s + csṽs〉 ds

}
,
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where the summation convention is applied. In view of assumptions (A1−A3), using
Hölder’s inequality and the integration-by-parts formula, by adopting the “standard
machinery” (see for instance [22, 23]) for linear equations, we arrive at

E

{
‖ṽ+
t ‖2L2(Rd) +

∫ τ

t

‖ζ̃s1u>u1
‖2L2(Rd) ds

}
≤ E

{
‖ṽ+
τ ‖2L2(Rd) +

∫ τ

t

{
C‖ṽ+

s ‖2L2(Rd) −
1
2κ‖Dṽ

+
s ‖2L2(Rd) + ‖ζ̃s1vN>v̄‖2L2(Rd)

}
ds

}
.

By Gronwall’s inequality this implies

E‖ṽ+
t ‖2L2(Rd) ≤ CE‖ṽ

+
τ ‖2L2(Rd),

where C is independent of τ and t. As θ−1vN ∈ L∞F (0, T ;L∞(Rd)) and vN ∈ H1 by
Proposition 4.1, and

ṽ+ = (vN − v̄)+ ≤ |vN |, P⊗ dt⊗ dy-a.e.,

we have by Fatou’s lemma∫
[0,T ]×Rd

E|ṽ+
t (y)|2 dydt ≤ CT lim sup

τ↑T

∫
Rd
E|ṽ+

τ (y)|2 dy

≤ CT
∫
Rd
E lim sup

τ↑T
|ṽ+
τ (y)|2 dy = 0.

Hence, the lower bound of (3.2) holds for u.
To establish the upper bound in (3.2) we extend an argument given in [12] and

consider the deterministic function

ût := Λ coth(T − t) =
2Λ

1− e−2(T−t) − Λ ≤ Λe2T

T − t
.

Then, (û, 0) is a solution to (1.6) with the triple (λ, γ, η) being replaced by (Λ,+∞,Λ).
Moreover, (û, 0) remains a solution when shifted in time, i.e., for δ ∈ [0, T ) the pair
(û ·+δ, 0) is the solution to (1.6) associated with (Λ,+∞,Λ), but with a singularity
at t = T − δ. Hence, noting that(
F (t, y, (θ−1φ1)(y))− Λ + Λ−1|(θ−1φ2)(y)|2

)
(φ1 − φ2)+(y) ≤ 0, P⊗ dt⊗ dy-a.e.,

for any pair of non-negative measurable functions φ1 and φ2 on Rd, using arguments
similar to those used in the first part of this proof, we conclude∫

[0,T−δ]×Rd
E|(θūt − θût+δ)+(y)|2 dydt

≤ C(T − δ)
∫
Rd
E lim sup

τ↑T−δ
|(θūτ − θûτ+δ)

+(y)|2 dy = 0.

This yields,

ūt(y) ≤ Λe2T

T − δ − t
, P⊗ dt⊗ dy-a.e.

Finally, letting δ → 0 we obtain the desired upper bound.
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5.2. Regularity. We proved so far that, under assumptions (A1) − (A3), the
BSPDE (1.6) admits a unique non-negative solution (u, ψ) that satisfies (3.1). This
solution automatically satisfies the growth condition (3.2) and V (t, y, x) := ut(y)x2

coincides with the value function of (1.4) for almost every y ∈ Rd.
Inspired by the Lp-theory (p > 2) of BSPDEs, we now prove additional regularity

properties of u under the following additional assumption:
(A4) σ is spatially invariant (does not depend on y).

Theorem 5.2. Under assumptions (A1) − (A4), let (u, ψ) be the unique non-
negative solution to (1.6) that satisfies (3.1). Then, for any p ∈ (2,+∞),

θ(·)u·
(
·+
∫ ·

0

σs dWs

)
∈

⋂
τ∈(0,T )

⋂
δ∈(0,1)

L2,∞
F (0, τ) ∩ SpF ([0, τ ];Cδ(Rd)).

Furthermore, the function V (t, y, x) := ut(y)x2 coincides with the value function of
(1.4) for every y ∈ Rd.

Proof. For each N ∈ N, let (vN , ζN ) be the unique solution to the BSPDE (4.2).
Our goal is to derive additional regularity properties under (A4) using the Lp-theory
for BSPDEs developed in [7].

The results of [7] do not allow the linear term βT ζN in the drift part of the
BSPDE, though. To overcome this problem, we make the following change of vari-
ables:

yyt := y +

∫ t

0

σs dWs, (t, y) ∈ [0, T ]× Rd;

ās(y) :=
1

2
σ̄s(y)σ̄Ts (y), y ∈ Rd;

(ũNt , ψ̃
N
t )(y) := (θ−1vNt , θ

−1ζNt + σTt D(θ−1vNt ))(yyt ), (t, y) ∈ [0, T ]× Rd;

(ṽNt , ζ̃
N
t )(y) := (θũNt , θψ̃

N
t )(y), (t, y) ∈ [0, T ]× Rd.

Then, applying the Itô-Wentzell formula for distribution-valued processes (see [17,
Theorem 1]), we have almost surely that

(5.2) ṽNt (y) = Nθ(y) +

∫ T

t

{
tr
(
ās(y

y
s )D2ṽNs (y)

)
+ b̄Ts (y)DṽNs (y) + c̄s(y)ṽNs (y)

+ θ(y)F̂ (s, yys , (θ
−1ṽNs )(y))

}
ds−

∫ T

t

ζ̃Ns (y) dWs, dy-a.e. ∀t ∈ [0, T ]

with

b̄it(y) := bit(y
y
t ) +

4q

1 + |y|2
d∑
j=1

aijt (yyt )yj , i = 1, . . . , d;

c̄t(y) :=
2q

1 + |y|2

(
tr(at(y

y
t )) +

d∑
i=1

yibit(y
y
t ) +

2(q − 1)

1 + |y|2
d∑

i,j=1

aijt (yyt )yiyj
)
.

From this representation we see that we also have a BSDE representation of (ṽN , ζ̃N )
from which we will obtain strong regularity properties. Specifically, by Proposi-
tion A.1, there exists a unique solution

(v̄N , ζ̄N ) ∈
(
H1 ∩ L2,∞

F (0, T )
)
× L2

F (0, T ;H1,2(Rd)),
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to the BSPDE

(5.3)



−dv̄Nt (y) =
{

tr
(
āt(y

y
t )D2v̄Nt (y)

)
+ b̄Tt (y)Dv̄Nt (y) + c̄t(y)v̄Nt (y) + θ(y)λ̄t(y

y
t )

−
∣∣ṽNt (y)v̄Nt (y)

∣∣
θ(y)η̄t(y

y
t )
−
∫
Z

θ−1(y)|v̄Nt (y)|2

γ̄t(y
y
t , z) + |θ−1(y)v̄Nt (y)|

µ(dz)
}
dt

− ζ̄Nt (y) dWt, (t, y) ∈ [0, T ]× Rd;
v̄NT (y) = Nθ(y), y ∈ Rd.

By definition, the solution satisfies (5.2). As θ−1ṽN ∈ L∞F (0, T ;L∞(Rd)) we can use
the comparison principle stated in Corollary A.2 to deduce (similarly to the proof of
Proposition 4.1) that θ−1v̄N ∈ L∞F (0, T ;L∞(Rd)). Hence, by [7, Proposition 6.4], we
further have

v̄N ∈ SpF ([0, T ];H1,p(Rd)) ∩ LpF (0, T ;H2,p(Rd)) for any p ∈ (2,+∞).

Thus, by Sobolev embedding theorem, v̄N ∈ SpF ([0, T ];Cδ(Rd)), for any δ ∈ (0, 1).
Therefore, v̄Nt (y) is almost surely continuous in (t, y) ∈ [0, T ]× Rd.

Next, we are going to show that

ṽNt (y) = v̄Nt (y), P⊗ dy-a.e.

To this end, we show that both (ṽN , ζ̃N ) and (v̄N , ζ̄N ) satisfy the same BSDE. Specif-
ically, let

ỹs,yt := y +

∫ t

s

b̄r(ỹ
s,y
r ) dr +

∫ t

s

σ̄r(y
ỹs,yr
r ) dBr, 0 ≤ s ≤ t ≤ T.

Since (ṽNt , ζ̃
y
t )(y) = θ(y)(θ−1vNt , θ

−1ζNt + σTt D(θ−1vNt ))(yyt ), one checks through
standard but tedious computations that both v̄N and ṽN are bounded and satisfy the
following BSDE:

v̌Nt (ỹs,yt ) = Nθ(ỹs,yT ) +

∫ T

t

{
c̄r(ỹ

s,y
r )v̌Nr (ỹs,yr ) + θ(ỹs,yr )λ̄t(y

ỹs,yr
r )

− θ−1(ỹs,yr ) |v̌t(ỹs,yr )ṽt(ỹ
s,y
r )|

η̄t(y
ỹs,yr
r )

−
∫
Z

θ−1(ỹs,yr )|v̌t(ỹs,yr )|2

γ̄t(y
ỹs,yr
r , z) + θ−1(ỹs,yr )|v̌t(ỹs,yr )|

µ(dz)

}
dr

−
∫ T

t

ζ̌Nr (ỹs,xr ) dWr −
∫ T

t

σ̄Tr (ỹs,yr )Dv̌Nr (ỹs,xr ) dBr.

This BSDE has a unique solution. In view of Lemma 3.2 and Corollary 3.3, we
therefore conclude

ṽNt (ỹs,yt ) = v̄Nt (ỹs,yt ), P⊗ dy-a.e. ∀ 0 ≤ s ≤ t ≤ T,

where we note that both ṽN and v̄N belong to H1 ∩ L2,∞
F (0, T ). Taking s = t, we

have

ṽNt (y) = v̄Nt (y), P⊗ dy-a.e. ∀t ∈ [0, T ].

Since the BSPDE (5.3) has a unique solution we also obtain

(ṽN , ζ̃N ) = (v̄N , ζ̄N ) in H1 × L2
F (0, T ;H1,2(Rd)).
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The regularity properties of v̄N imply that ũNt (y), vNt (y) and ṽNt (y) are all continuous
in (t, y) with probability 1. In view of the proof of Theorem 4.3, we have {ṽNt (y)}
converges increasingly to θ(y)θ−1vt(y

y
t ) for every (t, y) ∈ [0, T ]×Rd with probability 1,

as N goes to infinity. Setting

(ṽt(y), ζ̃t(y)) := θ(y)((θ−1vt)(y
y
t ), (θ−1ζt)(y

y
t )),

we obtain (ṽ, ζ̃)1[0,τ ] ∈
(
H1 ∩ LpF (0, T ;H2,p(Rd))

)
× L2

F (0, T ;H1,2(Rd)) for all τ ∈
(0, T ) and p ∈ (2,∞), and

c0θ(y)

T − t
≤ ṽt(y) ≤ c1θ(y)

T − t
, P⊗ dt⊗ dy-a.e.

Moreover, for every τ ∈ (0, T ), it holds almost surely

ṽt(y) = ṽτ (y) +

∫ τ

t

{
tr
(
ās(y

y
s )D2ṽs(y)

)
+ b̄Ts (y)Dṽs(y) + c̄s(y)ṽs(y)

+ θ(y)F (s, yys , (θ
−1ṽs)(y))

}
ds−

∫ τ

t

ζ̃s(y) dWs, dy-a.e.

Again, by [7, Propostion 6.4], we further have

ṽ ∈ SpF ([0, τ ];H1,p(Rd)) ∩ LpF (0, τ ;H2,p(Rd)), p ∈ (2,+∞),

and thus, by Sobolev embedding theorem, ṽ ∈ SpF ([0, τ ];Cδ(Rd)) for every δ ∈ (0, 1).

Therefore, both ṽt(y) and ut(y) = θ−1(y −
∫ t

0
σsdWs)ṽt(y −

∫ t
0
σsdWs) are almost

surely continuous in (t, y) ∈ [0, τ ]× Rd. Hence,

V (t, y, x) := ut(y)x2, (t, x, y) ∈ [0, T ]× R× Rd,

coincides with the value function of (1.4) for every y ∈ Rd.

Appendix A. Three results on BSPDEs.
Proposition A.1 ([7, Theorem 5.5]). Let the coefficients b, σ and σ̄ satisfy

the assumptions (A1) − (A3). Suppose that the random function f(·, ·, ·, ϑ, y, z) ∈
L2

F (0, T ;L2(Rd)) for any (ϑ, y, z) ∈ R × Rd × Rm and that there exists a positive
constant L0 such that for all (ϑ1, y1, z1), (ϑ2, y2, z2) ∈ R × Rd × Rm and (ω, t, x) ∈
Ω× [0, T ]× Rd,

|f(ω, t, x, ϑ1, y1, z1)− f(ω, t, x, ϑ2, y2, z2)| ≤L0(|ϑ1 − ϑ2|+ |y1 − y2|+ |z1 − z2|).

Then, for any given G ∈ L2(Ω,FT ;Hk,2(Rd)) with k ∈ {0, 1}, the BSPDE

(A.1)


−dut(x) = {tr

(
at(x)D2ut(x) +Dψt(x)σTt (x)

)
+ bTt (x)Dut(x)

+f(t, x, xt(x), Dut(x), ψt(x))} dt− ψt(x) dWt, (t, x) ∈ [0, T ]× Rd;
uT (x) = G(x), x ∈ Rd,

admits a unique solution (u, ψ) ∈ Hk×L2
F (0, T ;Hk,2(Rd)), i.e., it holds almost surely

that

(A.2) 〈ϕ, ut〉 = 〈ϕ, uT 〉+

∫ T

t

{
〈ϕ, tr

(
asD

2us +Dψsσ
T
s

)
+ bTs Dus

+ f(s, us, Dus, ψs)〉
}
ds−

∫ T

t

〈ϕ, ψsdWs〉 ∀ϕ ∈ C∞c (Rd), t ∈ [0, T ],
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where C∞c (Rd) is the set of all the infinitely differentiable functions with compact
supports on Rd. Moreover, u ∈ L2,∞

F (0, T ) if k = 1, and there exists a constant C
that depends only on κ, L, L0, Λ and T such that

(A.3) ‖u‖Hk + ‖u‖L2,∞
F (0,T )1k=1 + ‖ψ‖L2

F (0,T ;Hk,2(Rd))

≤ C
(
‖f(·, ·, ·, 0, 0, 0)‖L2

F (0,T ;L2(Rd)) + ‖G‖L2(Ω,FT ;Hk,2(Rd))

)
.

By using the standard denseness arguments, one can easily check that for k = 1,
the requirement by (A.2) with test functions for the definition of solution is equivalent
to the corresponding one holding almost everywhere in Definition 2.1. The nonlinear
term f in Proposition A.1 can be rewritten in linear form as

(A.4) f(t, x, ϑ, y, z) = αϑ+ βT y + ϑT z + f(t, x, 0, 0, 0), (ϑ, y, z) ∈ R× Rd × Rm,

where

α =
f(t, x, ϑ, y, z)− f(t, x, 0, y, z)

ϑ
1ϑ6=0;

βi =
f(t, x, 0, y(i), z)− f(t, x, 0, y(i−1), z)

yi
1yi 6=0, i = 1, . . . , d;

ϑk =
f(t, x, 0, 0, z(k))− f(t, x, 0, 0, z(k−1))

zk
1zk 6=0, k = 1, . . . ,m;

y(i) = (y1, . . . , yi, 0, . . . , 0), y(0) = 0 ∈ Rd, i = 1, . . . , d;

z(k) = (z1, . . . , zk, 0, . . . , 0), z(0) = 0 ∈ Rm, k = 1, . . . ,m.

Thus, the comparison principle for linear BSPDEs [7, Theorem 6.3] implies immedi-
ately the following result.

Corollary A.2 (Corollary of [7, Theorem 6.3]). Under the hypothesis of Propo-
sition A.1, for k = 1, suppose the pair (G′, f ′) satisfies the same conditions as (G, f)
in Proposition A.1. Let (u, v) and (u′, v′) be the respective solutions to the BSPDE
(A.1) and assume furthermore that for almost every (ω, t, x) ∈ Ω× [0, T ]×Rd it holds

f(ω, t, x, ut, Dut, v) ≥ f ′(ω, t, x, ut, Dut, v) and G(ω, x) ≥ G′(ω, x).

Then, u ≥ u′, P⊗ dt⊗ dx-a.e.

The corollary can be verified by applying the linearization (A.4) to the function

f̃(t, x, ϑ, y, z) := f ′(ω, t, x, ut, Dut, v)− f ′(t, x, ut + ϑ,Dut + y, v + z).

The proof is standard and hence omitted. We close this appendix with the following
lemma on an inequality for the positive part of the solutions to BSPDEs, whose proof
will be sketched below.

Lemma A.3. Let u ∈ H0. Suppose that for any ϕ ∈ C∞c (Rd), almost surely

〈ϕ, ut〉 = 〈ϕ, G〉+
∫ T

t

{
〈ϕ, hs+fs〉−

d∑
i=1

〈∂xiϕ, gis〉
}
ds−

∫ T

t

〈ϕ, ζs dWs〉, t ∈ [0, T ],
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where G ∈ L2(Ω,FT , L
2(Rd)); ζ, f, g ∈ L2

F (0, T ;L2(Rd)) and h ∈ L1
F (0, T ;L1(Rd)).

Moreover, assume hs(x)u+
s (x) ≤ 0, P⊗ dt⊗ dx-a.e. Then, it holds almost surely that

(A.5) ‖u+
t ‖2L2(Rd) +

∫ T

t

‖ζs1u>0‖2L2(Rd) ds ≤ ‖G
+‖2L2(Rd)

+ 2

∫ T

t

{
〈u+
s , fs〉 −

d∑
i=1

〈∂xiu+
s , g

i
s〉
}
ds− 2

∫ T

t

〈u+
s , ζs dWs〉, t ∈ [0, T ].

Sketch of the proof. The pair (u, ζ) is the unique solution inH0×L2
F (0, T ;L2(Rd))

to the linear BSPDE
−dut(x) =

{
∆ut(x) + ft + ht +

d∑
i=1

∂xi(g
i
t − ∂xiut(x))

}
dt

− ζt(x) dWt, (t, x) ∈ [0, T ]× Rd;
uT (x) = G(x), x ∈ Rd.

If h ∈ L2
F (0, T ;L2(Rd)), then (A.5) follows from [23, Corollary 3.11]. For h ∈

L1
F (0, T ;L1(Rd)), it can be verified using a standard approximation method. To this

end, we first observe that the proof of [6, Proposition 2] of the Itô formula for forward
SPDEs is independent of the boundedness of the domain O therein and hence the re-
sult extends to O = Rd. Thus, for any function Φ : R→ R with bounded derivatives
Φ′ and Φ′′ and Φ′(0) = 0, it holds almost surely that

(A.6)

∫
Rd

Φ(ut(x)) dx+
1

2

m∑
r=1

∫ T

t

〈Φ′′(us)ζrs , ζrs 〉 ds+

∫ T

t

〈Φ′(us), ζs dWs〉

=

∫
Rd

Φ(G(x)) dx+

∫ T

t

{
〈Φ′(us), fs+hs〉−

d∑
i=1

〈Φ′′(us)∂xius, gis〉
}
ds, t ∈ [0, T ].

If Φ′(y) = Φ′(y)1(0,∞)(y) ≥ 0, then our assumptions on h yield almost surely that

(A.7) LHS of (A.6)

≤
∫
Rd

Φ(G(x)) dx+

∫ T

t

{
〈Φ′(us), fs〉 ds−

d∑
i=1

〈Φ′′(us)∂xius, gis〉
}
ds, t ∈ [0, T ].

We can generalize the above inequality to Φ′ being unbounded, by approximating Φ
and passing to the limit in (A.7). Then it remains to apply inequality (A.7) to the
function Ψ : y 7→ (y+)2. Though Ψ is not regular enough, this can be done using the
same approximation method as in Step 2 of the proof of [22, Lemma 3.5].

Appendix B. Proof of Corollary 3.3. In Lemma 3.2, Φ can be seen as an
L2(Rd)-valued continuous semi-martingale. Thus, Φ ∈ H0 and we can further verify
that

(Φ,Υ) ∈
(
H0 ∩ L2

F (0, T ;H2,2(Rd))
)
× L2

F (0, T ;H1,2(Rd))

satisfies (A.1) with

f(t, y) := Ft(y)−
(
tr
(
at(y)D2Φt(y) +DΥt(y)σTt (y)

)
+ bTt (y)DΦt(y)

)
.
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Thus, Φ ∈ L2,∞
F (0, T ) ∩ H1 by Proposition A.1. For each N ∈ N, let (uN , ψN ) ∈

H1 × L2
F (0, T ;H1,2(Rd)) be the unique solution to

(B.1)


−duNt (y) =

{
tr
(
at(y)D2uNt (y) +DψNt (y)σTt (y)

)
+ bTt (y)DuNt (y)

+N ∧ |Ft(y)|
}
dt− ψNt (y) dWt, (t, y) ∈ [0, T ]× Rd;

uNT (y) = N ∧ |G(y)|, y ∈ Rd.

By Lemma 3.2, we have for almost every y ∈ Rd,

uNt (ys,yt ) = N ∧ |G(ys,yT )|+
∫ T

t

N ∧ |Fr(ys,yr )| dr

−
∫ T

t

{
σTr (ys,yr )DuNr (ys,yr ) + ψNr (ys,yr )

}
dWr −

∫ T

t

σ̄Tr (ys,yr )DuNr (ys,yr ) dBr,

where all the compositions are well defined under the measure P⊗dt⊗dy. In particular,

uNs (y) = EFs

{
N ∧ |G(ys,yT )|+

∫ T

s

N ∧ |Fr(ys,yr )| dr
}
,

while Proposition A.1 yields a constant C depending only on κ, L, Λ and T such that

‖uN‖L2,∞
F (s,T ) + ‖ψN‖L2

F (s,T ;H1,2(Rd))

≤ C
(
‖N ∧ |F |‖L2

F (0,T ;L2(Rd)) + ‖N ∧ |G|‖L2(Ω,FT ;H1,2(Rd))

)
≤ C

(
‖F‖L2

F (0,T ;L2(Rd)) + ‖G‖L2(Ω,FT ;H1,2(Rd))

)
.

Letting N →∞, by Fatou’s lemma and Jensen’s inequality, we obtain∫
Rd

(
E[|G(ys,yT )|] +

∫ T

s

E[|Fr(ys,yr )|] dr
)2

dy

≤ C
(
‖G‖2L2(Ω,FT ;H1,2(Rd)) + ‖F‖2L2

F (s,T ;L2(Rd))

)
.

This proves the desired estimates as well as the fact that Φ·(y
s,y
· ) is a continuous and

uniformly integrable semi-martingale for almost every y ∈ Rd.
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