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University of Vienna

School of Business and Economics

Ulrich Horst§

Humboldt-Universität zu Berlin

Department of Mathematics

Revised Version: December 14, 2014

First Version: February 1, 2012

Abstract

Order display is associated with benefits and costs. Benefits arise from increased

execution-priority, while costs are due to adverse market impact. We analyze a

structural model of optimal order placement that captures trade-off between costs

and benefits of order display. For a benchmark model of pure liquidity competition

we give closed-form solution for optimal display sizes. We show that liquidity

competition incentivizes the use of hidden orders to prevent losses due to over-

bidding. On the other hand, we predict that the use of hidden orders is more

prevalent in stocks with low depth. Our theoretical considerations are accompanied

by an empirical analysis using high-frequency order-message data from NASDAQ.

JEL Classification Codes: C51, C60, D01, D4, G1

Keywords: Hidden Liquidity, Liquidity Competition, Limit Order Book, Market Impact,

Order Flow Dynamics, High-frequency Trading, Order-imbalance

∗Earlier Titles: “Optimal Display of Iceberg Orders” and “Market Impact of Limit Orders and
Optimal Exposure Strategies”.

†We thank Mark DiBattista, Boris Drovetsky, Nikolaus Hautsch, Daniel Nehren and participants
of various conferences and workshops for helpful discussions, comments and suggestions. Financial
support and data provision from Deutsche Bank and through the SFB 649 Economic Risk is gratefully
acknowledged.

‡E-mail address: goekhan.cebiroglu@univie.ac.at; Tel.: +43-1-4277 38682
§E-mail Address: horst@math.hu-berlin.de; Tel.: +40 30 2093 2341

1



1 Introduction

The use of hidden liquidity among the major stock exchanges has considerably increased

in the recent years. Nowadays, hidden orders, Iceberg orders or so called reserve or-

ders have become prevalent features of modern electronic markets.2 Exchanges still

require openly displayed quotes to effectively organize trade, though. By giving dis-

played orders higher execution priority than hidden orders most exchanges encourage

market participants to openly display their orders. At the same time, order exposure is

associated with risk; adverse selection, quote-matching and front-running can lead to

increased transaction costs when traders expose their trade intentions. Market partici-

pants, therefore, need to balance the costs and benefits of order exposure when making

trading decisions.

In this paper we analyze a structural model of optimal order display in a limit order

book which lends itself to both, a theoretical and empirical analysis. The model cap-

tures the trade-off between benefits and costs of order display and provides implications

for optimal display strategies. We show that the intensity of liquidity competition, mar-

ket depths relative to market order arrivals, and order sizes are key determinants of

optimal display ratios. Our analysis suggests that hidden orders are more beneficial in

liquid markets, due to increased competition in liquidity provision.

Specifically, we consider a broker trade problem of executing a limit order at minimal

cost. Brokers typically face a time constraint within which to execute a client’s position

and execution performance is benchmarked against a pre-agreed reference price. We

consider the case of trade execution of a single limit order when the broker/trader has

the option to shield any fraction of the order from public view. Order execution is

governed by arrivals of market and limit orders as well as cancellations of standing

volume. Incoming order flows determine the execution volume at terminal time. Due

to a liquidation constraint, un-executed orders are cancelled and traded against the

best prevailing opposite price.

Biais et al. (1995), Ranaldo (2004) Griffiths et al. (2000), among others, find that the

visible order book and thus order display affects trading dynamics as market partici-

pants observe changes in the order book and adapt their trading strategies accordingly.

Our key assumption is, therefore, that the trader’s display decision affects both, the

dynamics of order flow at the same side of the market and opposite-side price dynam-

ics. For a benchmark model of pure liquidity competition where order display only

affects the supply side of liquidity we provide an explicit characterization of optimal

display strategies. The assumption that order display primarily affects liquidity supply

2A growing body of empirical studies indicate the wide-spread use of hidden orders. For instance,
Pascual Gasco and Veredas (2008) report that 26% of all trades on the Spanish Stock Exchanges involve
hidden volume. Frey and Sandas (2009) report that 9.3% of submitted and 15.9% of executed shares
contain Iceberg orders on the German Xetra Stock Exchange.3 Further studies confirm that hidden
liquidity is particularly prevalent among large investors: D’Hondt et al. (2004) report that 81% of
orders with total sizes in the largest quartile are Icebergs or (partly) hidden orders. Supplementing
this findings, Frey and Sandas (2009) find that Iceberg orders are on average 12-20 times larger than
limit orders.
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is motivated by the fact that liquidity supply accounts for most of the trading activities

in limit order markets. Hasbrouck and Saar (2009) attribute more than 90% of trading

activity to liquidity provision and only a marginal portion to liquidity demand. Our

benchmark model suggests that traders should increasingly hide their orders when the

intensity of liquidity competition is high. We show that this is particularly relevant for

liquid stocks that are traded at high prices and have a low (relative) tick size.

Using high-frequency order-message ITCH data from NASDAQ we estimate model pa-

rameters and derive optimal display strategies for a range of stocks from the S&P 500

for the period of January to April 2011 for different market and trade settings. Comple-

menting previous literature on hidden orders including Harris (1997) and Bessembinder

et al. (2009) we show that partially hiding orders can lead to significant cost savings

over full-display strategies. Cost savings are most significant when order book depths

at the submission price level are low. Partial display may lead to significant perfor-

mance enhancements even for small orders. This contrasts earlier empirical findings

that suggests that hidden orders are more prevalent among large orders.

This paper contributes to the optimal liquidation literature and the literature on mar-

ket impact and hidden liquidity. The literature on optimal liquidation, pioneered by the

work of Bertsimas and Lo (1998) and Almgren and Chriss (1999), follows a qualitative

approach to modeling trading and liquidation problems in illiquid markets. The anal-

ysis is typically confined to liquidation strategies within a stylized order book model

using active (market) orders only. This restriction is mostly owned to the fact that

the market impact of active orders is comparably easy to model. When passive (limit)

orders are considered, the analysis is usually confined to dark pool orders which induce

little or no market impact.4 An exception is Esser and Mönch (2007) who allow for

market impact of passive orders on prices, but not liquidity competition. Complement-

ing previous work on the market impact of limit orders of Hautsch and Huang (2012) we

show that limit order placements primarily affect the supply side of liquidity through

an increase of liquidity competition.

The theoretical literature on hidden orders is quite sparse. Buti and Rindi (2013) and

Moinas (2010) study equilibrium models of optimal order placement. Our approach

distinguishes in several ways. Most importantly, we do not assume that information

is asymmetric; following the optimal liquidation literature we consider purely liquidity

driven trades. In fact, Madhavan et al. (1997) and Huang and Stoll (1997) argue

that trading frictions do not derive from informational asymmetries alone. Second,

our structural approach to modeling the impact of visible orders is general and flexible

enough to account for a wide range of market impact scenarios.5 Finally, we link display

4There is by now a significant literature on optimal portfolio liquidation using market orders includ-
ing Almgren and Chriss (1999); Almgren (2003, 2001); Obizhaeva and Wang (2013); Alfonsi, Fruth,
and Schied (2010); Horst and Naujokat (2014). Models with market and dark pools orders are analyzed
in, e.g. Kratz and Schöneborn (2014); Horst and Naujokat (2014); Graewe, Horst, and Qiu (2014).

5For instance, Buti and Rindi (2013) do not account for effects on the demand side of liquidity and
Moinas (2010) does not capture effects on the supply side of liquidity. Esser and Mönch (2007) assume
market impact only on prices, but not on order flows.
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decision to liquidity characteristics. This is particularly important for understanding

the origination of hidden liquidity in limit order markets. Our findings show that non-

informational mechanisms suffice to rationalize the presence of hidden orders. In that

respect, our approach is similar to that proposed in Hollifield et al. (2006). However,

while their focus is the trade-off between price and execution risk our focus is on the

trade-off between displaying and hiding trade intentions.

The remainder of this paper is structured as follows. In Section 2, we introduce the

model, including the order flow and price dynamics, and derive an explicit represen-

tation of optimal display ratios. In Section 3, we estimate the model parameters and

provide estimates for the optimal exposure size for various stocks and market settings.

Section 4 concludes.

2 The Model

Following the optimal liquidation literature we consider a trader (“she”) who trades

for liquidity reasons. The trader aims to buy a fixed (large) position of N shares over

a (short) trading period [0, T ]. Her reference price is the prevailing best bid price (B0)

at which she submits her order. The trader can choose to openly display any number

∆ ∈ [0, N ] of shares in the order book. The remaining N −∆ shares are shielded from

public view and remain hidden until execution or cancellation. A random number Z∆

of shares is executed before the end of the trading period. In order to enforce full

liquidation the un-executed part N −Z∆ of the order is cancelled at the terminal time

and executed against standing sell limit orders at the then prevailing best ask price

A∆
T . For simplicity, we assume that market orders incur no transaction costs. The

dependence of the execution volume Z∆ and best ask price A∆
T on the display size ∆

accounts for the possible impact visible orders have on the dynamics of the order book.

The absolute transaction costs are then given by

P̃∆ := Z∆B0 +
(
N − Z∆

)
A∆

T .

We define the relative execution price P∆ as the relative ratio between the absolute

transaction price and the best available bid price at submission time. That is,

P∆ :=
P̃∆ −NB0

NB0
=

(
1−

Z∆

N

)
S∆
T

(2.1)

where S∆
T := (A∆

T −B0)/B0 denotes the effective spread. The term (1− Z∆

N ) represents

the unexecuted proportion of the order while S∆
T represents the additional costs of

trading relative to the initial best bid B0.

For simplicity we assume that the two sides of the market are conditionally given ∆.

More precisely, we shall assume that order flow dynamics and hence market impact

depend only/materializes only on/through imbalances in standing volumes at the top

of the book. We believe that this a reasonable assumption on short time scales which
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considerably simplifies our analysis. For a fixed display size ∆, the expected relative

execution price then reads

W (∆) := E[P∆] =
(
1−

E[Z∆]

N

)
· µ(∆), (2.2)

where µ(∆) := E[S∆
T ] denotes the conditional expected effective spread at the terminal

time, given ∆. We denote the expected execution volume by V := E[Z∆ ]. The trader’s

problem is to find the display size ∆∗ that minimises the expected relative execution

costs, i.e., the implementation shortfall (cf. Perold (1988)).

Definition 1 (Optimal Display). The optimal display size ∆∗ is defined as

∆∗ := argmin
0≤∆≤N

{W (∆)} . (2.3)

2.1 Order Arrival and Trade Dynamics

In our model, order execution is determined by incoming order flow. Sell market or-

ders execute against standing buy limit orders and improve the chance of execution;

incoming buy limit orders add liquidity to the same side of the book and hence im-

pede the chance of execution. Modeling the full dynamics of individual order arrivals

and cancellations would render the analysis of our model too complex. To enhance

tractability, we use a reduced-form model of aggregate order flow consolidating order

flows into single submissions. This reduces our model to a 4-stage model: first, the

trader submits her order, then aggregate limit orders arrive (or cancel), followed by

aggregate market order arrivals. Finally, the trader cancels all unexecuted orders and

resubmits them as market orders to guarantee full execution.

We assume that orders at the same side of the market arrive independently of the stock

price6. Aggregate market order volume is denoted x ≥ 0, aggregate limit order volume

at the submission price level is denoted y ≥ 0 and aggregate limit order volume at more

competitive price levels is denoted ŷ ≥ 0.

Execution of standing limit orders is settled according to a set of priority rules. We

follow the standard rule of order-driven markets where orders submitted at more com-

petitive prices have priority over orders submitted at less competitive prices, displayed

orders have priority over hidden orders at the same price level and orders at the same

price level and with the same display status are served according to the time of arrival.

At the time of order submission our trader faces a depth of D = Dbid of visible shares

at the submission price level. These orders have higher time-priority than the trader’s

submission. Assuming a cancellation proportion c ∈ [0, 1] before market order arrival,

the volume that has higher execution-priority than the trader’s displayed order is

Qd := D(1− c) + ŷ. (2.4)

The quantity ŷ reflects aggressive limit orders that improved the trader’s (submission-)

6Again, our main assumption will be that the market dynamics depend on order imbalances only.

5



price level; they also have higher execution priority than the trader’s displayed order.

The volume that has higher priority than the trader’s hidden order is

Qh := Qd +∆+ y

as the visible volume ∆+y has display priority. The trader’s total execution volume Z∆

can then be represented in terms of the observable quantities D, ∆, N, the cancellation

ratio c and the random (unobservable) quantities y, ŷ, and x as:

Z∆ =





0 x ≤ Qd,

x−Qd Qd < x ≤ ∆ +Qd,

∆ ∆ +Qd < x ≤ Qh,

∆ + x−Qh Qh < x ≤ Qh +N −∆,

∆ + (N −∆) Qh +N −∆ < x.

(2.5)

On high-frequency time scales, (aggregate) order flow volumes are known to have a pos-

itive probabilistic mass at zero, i.e., there is a significant non-zero probability that no

orders arrive over short horizons (see e.g., Hautsch et al. (2013)). This is particularly

relevant for less actively traded and less liquid stocks. To account for the possibil-

ity of non-arrivals and while keeping the model simple we propose a zero-augmented

exponential distribution for the flow variables x, y and ŷ. The respective densities read:

fy(s) = (1− q) · 1{s=0} +
q
β · e

−
s
β · 1{s>0} , (2.6)

fŷ(t) = (1− q̂) · 1{t=0} +
q̂

β̂
· e

−
t
β̂ · 1{t>0} , (2.7)

fx(u) = (1− p) · 1{u=0} +
p
α · e−

u
α · 1{u>0} , (2.8)

where 1 denotes the indicator function. The parameters α, β, β̂ are assumed non-

negative throughout and p, q, q̂ ∈ [0, 1]. Assuming that y, ŷ, and x are conditionally

independent given ∆, the expected execution volume reads

V := E[Z∆] =

∫ ∞

0

∫ ∞

0

∫ ∞

0
Z∆fy(s)fŷ(t)fx(u)dsdtdu. (2.9)

With our choice of arrival dynamics, the expected transaction volume can be given in

closed form. The proof is standard, yet tedious, and hence omitted.

Proposition 1 (Expected Execution Volume). Let p · α > 0 and N > 0. Then

V = αp(1 − β̂r)e
−

Dbid (1−c)

α

{
(1− βr)

(
e−

∆
α − e−

N
α

)
+

(
1− e−

∆
α

)}
, (2.10)

with

β̂r := q̂
β̂

α+ β̂
, βr := q

β

α+ β
. (2.11)

The first term in the curly brackets in (2.10) corresponds to the execution of the hidden

part of the order. It depends on the parameters characterizing submission-level liquidity
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(β) relative to the market order volume (α), the total order size (N), and the display

ratio relative to the expected market order volume. The term (1−βr) reflect the loss in

time-priority due to incoming visible orders at the submission price level, respectively.

The second term (1 − e−
∆
α ) corresponds to the execution of the visible part; it only

depends on ∆.

2.2 Market Impact and Optimal Display Strategies

It is known that visible changes in order-imbalances at the top of the book affect market

dynamics, especially incoming order flows and prices movements.7 To accommodate

this feature, we assume that the parameters β, β̂, p, α and µ governing order flow and

price movements are functions of the order imbalance

I := I(∆) = Dbid −Dask +∆, ∆ ∈ [0, N] (2.12)

where Dbid and Dask denote the visible standing volume at the best bid and ask re-

spectively by the time our trader submits her order. Positive (negative) values of I

represent bid-side (sell-side) excess-liquidity. Due to the dependence of flow and price

parameters on order imbalances, transaction costs depend on the trader’s display strat-

egy both directly through losses in time priority and indirectly through its impact on

order flow and price dynamics. To capture both dependencies we express W as:

W (∆, I(∆)) := W
(
∆, p(I(∆)), α

(
I(∆)

)
, β
(
I(∆)

)
, β̂
(
I(∆)

)
, µ
(
I(∆)

)
.
)
, (2.13)

The following provides sensitivity analysis of W with respect to the various model

parameters. The proof is standard and hence omitted.

Lemma 1. The partial derivatives satisfy:

∂W

∂∆
< 0,

∂W

∂β̂
> 0,

∂W

∂β
> 0,

∂W

∂α
< 0,

∂W

∂p
< 0.

2.2.1 Optimal Order Display: Priority-gain vs Market Impact

Taking the total derivative of (2.13) shows that the impact of infinitesimal changes in

the display size can be decomposed into two “market microstructure terms”:

d

d∆
W =

(
∂p

∂I

∂

∂p
+

∂α

∂I

∂

∂α
+

∂β

∂I

∂

∂β
+

∂β̂

∂I

∂

∂β̂
+

∂µ

∂I

∂

∂µ

)
W

︸ ︷︷ ︸
=:MImpact

−

(
−
∂W

∂∆

)

︸ ︷︷ ︸
=:MPriority>0

= MImpact −MPriority,

where we used the fact that I ′(∆) = 1. The term MPriority captures the differential

gain in execution priority due to differential increases in the trader’s display size ∆. It

is strictly negative (see Lemma 1) as displayed orders gain time-priority over incoming

7See for instance, Ranaldo (2004); Cao et al. (2009) and Esser and Mönch (2007)
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orders at the same price level. The term MImpact captures the impact on trading cost

through changes in other traders’ submissions as a response to changes in the order

display ∆.

Whether market impact reduces or increases transaction costs depends on how the

market variables react to changes in volume imbalances. For instance, in view of (2.2.1)

and Lemma 1, differential increases in liquidity competition (i.e., ∂β̂
∂∆ > 0 and ∂β

∂∆ > 0),

together with decreases in liquidity demand (i.e., ∂µ
∂∆ < 0) and adverse movements of

prices (i.e., ∂µ
∂∆ > 0), materialize in increased transaction costs when traders increase

the display size. In fact, the empirical and theoretic literature has provided substantial

evidence that markets react in exactly this way: Harris (1997) and Buti and Rindi

(2013) suggest that order display causes greater liquidity competition, i.e., ∂β̂
∂∆ > 0

and ∂β
∂∆ > 0, Moinas (2010) predicts that order display reduces liquidity demand, i.e.,

∂α
∂∆ < 0. Hautsch and Huang (2012) find evidence that limit order submissions move

prices away from the submission price level, i.e., ∂µ
∂∆ > 0.

The optimal display size marks a trade-off between the cost of market impact and the

gain in execution priority. More formally, if the mapping ∆ 7→ W (∆) is strictly (quasi-)

convex, then the unique optimal display size ∆∗ ∈ (0, N) is characterised by the first

order condition d
d∆W = 0, or equivalently

MMarket(∆
∗) = MPriority(∆

∗). (2.14)

2.2.2 A Reduced Model of Pure Liquidity Competition

In the absence of market impact (MImpact = 0), fully display is clearly optimal. Absence

of market impact is an unrealistic assumption, though. Due to the highly non-linear

nature of (2.2.1), explicit solutions for the optimal display size under market impact

will not be available in general. In this section, we analyze a reduced model of pure

liquidity competition within wich a closed form solution can indeed be obtained. Our

key assumption is to allow only limit order competition at more aggressive price levels

to depend on order imbalances, while leaving all other parameters constant. In this

case the differential (2.2.1) simplifies to

d

d∆
W =

∂β̂

∂∆

∂

∂β̂
W −

(
−
∂W

∂∆

)
. (2.15)

There are several economic reasons to single out limit order competition. First, it

is known that limit order submission activity captures most of the dynamics in a

limit book market.8 Second, the microstructure literature has shown that limit order

competition often takes place through “quote-matching” and “front-running” strategies

which aggressively overbid openly displayed orders; see Harris (1997) for details. We

8For instance, Biais et al. (1995) show that only 4% of order activity is associated with market
orders, while more than 90% are associated with limit orders.
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further assume that liquidity competition reacts linearly to order display, i.e.,

β̂(∆) = β̂0 + β̂1∆, (2.16)

where β̂1 measures the aggressiveness with which liquidity competitors overbid dis-

played orders. Harris (1997) suggests that β̂1 is positive.

Definition 2 (The Intensity of Liquidity Competition). Assume α > 0. We define the

intensity of liquidity competition ξ as

ξ :=
αβ̂1

α+ β̂0
. (2.17)

Proposition 2, whose proof is given in the appendix, derives a closed form expression

of optimal display sizes as a function of ξ. Optimal display sizes will be characterized

in terms of the Lambert function (c.f. Corless et al. (1996)). A Lambert function Φ is

any function that solves the equation:

w = Φ(w)eΦ(w), w ∈ C. (2.18)

We will use of the lower branch Φ−1 of the Lambert function. It is defined for the

interval [−1/e, 0], is strictly negative, bounded from above, unbounded from below,

monotonically decreasing and obeys Φ−1 ≤ Φ−1(−1/e) = −1.

Proposition 2 (Optimal Display in Markets with Liquidity Competition). Assume

the trader wants to buy (sell) N shares and that all model parameters except β̂ are

independent of the display size and that β̂ satisfies (2.16). Assume moreover that

q̂ = 1, β̂0 ≥ 0 and β̂1 > 0 . Then,

∆∗

N
=





1 if ξ ≤ ξ−

− α
N (1 + ξ−1 +Φ−1(w)) if ξ− < ξ < ξ+

0 if ξ ≥ ξ+

, (2.19)

with w := −γe−ξ−1−1, γ :=
1− e−

N
α (1− βr)

βr
, (2.20)

and ξ− :=

(
γe

N
α − 1−

N

α

)−1

, ξ+ :=

(
γ − 1

)−1

. (2.21)

The trader’s optimal display strategy depends on the (effective) order size N/α and

the different levels of liquidity competition, specifically, the intensity of liquidity supply

ξ that improves the trader’s submission price level (i.e. overbidding) and the level of

liquidity supply βr that does not overbid the trader’s submission price level. Figure 1

illustrates the main result.

The preceding proposition highlights the effect of (overbidding) limit order flow ξ on liq-

uidity suppliers display decision. If traders display their orders, they trigger limit order

submissions which improve (overbid) the trader’s own submission price, and thus, re-

duce the latter’s execution priority and therefore increase his transaction costs. Hence,
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liquidity suppliers completely hide their order (∆∗ = 0) when liquidity competition

exceeds a critical value (ξ+ ≤ ξ). On the other hand, when liquidity competition is

sufficiently low (ξ ≤ ξ−), traders will fully reveal their intentions (∆∗ = N). In the

intermediate regime ( ξ− < ξ < ξ+), liquidity suppliers partially reveal their trade

intentions (0 < ∆∗ < N).

Figure 1: Optimal display rations in reduced model as a functions of the (scaled) order size
N/α and the intensity of liquidity competition ξ at more aggressive price levels. The left
(right) panel figure shows optimal display sizes with respect to a high (low) level of liquidity
competition at the submission price level: βr = 0.8 (βr = 0.5).

Besides overbidding (aggressive) liquidity competition, less aggressive limit orders which

submit at the liquidity suppliers price level do also affect the latter’s display decision,

however, in an opposite way. While aggressive limit orders force liquidity suppliers to

hide their trade intentions, limit orders that are submitted at the liquidity suppliers’

price level – and not ahead – force liquidity suppliers to display their trade intentions.

This is because hidden orders lose time-priority against incoming limit orders at the

same price level. Hence, an increased level of liquidity competition at the same price

level, encourages order display. For instance, Figure 1 shows that order display is larger

in the case βr = 0.8 compared to βr = 0.5. Thus, the order-display level will ultimately

depend on the mix between liquidity competition at more aggressive price levels ξ (i.e.,

β̂r) and the intensity of liquidity competition at the same price level βr.

Moreover, the proposition further shows that optimal display strategies depend on

the (scaled) order size N/α. As long as traders are sufficiently small relative to the

overall trade volume, the costs associated with order display due to market impact are

negligible compared to the gain in execution-priority. Hence, traders fully display their

trade intentions. However, if orders are large, then the costs of order display increase

dis-proportionally so traders gradually decrease order display with growing order sizes.

The following result is immediate.

Corollary 1. There exists an order size N0, such that the optimal order display ∆∗

increases monotonously for N ≤ N0 and decreases monotonously for N0 > N . More-
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over,

lim
N→0

∆∗

N
= 1, (2.22)

lim
N→∞

∆∗ =




−α

(
1 + ξ−1 +Φ−1

(
− 1

βr
e−ξ−1−1

))
< ∞ if ξ < βr

1−βr
,

0 else.
(2.23)

An important consequence of the preceding Corollary is that there is a maximum

display size beyond which traders should never display their order, when liquidity

competition at aggressive price levels outweighs liquidity competition at less aggressive

price levels (ξ < βr/(1 − βr)).

3 Estimating Optimal Display Strategies

In this section, we use high-frequency order-message data to estimate optimal display

strategies. Optimal display sizes are obtained for varying market and order settings

and for a range of stocks traded on NASDAQ. We benchmark the trade performance

of the optimal display sizes obtained from both, the full and reduced model against

ad-hoc trading practices full-display (∆ = N) and zero-display (∆ = 0).

3.1 Data

Our estimates are based on NASDAQ ITCH order-message data for the period ranging

from January 2011 to end of April 2011 for a random selection of 31 stocks from the

S&P500 index. The dataset provides messages for every order entry, including mod-

ification, cancellation, submission and execution. The messages contain order identi-

fication numbers, time stamps, order -modifications, -submissions, -cancellations and

-execution, as well as a flag marking the side of the book (buy or sell). This allows

to track every order until cancellation/execution and re-construct the complete visible

order book.

To estimate the model we fix the time period to be one minute and aggregate order

execution, cancellation and submission volumes on a minute-by-minute basis and merge

the aggregated order flow volumes with one-minute snapshots of the order book state

(i.e., spread, depth, price etc.). Thus, for each minute of trading time we know the

total number of market orders and limit orders that arrive at the best quotes and

at more aggressive prices, respectively. We only aggregate “net” limit order flow:

we did not include limit orders that were cancelled in the same minute they arrived,

as this has the same effect as a zero order submission. Thus, cancellations were for

standing liquidity only. The data aggregated in this way consists of 390 daily minute-by-

minute information observed over 82 trading days, corresponding to 31,980 one-minute

observations for each stock.
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3.1.1 Descriptive Statistics

Table 1 reports group-averages of time-averaged model parameters. Group-averaging

is based on one-minute dollar trade volume (TrVol): q1 (TrVol< 5000$), q2 (5000$ ≤

TrVol < 50000$) and q3 (50000$ ≤ TrVol). The number of liquidity groups has been

chosen so as to represent a proper balance between the available sample size (i.e., 31

stocks) and variation in liquidity. Time-averages for individual stocks are provided in

Table 3 in the appendix.

Table 1: Time-averages of stock properties and model parameters based on liquidity groups q1
(TrVol< 5000$), q2 (5000$ ≤ TrVol < 50000$), q3 (50000$ ≤ TrVol). Estimates report average
mid-quote price (MQ), spread (S), one-minute dollar trade volume (TrV ol), buy-side depth at
the first level (Dbid), one-minute mid-quote return variance (V ar), one-minute order size trade
volume (α), one-minute arrival probability of trades (p), proportion of liquidity competition

inside the best quotes (β̂r), proportion of liquidity competition at the best quote (βr), ratio
of cancellations relative to the existing depth at the first level (c), realized effective spread
(µ). The spread (S) and the effective spread (µ) are time-averaged after normalizing by the
prevailing mid-quote price and are given in basis points. Time averages are based on one-
minute aggregated data for the time period January 2011 to April 2014 for 31 random stocks
from NASDAQ.

Average Stock Properties Average Model Parameters

MQ
($)

S
(bps)

TrV ol
(1000$)

V ar Dbid
(shares)

α
(shares)

p β̂r βr c µ
(bps)

q1 32 37.27 2.55 25.07 1, 705 647 0.23 0.14 0.11 0.28 8.83

q2 23 9.29 19.14 13.01 6, 101 1, 940 0.62 0.23 0.22 0.20 1.90

q3 64 3.96 425.03 8.15 18, 391 11, 488 0.90 0.27 0.22 0.16 2.24

All 41 15.35 171.44 14.63 9, 582 5, 261 0.61 0.22 0.19 0.21 4.04

Table 1 shows that liquid stocks exhibit a stronger degree of liquidity competition in

terms of β̂r and βr. In view of Proposition 2 we expect that order display must be

lower in liquid stocks than in illiquid stocks. In fact, trading activity and liquidity

competition are linked. Harris (1997) shows that small tick sizes provide incentives

for traders to overbid existing quotes as the costs are relatively small compared to

stocks with large tick sizes. Thus, markets with small tick sizes exert higher liquidity

competition. At the same time, liquid stocks are known to trade at high prices that,

therefore, have low (relative) tick sizes. This explains why liquidity competition is more

intense for liquid stocks than for illiquid stocks.

3.1.2 Model Estimation

To estimate both, the impact of order imbalances on market dynamics and optimal

display strategies we employ two different settings. The first corresponds to the general

model where we allow imbalances to affect almost all model parameters. For such

12



setting we propose a simple linear regression approach for β̂, β and µ, i.e.,

β̂r(I) = b̂0 + b̂1I + ǫb̂, βr(I) = b0 + b1I + ǫb, µ(I) = m0 +m1I + ǫm. (3.1)

For p and α, we suggest logarithmic and sigmoidal transformations as follows:

log[α](I) = a0 + a1I + ǫa, p̄(I) =κ0 + κ1I + ǫκ, with p(I) =
1

1 + e−p̄(I)
. (3.2)

The second setting corresponds to the reduced model. In this case only β̂r varies with

imbalances. The assumption on the arrival probability of market orders (q = 1) can be

weakened. In fact, it can be seen from the proof that we only need to assume that β̂r
is inversely linear, i.e.,

1− β̂r =
1

α+ β̂0 + β̂1∆
.

This can be re-written such that the regression model reads

β̂r = 1−
1

ζ
, ζ = ζ0 + ζ1I + ǫζ . (3.3)

The new estimation parameters ζ0 and ζ1 capture the effects of α, β̂0 and β̂1 and are

estimated indirectly via β̂r in (3.3). The ǫ-variables denote iid normal error terms.

All estimations are based on weighted ordinary least squares on binned and discretized

grids for the imbalance. For each stock, we discretize order-imbalance into equidistant

data points and construct conditional means for α, p, β̂r , βr, µ based on the realized

imbalances in the respective intervals. Using weighted ordinary least squares allows

to account for heteroscedasticity as large order-imbalances occur less often than small

order-imbalances and thus fewer events have to be weighed accordingly. We chose the

weights to be the square-root of the sample size associated with each imbalance bin.

Table 2 reports t-statistics of coefficient estimates for each stock. The coefficient esti-

mates and r2-goodness-of-fit are reported in Table 4 and 5 in the appendix. For brevity

of exposition, tables only show the results for the slopes of the linear regression models,

not for the respective intercepts. Average r2 goodness-of-fit ranges from 40% to 63%

and is stable across the 31 stocks, suggesting that the ∆-dependencies in the model

parameters are well captured. Second, in line with our central assumption of the re-

duced model, t-statistics broadly confirm that order display mainly affects the amount

of liquidity competition. The impact on price and liquidity demand is ambiguous.

3.2 Optimal Display Estimates

Using the market impact estimates of the previous section, we calculate optimal displays

for a broad range of initial market and order settings. To this end, we fix the initial

sell-side depth to be the average trade volume over the same period, i.e., Dsell = α ∗ p.

Then, we calculate the optimal display size for various realizations of the initial bid-side

depthDbid and order sizeN . For each such realization, we calculate the transaction cost

functional for the general (W ) and the reduced (Wred) model. Optimal display sizes

13



Table 2: Reported t-statistics for the model parameters of the general model as of (3.1), (3.2)
and the reduced model as of (3.3). Estimates are provided for each stock separately based on
one-minute aggregated NASDAQ-ITCH data ranging from January to April 2011. Stocks are a
random selection from the S&P 500 during that period. Only the slope coefficients of the linear
regressions are shown. For ease of exposition coefficients have been multiplied by a factor of
1000.

General Model
(3.1) and (3.2)

Reduced Model
(3.3)

Stock a1 κ1 b̂1 b1 m1 ζ1

AAPL 7.36 −0.91 0.73 1.66 0.65 0.86
ADM 11.07 −5.39 10.99 15.85 −2.74 10.65
BAC −0.82 −5.14 18.24 21.01 3.82 17.81
CALL 4.90 2.00 0.74 −2.39 −5.96 1.20
CCJ 6.70 −7.07 0.01 9.81 −3.45 0.35

COCO 3.85 −2.92 11.23 3.40 3.90 10.87
CSCO 2.28 −5.31 11.10 14.84 4.45 10.34
DBD 3.31 −4.15 −0.79 3.97 −1.81 −1.07
DNR 8.72 −7.45 9.45 22.78 −5.34 8.88
EBAY 5.05 −5.97 17.08 23.06 −1.83 16.21
ERIC 4.08 −6.51 13.95 11.82 13.79 11.20
EWA 2.39 −14.08 22.25 24.20 12.77 15.80
GE −0.81 −5.99 14.00 21.81 3.16 13.85

HBAN 0.84 −9.40 11.63 10.21 7.40 10.97
HPQ 3.03 −4.48 12.69 18.75 −3.15 13.11
IBM 10.51 −2.48 −0.34 8.34 −1.18 −0.41
ING 5.52 −2.56 9.55 15.89 17.13 9.36
INTC −3.69 −12.03 18.84 12.27 6.63 17.83
ITC 2.74 −1.89 1.08 2.39 −0.63 1.51
MS 3.81 −6.05 10.97 13.46 −3.84 11.43

MSFT 2.55 −8.95 19.48 21.59 3.58 18.99
ORCL 4.83 −7.99 11.86 20.07 −1.61 11.94
PFE −0.05 −4.14 29.90 15.94 6.32 29.01

PLOW 1.26 0.47 0.71 −0.85 −3.01 0.71
RSH 6.98 −10.94 9.10 22.17 −2.81 8.99
SNP 2.82 −1.94 1.35 1.99 2.66 1.47
SWC 7.62 −2.44 0.27 5.76 1.23 −0.18
TECD 5.87 0.91 3.45 7.27 −0.76 2.01
USMO 6.33 −4.58 3.73 1.13 −2.22 3.71
VIP 7.50 −11.63 3.58 5.50 −2.17 3.53
WEN 1.78 −14.19 10.16 13.96 1.09 10.08

Average 4.14 −5.59 9.26 11.86 1.49 8.74
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for the general (∆∗), respectively, reduced (∆∗
red) model are obtained by numerically

minimizing W , respectively using the explicit representation of Proposition 2.

Another widely used metric for the quality of trade execution is the so called fill-rate

(or execution ratio), that is the ratio of successfully executed orders at the initial sub-

mission price level. Bessembinder et al. (2009) shows that both measures are sensibly

linked to the willingness to display or hide trading intentions. To further compare the

performance of the general and reduced model relative to the benchmark full-display

and zero-display strategy we also estimate the fill-rates for each strategy. Results are

shown in Figure 2 and 3. For brevity of exposition we show the group-averaged results

for liquid and il-liquid stocks. Figure 2 reports cross-sectional averages for high-liquid

stocks with TrVol> 50000$, while Figure 3 reports cross-sectional averages for low-

liquid stocks with TrVol< 50000$. Results for individually selected stocks are provided

in the appendix.

Our key results can be summarized as follows. First, we observe two distinct regimes

with respect to the performance of the reduced display size. It turns out that the

comparative advantage of using the reduced display strategy ∆red over ad-hoc trading

strategies is particularly strong in the liquid regime of stocks, for instance Apple or

Oracle. For less liquid stocks, however, the full-display strategy is generally the best

strategy. Generally, performance gains of strategic display strategies ∆∗ and ∆∗
red over

non-strategic strategies ∆0 and ∆N are significant in liquid stocks. The cross-sectional

averages suggest that performance gains up to one basis points in absolute terms and

up to 40% in relative terms are attainable.

We also find that the relative advantage of optimal display strategies does critically

depend on the the prevailing order book depth Dbid relative to incoming market order

flow αp, or the exhaustion speed α
Dbid

. The exhaustion speed reflects the speed with

which depth (at the first level) is exhausted by incoming market orders. If depth is

executed quickly (i.e., α
Dbid

≫ 1), then (partially) hidden orders allows to significantly

reduce transaction costs. However, if the order-book is thick (i.e., α
Dbid

≪ 1), hidden

strategies will not yield significant benefits. The findings suggests that stocks with a

low average exhaustion speed attract more hidden liquidity on average, while stocks

with high α
Dbid

are overall more transparent. A prominent example of a stock with high

exhaustion speed is Apple (AAPL). According to Table 3, this stock has an exhaustion

speed of α
Dbid

= 23.23, by far the strongest exhaustion speed in our sample. Thus, it is

conceivable that the use of hidden orders for this stock is more prevalent (see Figure

4).

4 Conclusion

We proposed a simple model of optimal order display in which key market parameters

depend on order imbalances. In a benchmark model of pure liquidity competition opti-

mal display strategies could be given in closed form. We find that underlying liquidity
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Figure 2: Figures show estimated the cross-sectional average of transaction costs W and
execution ratio V

N
for liquid stocks with TrV ol > 50000$. Estimates are shown for different

display strategies: zero-display (∆ = 0 in green), full-display (∆ = N), the reduced model
optimal display (∆ = ∆∗

red in blue) and the full model optimal display strategy (∆ = ∆∗ in
black). Transaction cost performance W is shown in the left panel. Expected execution ratio
V
N

is shown in the right panel. For each, we show three different realizations of the order size
N relative to expected transaction volume αp: small (N = αp), medium (N = 5αp) and large
(N = 10αp).
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characteristics, especially liquidity competition strongly influence display strategies.

This has important implications for trading as the liquid class of stocks generate the

bulk of trading activity at today’s markets. The decision to hide or display also de-

pends on the prevailing market depth at time of order submission. We further find

that hidden orders are beneficial when the speed with which the order book depth is

executed against market orders is high. This is specifically so for actively traded stocks

at times of low market depth. Thus, we predict that hidden liquidity cumulates in

times of low depth and high liquidity demand. Our analysis also generates implica-
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Figure 3: Figures show estimated the cross-sectional average of transaction costs W and
execution ratio V

N
for il-liquid stocks with TrV ol < 50000$. Estimates are shown for different

display strategies: zero-display (∆ = 0 in green), full-display (∆ = N), the reduced model
optimal display (∆ = ∆∗

red in blue) and the full model optimal display strategy (∆ = ∆∗ in
black). Transaction cost performance W is shown in the left panel. Expected execution ratio
V
N

is shown in the right panel. For each, we show three different realizations of the order size
N relative to expected transaction volume αp: small (N = αp), medium (N = 5αp) and large
(N = 10αp).
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tions for the cross-sectional variation of hidden liquidity with respect to tick size rules.

For instance, stocks that trade at higher prices, have lower (relative) tick sizes. Since

lower tick sizes incentivize liquidity competition as bypassing orders is cheaper, such

stocks encourage the use of hidden orders more than in low-priced stocks.
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A Proof of Proposition 2

We need to compute the minimizer of the function

∆ 7→ W (∆) =

(
1−

V (∆)

N

)
µ(∆).

Under the assumptions of Proposition 2 this reduces to computing the critical point of

a function f : [0, N ] → R of the form

f(x) = −
d− ce−x/α

a+ bx
, a, b, c, d > 0.

Its first derivative is given by

f ′(x) = −
c
αe

−x/α(a+ bx)− b(d− ce−x/α)

(a+ bx)2
.

Hence any interior critical point x∗ solves an equation of the form

ex/α +B1x+B0 = 0 (A.1)

for suitable constants B0, B1 and can thus be expressed in terms of the Lambert function

Φ as

x∗ = −
1

B1


B0 +B1αΦ


e

−
B0
B1α

B1α




 .

The second derivative evaluated at the interior critical point x∗ is given by

f ′′(x∗) =
c
α2 e

−x∗/α(a+ bx∗)

(a+ bx∗)2
.

Hence, x∗ is a local minimizer if x∗ ≥ 0. This is the case in our model. Indeed, in our

model,

B1 =
η−1

α(1−ηe−
N
α )

, and B0 =
(η−1)(α(1+β̂1)+β̂0)

β̂1α(1−ηe−
N
α )

,

where η := 1− βr. Hence the interior optimal display sizes ∆∗ satisfy

∆∗ = −
α+ β̂0

β̂1
− α

(
1 + Φ(w)

)

where

w = −e
−1−

α+β̂0
β̂1α

(1− e−
N
α η)

1− η

= −e−1−ξ−1
γ

∈ (−1/e, 0).

The Lambert function Φ is not injective on (−1
e , 0). The additional constraints Φ ≥ −1,

respectively Φ ≤ −1, define single-valued functions, the upper branch Φ0 and lower

branch Φ−1. The upper branch satisfies Φ0(0) = 0 and Φ0(−1/e) = −1. It would give

negative display sizes. The lower branch decreases from Φ−1(−1/e) = −1 to Φ−1(0−) =
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−∞; the associated optimal display size ∆∗
−1 = ∆∗

−1(ξ) satisfies ∆∗
−1(0) = +∞ and

∆∗
−1(∞) = −1. Hence it remains to identify the thresholds ξ± for which

∆∗
−1(ξ+) = 0 and ∆∗

−1(ξ−) = N.

To this end, we use the fact that Φ−1(x) = y if and only if x = yey to find

ξ+ =

(
γ − 1

)−1

≥ 0 and ξ− =

(
γe

N
α − 1−

N

α

)−1

≥ 0.

B Further empirical results

Table 3: Time averages of stock properties for individual stocks; cf Table 1.

Average Stock Properties Average Model Parameters

MQ
($)

S
(bps)

TrV ol
(1000$)

V Dbid
(shares)

α
(shares)

p β̂r βr c µ
(bps)

AAPL 344 1.73 2, 353.65 7.72 295 6, 852 1.00 0.29 0.03 0.46 9.80
ADM 35 3.54 38.29 9.12 918 1, 478 0.74 0.27 0.23 0.16 1.55
BAC 14 7.08 350.64 9.33 64, 295 28, 638 0.88 0.23 0.24 0.13 1.10
CALL 21 183.14 0.42 98.30 279 313 0.06 0.07 0.04 0.18 37.19
CCJ 36 5.98 30.46 18 403 1, 094 0.77 0.34 0.17 0.26 2.66

COCO 5 21.36 5.79 19.92 5, 438 2, 330 0.50 0.10 0.20 0.08 1.07
CSCO 19 5.31 336.98 9.37 44, 105 19, 826 0.90 0.17 0.25 0.09 1.07
DBD 35 13.48 2.69 12.48 175 269 0.28 0.21 0.07 0.41 4.74
DNR 22 6.06 19.47 12.09 951 1, 188 0.74 0.31 0.27 0.18 1.63
EBAY 31 3.41 122.51 9.73 2, 075 4, 332 0.91 0.31 0.23 0.12 1.57
ERIC 12 8.11 18.61 11.60 10, 521 3, 081 0.50 0.13 0.28 0.13 1.04
EWA 26 4 18.36 7.10 6, 417 1, 462 0.48 0.26 0.29 0.26 1.11
GE 20 5.07 193.32 9.52 17, 181 11, 399 0.85 0.26 0.26 0.14 1.17

HBAN 7 14.55 28.55 9.89 34, 536 6, 636 0.62 0.10 0.29 0.10 1.02
HPQ 44 2.50 155.45 9.20 1, 993 4, 017 0.88 0.30 0.24 0.11 1.53
IBM 161 2.04 216.54 5.17 263 1, 430 0.94 0.35 0.11 0.28 4.36
ING 12 8.51 4.36 11.96 3, 223 931 0.39 0.17 0.30 0.20 1.07
INTC 21 4.38 367.88 7.32 38, 267 19, 394 0.90 0.23 0.26 0.10 1.13
ITC 69 14.08 2.28 11.91 139 176 0.19 0.21 0.05 0.45 9.53
MS 29 3.77 80.01 8.98 2, 481 3, 288 0.84 0.32 0.25 0.16 1.43

MSFT 27 3.79 483.73 6.43 23, 196 19, 196 0.93 0.25 0.22 0.11 1.18
ORCL 33 3.14 276.90 8.13 6, 176 9, 309 0.90 0.30 0.24 0.10 1.38
PFE 19 5.31 162.77 6.87 20, 360 10, 179 0.84 0.22 0.27 0.11 1.11

PLOW 15 52.74 0.26 33.54 187 204 0.08 0.10 0.05 0.24 7.47
RSH 16 7.47 9.49 12.14 1, 266 1, 044 0.57 0.19 0.23 0.16 1.28
SNP 101 14.48 4.14 11.20 201 198 0.20 0.25 0.04 0.57 14.42
SWC 22 13.15 11.57 17.39 329 714 0.74 0.32 0.15 0.28 3.20
TECD 51 8.72 10.76 12.87 228 374 0.56 0.29 0.09 0.37 4.48
USMO 14 19.26 1.05 22.77 324 293 0.26 0.13 0.11 0.23 2.66
VIP 14 9.11 4.70 12.85 795 1, 010 0.33 0.10 0.13 0.15 1.35
WEN 5 20.67 3.05 10.61 10, 021 2, 428 0.25 0.05 0.23 0.09 1.02

Average 41.29 15.35 171.44 14.63 9, 582 5, 261 0.61 0.22 0.19 0.21 4.04
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Table 4: Reported Coefficient Estimates for the model parameters of the general model
as of (3.1), (3.2) and the reduced model as of (3.3). Estimates are provided for each stock
separately based on one-minute aggregated NASDAQ Itch data ranging from January to April
2011. Stocks are a random selection from the S&P 500 during that period. Only the slope
coefficients of the linear regressions are shown. For ease of exposition coefficients have been
multiplied by a factor of 1000.

General Model
(3.1) and (3.2)

Reduced Model
(3.3)

Stock a1 κ1 b̂1 b1 m1 ζ1

AAPL 0.326 −0.531 0.004 0.002 19.573 0.009
ADM 0.259 −0.098 0.026 0.038 −8.894 0.047
BAC −0.001 −0.003 0.001 0.001 0.151 0.002
CALL 1.076 0.590 0.017 −0.030 −1, 829.747 0.046
CCJ 0.377 −0.186 0.0001 0.064 −38.051 0.008

COCO 0.032 −0.018 0.004 0.003 0.640 0.005
CSCO 0.004 −0.007 0.001 0.001 0.231 0.002
DBD 1.029 −0.504 −0.036 0.080 −86.001 −0.112
DNR 0.182 −0.176 0.024 0.049 −26.178 0.047
EBAY 0.057 −0.085 0.018 0.020 −3.062 0.038
ERIC 0.022 −0.024 0.006 0.004 1.471 0.010
EWA 0.031 −0.045 0.017 0.016 4.219 0.037
GE −0.002 −0.012 0.004 0.005 0.478 0.007

HBAN 0.002 −0.008 0.001 0.002 0.219 0.001
HPQ 0.035 −0.056 0.015 0.020 −6.125 0.030
IBM 0.607 −0.271 −0.003 0.037 −31.970 −0.010
ING 0.056 −0.038 0.015 0.011 3.996 0.028
INTC −0.005 −0.010 0.002 0.002 0.356 0.003
ITC 1.218 −0.500 0.067 0.043 −131.406 0.151
MS 0.028 −0.069 0.013 0.022 −4.798 0.026

MSFT 0.004 −0.013 0.003 0.003 0.328 0.006
ORCL 0.014 −0.044 0.007 0.009 −0.722 0.014
PFE −0.0001 −0.007 0.004 0.004 0.644 0.007

PLOW 0.442 0.081 0.012 −0.014 −171.740 0.014
RSH 0.162 −0.182 0.019 0.040 −7.354 0.028
SNP 0.745 −0.202 0.028 0.014 332.745 0.069
SWC 0.446 −0.152 0.004 0.046 19.068 −0.006
TECD 1.033 0.121 0.126 0.134 −40.564 0.732
USMO 0.811 −0.377 0.037 0.010 −29.563 0.054
VIP 0.319 −0.153 0.007 0.016 −5.934 0.008
WEN 0.029 −0.047 0.002 0.008 0.102 0.003

Average 0.301 −0.098 0.014 0.021 −65.738 0.042
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Table 5: Reported r2 statistics for (3.1), (3.2) and (3.3) are reported. Statistics are provided
for each stock separately based on one-minute aggregated NASDAQ Itch data ranging from
January to April 2011. Stocks are a random selection from the S&P 500 during that period.

General Model
(3.1) and (3.2)

Reduced Model
(3.3)

Stock a1 κ1 b̂1 b1 m1 ζ1

AAPL 0.77 0.07 0.02 0.08 0.03 0.02
ADM 0.82 0.34 0.68 0.82 0.22 0.67
BAC 0.04 0.41 0.90 0.92 0.45 0.89
CALL 0.65 0.13 0.03 0.21 0.72 0.07
CCJ 0.63 0.48 0.00 0.64 0.31 0.00

COCO 0.50 0.21 0.80 0.27 0.50 0.79
CSCO 0.26 0.47 0.79 0.87 0.57 0.77
DBD 0.32 0.27 0.01 0.25 0.12 0.02
DNR 0.73 0.49 0.61 0.90 0.50 0.58
EBAY 0.48 0.38 0.83 0.90 0.11 0.82
ERIC 0.41 0.46 0.80 0.74 0.89 0.72
EWA 0.21 0.81 0.91 0.93 0.88 0.84
GE 0.04 0.54 0.87 0.94 0.42 0.86

HBAN 0.04 0.73 0.81 0.77 0.78 0.79
HPQ 0.25 0.26 0.74 0.86 0.26 0.75
IBM 0.85 0.14 0.003 0.63 0.07 0.00
ING 0.59 0.13 0.67 0.85 0.93 0.67
INTC 0.55 0.86 0.94 0.86 0.80 0.93
ITC 0.31 0.09 0.03 0.15 0.02 0.06
MS 0.57 0.60 0.83 0.88 0.57 0.84

MSFT 0.26 0.67 0.90 0.92 0.40 0.90
ORCL 0.64 0.70 0.83 0.94 0.17 0.84
PFE 0.00 0.35 0.97 0.89 0.73 0.96

PLOW 0.13 0.01 0.02 0.03 0.41 0.02
RSH 0.73 0.76 0.69 0.93 0.31 0.68
SNP 0.27 0.08 0.04 0.11 0.23 0.05
SWC 0.71 0.11 0.00 0.40 0.06 0.00
TECD 0.56 0.01 0.17 0.49 0.02 0.07
USMO 0.63 0.30 0.22 0.02 0.17 0.22
VIP 0.79 0.81 0.29 0.49 0.24 0.28
WEN 0.17 0.86 0.77 0.86 0.07 0.77

Average 0.45 0.40 0.52 0.63 0.39 0.51
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Figure 4: Figure shows expected implementation shortfall of the optimal display strategy
∆∗, the strategy of the reduced model ∆∗

red, the full-display strategy ∆N = N and the zero-display
strategy ∆0 = 0 for a selection of four liquid stocks from the S&P 500 index: Apple (AAPL), Ebay
(EBAY), Microsoft (MSFT) and Oracle (ORCL). Performances are plotted against the initial (same-
side) depth. Depth is denoted in multiples of average trade volume over the considered period, αp.
The figure shows results for two order sizes: on the left panel, a small order that equals the average
trade volume (N = αp); on the right panel, a large order equaling ten times the average trade volume
(N = 10αp).
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Figure 5: Figure shows expected execution ratios of the optimal display strategy ∆∗, the strategy
of the reduced model ∆∗

red, the full-display strategy ∆N = N and the zero-display strategy ∆0 = 0
for a selection of four liquid stocks from the S&P 500 index: Apple (AAPL), Ebay (EBAY), Microsoft

(MSFT) and Oracle (ORCL). Expected execution ratios are plotted against the initial (same-side)
depth. Depth is denoted in multiples of average trade volume over the considered period, αp. The
expected execution ratio is defined as the expected execution volume V at the submission price level
divided by the initial order size N . The figure shows results for two order sizes: on the left panel, a
small order that equals the average trade volume (N = αp); on the right panel, a large order equaling
ten times the average trade volume (N = 10αp).
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Figure 6: Figure shows expected implementation shortfall of the optimal display strategy
∆∗, the strategy of the reduced model ∆∗

red, the full-display strategy ∆N = N and the zero-display
strategy ∆0 = 0 for a selection of four il-liquid stocks from the S&P 500 index: Corinthian Colleges

(COCO), Huntington Bancshares (HBAN), Douglas Dynamics (PLOW) and The Wendy’s Company

(WEN). Performances are plotted against the initial (same-side) depth. Depth is denoted in multiples
of average trade volume over the considered period, αp. The figure shows results for two order sizes:
on the left panel, a small order that equals the average trade volume (N = αp); on the right panel, a
large order equaling ten times the average trade volume (N = 10αp).
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Figure 7: Figure shows expected execution ratios of the optimal display strategy ∆∗, the strategy
of the reduced model ∆∗

red, the full-display strategy ∆N = N and the zero-display strategy ∆0 = 0 for
a selection of four il-liquid stocks from the S&P 500 index: Corinthian Colleges (COCO), Hunting-

ton Bancshares (HBAN), Douglas Dynamics (PLOW) and The Wendy’s Company (WEN). Expected
execution ratios are plotted against the initial (same-side) depth. Depth is denoted in multiples of
average trade volume over the considered period, αp. The expected execution ratio is defined as the
expected execution volume V at the submission price level divided by the initial order size N . The
figure shows results for two order sizes: on the left panel, a small order that equals the average trade
volume (N = αp); on the right panel, a large order equaling ten times the average trade volume
(N = 10αp).
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