Mathematical Finance Seminar
TU Berlin, MA042
Thorben Koch (Bielefeld)

Optimal Installation of Solar Panels with Price Impact: a Solvable Singular Stochastic Control Problem

We consider a price-maker company which generates electricity and sells it in the spot market. The company can increase its level of installed power by irreversible installations of solar panels. In absence of any actions of the company, the electricity's spot price evolves as an Ornstein-Uhlenbeck process, and therefore it has a mean-reverting behavior. The current level of the company's installed power has a permanent impact on the electricity's price and affects its mean-reversion level. The company aims at maximizing the total expected profits from selling electricity in the market, net of the total expected proportional costs of installation. This problem is modeled as a two-dimensional degenerate singular stochastic control problem in which the installation strategy is identified as the company's control variable. We follow a guess-and-verify approach to solve the problem. We find that the optimal installation strategy is triggered by a curve which separates the waiting region, where it is not optimal to install additional panels, and the installation region, where it is. Such a curve depends on the current level of the company's installed power, and is the unique strictly increasing function which solves a first-order ODE. While studying the ODE, we obtain so far unproved properties of a ratio involving a class of Hermite and parabolic cylinder functions.