Mathematical Finance Seminar
Date
Time
17:oo
Kasper Larsen (Rutgers U)

Asset-pricing puzzles and price-impact

We solve in closed-form a continuous-time Nash equilibrium model in which a finite number of investors with exponential utilities continuously consume and trade strategically with price-impact. Compared to the analogous Pareto-efficient equilibrium model, price-impact has an amplification effect on risk-sharing distortions that helps resolve the interest rate puzzle. However, price impact has little quantitative effect on the equity premium and stock-return volatility puzzles. Joint work with Xiao Chen (Rutgers), Jin Hyuk Choi (UNIST), and Duane J. Seppi (CMU). 

Probability Colloqium
Date
Time
17:oo
Location:
online
Mihai Sirbu (U Texas)

tba

Mathematical Finance Seminar
Date
Time
17:00
Location:
online
Sebastian Jaimungal (U Toronto)

Portfolio Optimisation within a Wasserstein Ball

We consider the problem of active portfolio management where a loss-averse and/or gain-seeking investor aims to outperform a benchmark strategy's risk profile while not deviating too much from it. Specifically, an investor considers alternative strategies that have a specified copula with the benchmark and whose terminal wealth lies within a Wasserstein ball surrounding it. The investor then chooses the alternative strategy that minimises a distortion risk measure. We prove that an optimal dynamic strategy exists and is unique, and provide its characterisation through the notion of isotonic projections. Finally, we illustrate how investors with different risk preferences invest and improve upon the benchmark using the Tail Value-at-Risk, inverse S-shaped distortion risk measures, and lower- and upper-tail risk measures as examples. We find that investors' optimal terminal wealth distribution has larger probability masses in regions that reduce their risk measure relative to the benchmark while preserving some aspects of the benchmark. This is joint work with Silvana Pesenti, U. Toronto. 

Probability Colloqium
Date
Time
17:oo
Location:
online
Nina Holden (ETH Zurich)

tba

Probability Colloqium
Date
Time
16:00
Location:
online
Ronnie Sircar (Princeton U)

Cryptocurrencies, Mining & Mean Field Games

We present a mean field game model to study the question of how centralization of reward and computational power occur in Bitcoin-like cryptocurrencies. Miners compete against each other for mining rewards by increasing their computational power.  This leads to a novel mean field game of jump intensity control, which we solve explicitly for miners maximizing exponential utility, and handle numerically in the case of miners with power utilities. We show that the heterogeneity of their initial wealth distribution leads to greater imbalance of the reward distribution, or a ``rich get richer'' effect. This concentration phenomenon is aggravated by a higher bitcoin mining reward, and reduced by competition. Additionally, an advantaged miner with cost advantages such as access to cheaper electricity, contributes a significant amount of computational power in equilibrium, unaffected by competition from less efficient miners. Hence, cost efficiency can also result in the type of centralization seen among miners of cryptocurrencies.
 

Mathematical Finance Seminar
Date
Time
17:oo
Location:
online
Mikhail Urusov (U. Duisburg-Essen)

Optimal trade execution in an order book model with stochastic liquidity parameters

We analyze an optimal trade execution problem in a financial market with stochastic liquidity. To this end we set up a limit order book model in which both order book depth and resilience evolve randomly in time. Trading is allowed in both directions. In discrete time, we discuss an explicit recursion that, under certain structural assumptions, characterizes minimal execution costs and observe some qualitative differences with related models. In continuous time, due to the stochastic dynamics of the order book depth and resilience, optimal execution strategies are typically of infinite variation, and the first thing to be discussed it how to extend the state dynamics and the cost functional to allow for general semimartingale strategies. We then derive a quadratic BSDE that under appropriate assumptions characterizes minimal execution costs, identify conditions under which an optimal execution strategy exists and, finally, illustrate our findings in several examples. This is a joint work with Julia Ackermann and Thomas Kruse.

Mathematical Finance Seminar
Date
Time
17:oo
Location:
online via zoom
Cassandra Milbradt (HU Berlin)

A cross-border market model

On the XBID-market 13 European countries can trade electricity between each other. Like other intraday electricity markets, this is handled using a limit order book. However, cross-border trading is limited via the total amount of available transmission capacities during a trading session. We present a cross-border market model between two countries and want to give insight into the interactions on this market. We introduce a so-called reduced-form representation of the market and a capacity process which may restrict cross-border trades in each direction. Assuming that the capacity process is non-restricted, we are able to derive heavy traffic approximations of the standing volumes and the capacity process. We will further motivate a candidate for the heavy traffic approximation of the restricted market model.

Mathematical Finance Seminar
Date
Time
17:oo
Location:
online via zoom
Martin Larsson

Finance and Statistics: Trading Analogies for Sequential Learning

The goal of sequential learning is to draw inference from data that is gathered gradually through time. This is a typical situation in many applications, including finance. A sequential inference procedure is `anytime-valid’ if the decision to stop or continue an experiment can depend on anything that has been observed so far, without compromising statistical error guarantees. A recent approach to anytime-valid inference views a test statistic as a bet against the null hypothesis. These bets are constrained to be supermartingales - hence unprofitable - under the null, but designed to be profitable under the relevant alternative hypotheses. This perspective opens the door to tools from financial mathematics. In this talk I will discuss how notions such as supermartingale measures, log-optimality, and the optional decomposition theorem shed new light on anytime-valid sequential learning. (This talk is based on joint work with Wouter Koolen (CWI), Aaditya Ramdas (CMU) and Johannes Ruf (LSE).)

Mathematical Finance Seminar
Date
Time
17:00
Location:
Online
Fred E. Benth (U. Oslo)

Pathwise Gaussian Volterra processes in Hilbert space

We discuss a rough volatility model with fractional drift and noise allowing for more flexibility in modelling roughness. Motivated by an extension to infinite stochastic volatility models for commodity futures markets, we are led to a study of Gaussian Volterra processes. We suggest a definition of a pathwise stochastic integral based on combining the regularity of the kernel and the covariance of the noise. Likewise, we define pathwise integration with respect to multi-parameter covariance-like functions, and apply this to derive an explicit representation of the covariance of the Gaussian Volterra process. This is joint work with Fabian Harang (Oslo).

Probability Colloqium
Date
Time
17:00
Location:
online
Emanuel Gobet (Ecole Polytechnique)

Weak Approximations and VIX Option Prices Expansions in Rough Forward Variances Models