Mathematical Finance Seminar
TU, MA042
David Promel (U. of Oxford)

MOT Duality and Robust Finance

Without assuming any probabilistic price dynamics, we consider a frictionless financial market given by the Skorokhod space, on which some financial options are liquidly traded. In this model-free setting we show various pricing-hedging dualities and the analogue of the fundamental theorem of asset pricing. For this purpose we study the corresponding martingale optimal transport (MOT) problem: We obtain a dual representation of the Kantorovich functional (super-replication functional) defined for functions (financial derivatives) on the Skorokhod space using quotient sets (hedging sets). Our representation takes the form of a Choquet capacity generated by martingale measures satisfying additional constraints to ensure compatibility with the quotient sets. The talk is based on a joint work with Patrick Cheridito, Matti Kiiski and H. Mete Soner.